cell.c 26.7 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "atomic.h"
51
#include "error.h"
52
#include "gravity.h"
53
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
54
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
55
#include "memswap.h"
56
#include "minmax.h"
57
#include "scheduler.h"
58
59
#include "space.h"
#include "timers.h"
60

61
62
63
/* Global variables. */
int cell_next_tag = 0;

64
65
66
67
68
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
69
int cell_getsize(struct cell *c) {
70

Pedro Gonnet's avatar
Pedro Gonnet committed
71
72
  /* Number of cells in this subtree. */
  int count = 1;
73

74
75
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
76
    for (int k = 0; k < 8; k++)
77
78
79
80
81
82
83
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

/**
84
85
86
87
88
89
90
91
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
92
93
int cell_unpack(struct pcell *pc, struct cell *c, struct space *s) {

94
95
#ifdef WITH_MPI

96
97
  /* Unpack the current pcell. */
  c->h_max = pc->h_max;
98
99
  c->ti_end_min = pc->ti_end_min;
  c->ti_end_max = pc->ti_end_max;
100
  c->count = pc->count;
101
  c->gcount = pc->gcount;
102
  c->tag = pc->tag;
Matthieu Schaller's avatar
Matthieu Schaller committed
103

104
105
  /* Number of new cells created. */
  int count = 1;
106
107

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
108
  for (int k = 0; k < 8; k++)
109
    if (pc->progeny[k] >= 0) {
Pedro Gonnet's avatar
Pedro Gonnet committed
110
      struct cell *temp = space_getcell(s);
111
      temp->count = 0;
112
      temp->gcount = 0;
113
114
115
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
116
117
118
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
119
      temp->dmin = c->dmin / 2;
120
121
122
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
123
124
      temp->depth = c->depth + 1;
      temp->split = 0;
125
      temp->dx_max = 0.f;
126
127
128
129
130
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
      count += cell_unpack(&pc[pc->progeny[k]], temp, s);
131
132
    }

133
  /* Return the total number of unpacked cells. */
134
  c->pcell_size = count;
135
  return count;
136
137
138
139
140

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
141
}
142

143
/**
144
 * @brief Link the cells recursively to the given #part array.
145
146
147
148
149
150
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
151
int cell_link_parts(struct cell *c, struct part *parts) {
152

153
154
155
  c->parts = parts;

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
156
157
158
159
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
160
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
Pedro Gonnet's avatar
Pedro Gonnet committed
161
162
    }
  }
163

164
  /* Return the total number of linked particles. */
165
166
  return c->count;
}
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/**
 * @brief Link the cells recursively to the given #gpart array.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_gparts(struct cell *c, struct gpart *gparts) {

  c->gparts = gparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->gcount;
}

193
194
195
196
197
198
199
200
201
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
202
203
int cell_pack(struct cell *c, struct pcell *pc) {

204
205
#ifdef WITH_MPI

206
207
  /* Start by packing the data of the current cell. */
  pc->h_max = c->h_max;
208
209
  pc->ti_end_min = c->ti_end_min;
  pc->ti_end_max = c->ti_end_max;
210
  pc->count = c->count;
211
  pc->gcount = c->gcount;
212
213
214
  c->tag = pc->tag = atomic_inc(&cell_next_tag) % cell_max_tag;

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
215
216
  int count = 1;
  for (int k = 0; k < 8; k++)
217
218
219
220
221
222
223
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
      count += cell_pack(c->progeny[k], &pc[count]);
    } else
      pc->progeny[k] = -1;

  /* Return the number of packed cells used. */
224
225
  c->pcell_size = count;
  return count;
226
227
228
229
230

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
231
232
}

233
234
235
236
237
238
239
240
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param ti_ends (output) The time information we pack into
 *
 * @return The number of packed cells.
 */
241
242
int cell_pack_ti_ends(struct cell *c, int *ti_ends) {

243
244
#ifdef WITH_MPI

245
246
  /* Pack this cell's data. */
  ti_ends[0] = c->ti_end_min;
247

248
249
250
251
252
253
254
255
256
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_ti_ends(c->progeny[k], &ti_ends[count]);
    }

  /* Return the number of packed values. */
  return count;
257
258
259
260
261

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
262
263
}

264
265
266
267
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
268
 * @param ti_ends The time information to unpack
269
270
271
 *
 * @return The number of cells created.
 */
272
273
int cell_unpack_ti_ends(struct cell *c, int *ti_ends) {

274
275
#ifdef WITH_MPI

276
277
  /* Unpack this cell's data. */
  c->ti_end_min = ti_ends[0];
278

279
280
281
282
283
284
285
286
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_ti_ends(c->progeny[k], &ti_ends[count]);
    }

  /* Return the number of packed values. */
287
  return count;
288
289
290
291
292

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
293
}
294

295
/**
296
 * @brief Lock a cell for access to its array of #part and hold its parents.
297
298
 *
 * @param c The #cell.
299
 * @return 0 on success, 1 on failure
300
 */
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->hold || lock_trylock(&c->lock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->hold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
323
  struct cell *finger;
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->lock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->hold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->lock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
346
347
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
348
      atomic_dec(&finger2->hold);
349
350
351
352
353
354
355
356
357
358

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

359
360
361
362
363
364
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->ghold || lock_trylock(&c->glock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->ghold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
387
  struct cell *finger;
388
389
390
391
392
393
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->glock) != 0) break;

    /* Increment the hold. */
394
    atomic_inc(&finger->ghold);
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

    /* Unlock the cell. */
    if (lock_unlock(&finger->glock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
410
411
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
412
      atomic_dec(&finger2->ghold);
413
414
415
416
417
418
419
420
421

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
422

423
/**
424
 * @brief Unlock a cell's parents for access to #part array.
425
426
427
 *
 * @param c The #cell.
 */
428
429
430
431
432
433
434
435
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
436
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
437
    atomic_dec(&finger->hold);
438
439
440
441

  TIMER_TOC(timer_locktree);
}

442
443
444
445
446
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
447
448
449
450
451
452
453
454
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
455
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
456
    atomic_dec(&finger->ghold);
457
458
459
460

  TIMER_TOC(timer_locktree);
}

461
462
463
464
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
465
466
 * @param parts_offset Offset of the cell parts array relative to the
 *        space's parts array, i.e. c->parts - s->parts.
467
468
 * @param buff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices.
469
 */
470
void cell_split(struct cell *c, ptrdiff_t parts_offset, int *buff) {
471

Pedro Gonnet's avatar
Pedro Gonnet committed
472
  const int count = c->count, gcount = c->gcount;
473
474
475
  struct part *parts = c->parts;
  struct xpart *xparts = c->xparts;
  struct gpart *gparts = c->gparts;
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
  const double pivot[3] = {c->loc[0] + c->width[0] / 2,
                           c->loc[1] + c->width[1] / 2,
                           c->loc[2] + c->width[2] / 2};
  int bucket_count[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  int bucket_offset[9];

  /* If the buff is NULL, allocate it, and remember to free it. */
  const int allocate_buffer = (buff == NULL);
  if (allocate_buffer &&
      (buff = (int *)malloc(sizeof(int) * max(count, gcount))) == NULL)
    error("Failed to allocate temporary indices.");

  /* Fill the buffer with the indices. */
  for (int k = 0; k < count; k++) {
    const int bid = (parts[k].x[0] > pivot[0]) * 4 +
                    (parts[k].x[1] > pivot[1]) * 2 + (parts[k].x[2] > pivot[2]);
    bucket_count[bid]++;
    buff[k] = bid;
494
  }
495

496
497
498
499
500
  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
501
502
  }

503
504
505
506
507
508
509
510
511
512
513
514
515
516
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
      int bid = buff[k];
      if (bid != bucket) {
        struct part part = parts[k];
        struct xpart xpart = xparts[k];
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
          while (buff[j] == bid) {
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
517
518
519
          memswap(&parts[j], &part, sizeof(struct part));
          memswap(&xparts[j], &xpart, sizeof(struct xpart));
          memswap(&buff[j], &bid, sizeof(int));
520
521
522
523
        }
        parts[k] = part;
        xparts[k] = xpart;
        buff[k] = bid;
524
      }
525
      bucket_count[bid]++;
526
527
528
529
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
530
  for (int k = 0; k < 8; k++) {
531
532
533
    c->progeny[k]->count = bucket_count[k];
    c->progeny[k]->parts = &c->parts[bucket_offset[k]];
    c->progeny[k]->xparts = &c->xparts[bucket_offset[k]];
534
535
536
  }

  /* Re-link the gparts. */
537
  if (count > 0 && gcount > 0) part_relink_gparts(parts, count, parts_offset);
538

539
#ifdef SWIFT_DEBUG_CHECKS
540
  /* Verify that _all_ the parts have been assigned to a cell. */
541
542
543
544
545
546
547
548
  for (int k = 1; k < 8; k++)
    if (&c->progeny[k - 1]->parts[c->progeny[k - 1]->count] !=
        c->progeny[k]->parts)
      error("Particle sorting failed (internal consistency).");
  if (c->progeny[0]->parts != c->parts)
    error("Particle sorting failed (left edge).");
  if (&c->progeny[7]->parts[c->progeny[7]->count] != &c->parts[count])
    error("Particle sorting failed (right edge).");
549
550

  /* Verify a few sub-cells. */
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
  for (int k = 0; k < c->progeny[0]->count; k++)
    if (c->progeny[0]->parts[k].x[0] > pivot[0] ||
        c->progeny[0]->parts[k].x[1] > pivot[1] ||
        c->progeny[0]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=0).");
  for (int k = 0; k < c->progeny[1]->count; k++)
    if (c->progeny[1]->parts[k].x[0] > pivot[0] ||
        c->progeny[1]->parts[k].x[1] > pivot[1] ||
        c->progeny[1]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=1).");
  for (int k = 0; k < c->progeny[2]->count; k++)
    if (c->progeny[2]->parts[k].x[0] > pivot[0] ||
        c->progeny[2]->parts[k].x[1] <= pivot[1] ||
        c->progeny[2]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=2).");
#endif
567
568

  /* Now do the same song and dance for the gparts. */
569
570
571
572
573
574
575
576
577
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < gcount; k++) {
    const int bid = (gparts[k].x[0] > pivot[0]) * 4 +
                    (gparts[k].x[1] > pivot[1]) * 2 +
                    (gparts[k].x[2] > pivot[2]);
    bucket_count[bid]++;
    buff[k] = bid;
578
  }
579
580
581
582
583
584

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
585
586
  }

587
588
589
590
591
592
593
594
595
596
597
598
599
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
      int bid = buff[k];
      if (bid != bucket) {
        struct gpart gpart = gparts[k];
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
          while (buff[j] == bid) {
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
600
601
          memswap(&gparts[j], &gpart, sizeof(struct gpart));
          memswap(&buff[j], &bid, sizeof(int));
602
603
604
        }
        gparts[k] = gpart;
        buff[k] = bid;
605
      }
606
      bucket_count[bid]++;
607
608
609
610
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
611
  for (int k = 0; k < 8; k++) {
612
613
    c->progeny[k]->gcount = bucket_count[k];
    c->progeny[k]->gparts = &c->gparts[bucket_offset[k]];
614
615
616
  }

  /* Re-link the parts. */
617
618
  if (count > 0 && gcount > 0)
    part_relink_parts(gparts, gcount, parts - parts_offset);
619
}
620

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/**
 * @brief Sanitizes the smoothing length values of cells by setting large
 * outliers to more sensible values.
 *
 * We compute the mean and standard deviation of the smoothing lengths in
 * logarithmic space and limit values to mean + 4 sigma.
 *
 * @param c The cell.
 */
void cell_sanitize(struct cell *c) {

  const int count = c->count;
  struct part *parts = c->parts;

  /* First collect some statistics */
  float h_mean = 0.f, h_mean2 = 0.f;
  float h_min = FLT_MAX, h_max = 0.f;
  for (int i = 0; i < count; ++i) {

640
    const float h = logf(parts[i].h);
641
642
643
644
645
646
647
648
    h_mean += h;
    h_mean2 += h * h;
    h_max = max(h_max, h);
    h_min = min(h_min, h);
  }
  h_mean /= count;
  h_mean2 /= count;
  const float h_var = h_mean2 - h_mean * h_mean;
649
  const float h_std = (h_var > 0.f) ? sqrtf(h_var) : 0.1f * h_mean;
650
651

  /* Choose a cut */
652
  const float h_limit = expf(h_mean + 4.f * h_std);
653
654

  /* Be verbose this is not innocuous */
655
656
  message("Cell properties: h_min= %f h_max= %f geometric mean= %f.",
          expf(h_min), expf(h_max), expf(h_mean));
657
658
659

  if (c->h_max > h_limit) {

660
    message("Smoothing lengths will be limited to (mean + 4sigma)= %f.",
661
662
663
664
665
666
            h_limit);

    /* Apply the cut */
    for (int i = 0; i < count; ++i) parts->h = min(parts[i].h, h_limit);

    c->h_max = h_limit;
667
668
669
670

  } else {

    message("Smoothing lengths will not be limited.");
671
672
673
  }
}

674
/**
675
 * @brief Converts hydro quantities to a valid state after the initial density
676
 * calculation
677
678
679
680
681
682
683
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_convert_hydro(struct cell *c, void *data) {

  struct part *p = c->parts;
684
685

  for (int i = 0; i < c->count; ++i) {
686
687
688
689
    hydro_convert_quantities(&p[i]);
  }
}

Matthieu Schaller's avatar
Matthieu Schaller committed
690
691
692
693
694
695
/**
 * @brief Cleans the links in a given cell.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
696
void cell_clean_links(struct cell *c, void *data) {
Matthieu Schaller's avatar
Matthieu Schaller committed
697
  c->density = NULL;
698
  c->gradient = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
699
  c->force = NULL;
700
  c->grav = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
701
}
702

703
704
705
706
707
708
709
710
711
712
713
714
/**
 * @brief Checks whether the cells are direct neighbours ot not. Both cells have
 * to be of the same size
 *
 * @param ci First #cell.
 * @param cj Second #cell.
 *
 * @todo Deal with periodicity.
 */
int cell_are_neighbours(const struct cell *restrict ci,
                        const struct cell *restrict cj) {

Matthieu Schaller's avatar
Matthieu Schaller committed
715
#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
716
  if (ci->width[0] != cj->width[0]) error("Cells of different size !");
717
718
719
#endif

  /* Maximum allowed distance */
720
721
  const double min_dist =
      1.2 * ci->width[0]; /* 1.2 accounts for rounding errors */
722
723
724
725
726

  /* (Manhattan) Distance between the cells */
  for (int k = 0; k < 3; k++) {
    const double center_i = ci->loc[k];
    const double center_j = cj->loc[k];
727
    if (fabs(center_i - center_j) > min_dist) return 0;
728
729
730
731
732
  }

  return 1;
}

733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
/**
 * @brief Computes the multi-pole brutally and compare to the
 * recursively computed one.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_check_multipole(struct cell *c, void *data) {

  struct multipole ma;

  if (c->gcount > 0) {

    /* Brute-force calculation */
    multipole_init(&ma, c->gparts, c->gcount);

    /* Compare with recursive one */
    struct multipole mb = c->multipole;

    if (fabsf(ma.mass - mb.mass) / fabsf(ma.mass + mb.mass) > 1e-5)
      error("Multipole masses are different (%12.15e vs. %12.15e)", ma.mass,
            mb.mass);

    for (int k = 0; k < 3; ++k)
757
      if (fabs(ma.CoM[k] - mb.CoM[k]) / fabs(ma.CoM[k] + mb.CoM[k]) > 1e-5)
758
759
760
        error("Multipole CoM are different (%12.15e vs. %12.15e", ma.CoM[k],
              mb.CoM[k]);

761
#if const_gravity_multipole_order >= 2
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
    if (fabsf(ma.I_xx - mb.I_xx) / fabsf(ma.I_xx + mb.I_xx) > 1e-5 &&
        ma.I_xx > 1e-9)
      error("Multipole I_xx are different (%12.15e vs. %12.15e)", ma.I_xx,
            mb.I_xx);
    if (fabsf(ma.I_yy - mb.I_yy) / fabsf(ma.I_yy + mb.I_yy) > 1e-5 &&
        ma.I_yy > 1e-9)
      error("Multipole I_yy are different (%12.15e vs. %12.15e)", ma.I_yy,
            mb.I_yy);
    if (fabsf(ma.I_zz - mb.I_zz) / fabsf(ma.I_zz + mb.I_zz) > 1e-5 &&
        ma.I_zz > 1e-9)
      error("Multipole I_zz are different (%12.15e vs. %12.15e)", ma.I_zz,
            mb.I_zz);
    if (fabsf(ma.I_xy - mb.I_xy) / fabsf(ma.I_xy + mb.I_xy) > 1e-5 &&
        ma.I_xy > 1e-9)
      error("Multipole I_xy are different (%12.15e vs. %12.15e)", ma.I_xy,
            mb.I_xy);
    if (fabsf(ma.I_xz - mb.I_xz) / fabsf(ma.I_xz + mb.I_xz) > 1e-5 &&
        ma.I_xz > 1e-9)
      error("Multipole I_xz are different (%12.15e vs. %12.15e)", ma.I_xz,
            mb.I_xz);
    if (fabsf(ma.I_yz - mb.I_yz) / fabsf(ma.I_yz + mb.I_yz) > 1e-5 &&
        ma.I_yz > 1e-9)
      error("Multipole I_yz are different (%12.15e vs. %12.15e)", ma.I_yz,
            mb.I_yz);
786
#endif
787
  }
788
789
}

790
/**
791
 * @brief Frees up the memory allocated for this #cell.
792
 *
793
 * @param c The #cell.
794
 */
795
796
797
798
799
800
801
void cell_clean(struct cell *c) {

  free(c->sort);

  /* Recurse */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k]) cell_clean(c->progeny[k]);
802
}
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822

/**
 * @brief Checks whether a given cell needs drifting or not.
 *
 * @param c the #cell.
 * @param ti_current The current time on the integer time-line.
 *
 * @return 1 If the cell needs drifting, 0 otherwise.
 */
int cell_is_drift_needed(struct cell *c, int ti_current) {

  /* Do we have at least one active particle in the cell ?*/
  if (c->ti_end_min == ti_current) return 1;

  /* Loop over the pair tasks that involve this cell */
  for (struct link *l = c->density; l != NULL; l = l->next) {

    if (l->t->type != task_type_pair && l->t->type != task_type_sub_pair)
      continue;

823
    /* Does the other cell in the pair have an active particle ? */
Matthieu Schaller's avatar
Matthieu Schaller committed
824
825
    if ((l->t->ci == c && l->t->cj->ti_end_min == ti_current) ||
        (l->t->cj == c && l->t->ci->ti_end_min == ti_current))
826
      return 1;
827
828
829
830
831
  }

  /* No neighbouring cell has active particles. Drift not necessary */
  return 0;
}
832
833
834
835
836
837

/**
 * @brief Un-skips all the tasks associated with a given cell and checks
 * if the space needs to be rebuilt.
 *
 * @param c the #cell.
Peter W. Draper's avatar
Peter W. Draper committed
838
 * @param s the #scheduler.
839
840
841
 *
 * @return 1 If the space needs rebuilding. 0 otherwise.
 */
842
int cell_unskip_tasks(struct cell *c, struct scheduler *s) {
843
844
845
846
847
848

  /* Un-skip the density tasks involved with this cell. */
  for (struct link *l = c->density; l != NULL; l = l->next) {
    struct task *t = l->t;
    const struct cell *ci = t->ci;
    const struct cell *cj = t->cj;
849
    scheduler_activate(s, t);
850
851
852
853
854

    /* Set the correct sorting flags */
    if (t->type == task_type_pair) {
      if (!(ci->sorted & (1 << t->flags))) {
        atomic_or(&ci->sorts->flags, (1 << t->flags));
855
        scheduler_activate(s, ci->sorts);
856
857
858
      }
      if (!(cj->sorted & (1 << t->flags))) {
        atomic_or(&cj->sorts->flags, (1 << t->flags));
859
        scheduler_activate(s, cj->sorts);
860
861
862
863
864
865
866
867
868
869
870
871
      }
    }

    /* Check whether there was too much particle motion */
    if (t->type == task_type_pair || t->type == task_type_sub_pair) {
      if (t->tight &&
          (max(ci->h_max, cj->h_max) + ci->dx_max + cj->dx_max > cj->dmin ||
           ci->dx_max > space_maxreldx * ci->h_max ||
           cj->dx_max > space_maxreldx * cj->h_max))
        return 1;

#ifdef WITH_MPI
872
      /* Activate the send/recv flags. */
873
      if (ci->nodeID != engine_rank) {
874
875

        /* Activate the tasks to recv foreign cell ci's data. */
876
877
878
        scheduler_activate(s, ci->recv_xv);
        scheduler_activate(s, ci->recv_rho);
        scheduler_activate(s, ci->recv_ti);
879
880
881
882

        /* Look for the local cell cj's send tasks. */
        struct link *l = NULL;
        for (l = cj->send_xv; l != NULL && l->t->cj->nodeID != ci->nodeID;
883
884
             l = l->next)
          ;
885
        if (l == NULL) error("Missing link to send_xv task.");
886
        scheduler_activate(s, l->t);
887
888

        for (l = cj->send_rho; l != NULL && l->t->cj->nodeID != ci->nodeID;
889
890
             l = l->next)
          ;
891
        if (l == NULL) error("Missing link to send_rho task.");
892
        scheduler_activate(s, l->t);
893
894

        for (l = cj->send_ti; l != NULL && l->t->cj->nodeID != ci->nodeID;
895
896
             l = l->next)
          ;
897
        if (l == NULL) error("Missing link to send_ti task.");
898
        scheduler_activate(s, l->t);
899

900
      } else if (cj->nodeID != engine_rank) {
901
902

        /* Activate the tasks to recv foreign cell cj's data. */
903
904
905
        scheduler_activate(s, cj->recv_xv);
        scheduler_activate(s, cj->recv_rho);
        scheduler_activate(s, cj->recv_ti);
906
907
908
        /* Look for the local cell ci's send tasks. */
        struct link *l = NULL;
        for (l = ci->send_xv; l != NULL && l->t->cj->nodeID != cj->nodeID;
909
910
             l = l->next)
          ;
911
        if (l == NULL) error("Missing link to send_xv task.");
912
        scheduler_activate(s, l->t);
913
914

        for (l = ci->send_rho; l != NULL && l->t->cj->nodeID != cj->nodeID;
915
916
             l = l->next)
          ;
917
        if (l == NULL) error("Missing link to send_rho task.");
918
        scheduler_activate(s, l->t);
919
920

        for (l = ci->send_ti; l != NULL && l->t->cj->nodeID != cj->nodeID;
921
922
             l = l->next)
          ;
923
        if (l == NULL) error("Missing link to send_ti task.");
924
        scheduler_activate(s, l->t);
925
926
927
928
929
930
      }
#endif
    }
  }

  /* Unskip all the other task types. */
931
  for (struct link *l = c->gradient; l != NULL; l = l->next)
932
    scheduler_activate(s, l->t);
933
  for (struct link *l = c->force; l != NULL; l = l->next)
934
    scheduler_activate(s, l->t);
935
  for (struct link *l = c->grav; l != NULL; l = l->next)
936
937
938
939
940
941
942
    scheduler_activate(s, l->t);
  if (c->extra_ghost != NULL) scheduler_activate(s, c->extra_ghost);
  if (c->ghost != NULL) scheduler_activate(s, c->ghost);
  if (c->init != NULL) scheduler_activate(s, c->init);
  if (c->kick != NULL) scheduler_activate(s, c->kick);
  if (c->cooling != NULL) scheduler_activate(s, c->cooling);
  if (c->sourceterms != NULL) scheduler_activate(s, c->sourceterms);
943
944
945

  return 0;
}
946

947
948
949
950
951
952
953
954
955
/**
 * @brief Set the super-cell pointers for all cells in a hierarchy.
 *
 * @param c The top-level #cell to play with.
 * @param super Pointer to the deepest cell with tasks in this part of the tree.
 */
void cell_set_super(struct cell *c, struct cell *super) {

  /* Are we in a cell with some kind of self/pair task ? */
956
  if (super == NULL && c->nr_tasks > 0) super = c;
957
958
959
960

  /* Set the super-cell */
  c->super = super;

961
962
  /* Recurse */
  if (c->split)
963
964
965
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) cell_set_super(c->progeny[k], super);
}