space.c 33.4 KB
Newer Older
Pedro Gonnet's avatar
Pedro Gonnet committed
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
5
6
7
8
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
9
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
10
11
12
13
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
14
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
15
16
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
18
19
20
21
22
23
24
25
26
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
27
#include <string.h>
28
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
29

30
31
/* MPI headers. */
#ifdef WITH_MPI
32
#include <mpi.h>
33
34
#endif

35
36
37
/* This object's header. */
#include "space.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
38
/* Local headers. */
39
#include "atomic.h"
40
#include "engine.h"
41
#include "error.h"
42
43
44
#include "kernel.h"
#include "lock.h"
#include "runner.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
45
46
47

/* Split size. */
int space_splitsize = space_splitsize_default;
48
int space_subsize = space_subsize_default;
49
int space_maxsize = space_maxsize_default;
Pedro Gonnet's avatar
Pedro Gonnet committed
50
51
52

/* Map shift vector to sortlist. */
const int sortlistID[27] = {
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    /* ( -1 , -1 , -1 ) */ 0,
    /* ( -1 , -1 ,  0 ) */ 1,
    /* ( -1 , -1 ,  1 ) */ 2,
    /* ( -1 ,  0 , -1 ) */ 3,
    /* ( -1 ,  0 ,  0 ) */ 4,
    /* ( -1 ,  0 ,  1 ) */ 5,
    /* ( -1 ,  1 , -1 ) */ 6,
    /* ( -1 ,  1 ,  0 ) */ 7,
    /* ( -1 ,  1 ,  1 ) */ 8,
    /* (  0 , -1 , -1 ) */ 9,
    /* (  0 , -1 ,  0 ) */ 10,
    /* (  0 , -1 ,  1 ) */ 11,
    /* (  0 ,  0 , -1 ) */ 12,
    /* (  0 ,  0 ,  0 ) */ 0,
    /* (  0 ,  0 ,  1 ) */ 12,
    /* (  0 ,  1 , -1 ) */ 11,
    /* (  0 ,  1 ,  0 ) */ 10,
    /* (  0 ,  1 ,  1 ) */ 9,
    /* (  1 , -1 , -1 ) */ 8,
    /* (  1 , -1 ,  0 ) */ 7,
    /* (  1 , -1 ,  1 ) */ 6,
    /* (  1 ,  0 , -1 ) */ 5,
    /* (  1 ,  0 ,  0 ) */ 4,
    /* (  1 ,  0 ,  1 ) */ 3,
    /* (  1 ,  1 , -1 ) */ 2,
    /* (  1 ,  1 ,  0 ) */ 1,
    /* (  1 ,  1 ,  1 ) */ 0};

81
82
83
84
85
86
87
88
89
90
91
92
/**
 * @brief Get the shift-id of the given pair of cells, swapping them
 *      if need be.
 *
 * @param s The space
 * @param ci Pointer to first #cell.
 * @param cj Pointer second #cell.
 * @param shift Vector from ci to cj.
 *
 * @return The shift ID and set shift, may or may not swap ci and cj.
 */

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
int space_getsid(struct space *s, struct cell **ci, struct cell **cj,
                 double *shift) {

  int k, sid = 0, periodic = s->periodic;
  struct cell *temp;
  double dx[3];

  /* Get the relative distance between the pairs, wrapping. */
  for (k = 0; k < 3; k++) {
    dx[k] = (*cj)->loc[k] - (*ci)->loc[k];
    if (periodic && dx[k] < -s->dim[k] / 2)
      shift[k] = s->dim[k];
    else if (periodic && dx[k] > s->dim[k] / 2)
      shift[k] = -s->dim[k];
    else
      shift[k] = 0.0;
    dx[k] += shift[k];
  }

  /* Get the sorting index. */
  for (k = 0; k < 3; k++)
    sid = 3 * sid + ((dx[k] < 0.0) ? 0 : ((dx[k] > 0.0) ? 2 : 1));

  /* Switch the cells around? */
  if (runner_flip[sid]) {
    temp = *ci;
    *ci = *cj;
    *cj = temp;
    for (k = 0; k < 3; k++) shift[k] = -shift[k];
  }
  sid = sortlistID[sid];

  /* Return the sort ID. */
  return sid;
}
128

129
/**
130
 * @brief Recursively dismantle a cell tree.
131
132
 *
 */
133
134
135
136
137
138
139
140
141
142
143
144
145
146

void space_rebuild_recycle(struct space *s, struct cell *c) {

  int k;

  if (c->split)
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) {
        space_rebuild_recycle(s, c->progeny[k]);
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      }
}

147
/**
148
 * @brief Re-build the cell grid.
149
 *
150
151
 * @param s The #space.
 * @param cell_max Maximum cell edge length.
152
 * @param verbose Print messages to stdout or not.
153
 */
154

155
void space_regrid(struct space *s, double cell_max, int verbose) {
156
157
158
159
160
161
162
163
164
165
166

  float h_max = s->cell_min / kernel_gamma / space_stretch, dmin;
  int i, j, k, cdim[3], nr_parts = s->nr_parts;
  struct cell *restrict c;
  // ticks tic;

  /* Run through the parts and get the current h_max. */
  // tic = getticks();
  if (s->cells != NULL) {
    for (k = 0; k < s->nr_cells; k++) {
      if (s->cells[k].h_max > h_max) h_max = s->cells[k].h_max;
167
    }
168
169
170
171
172
173
174
175
176
177
178
179
180
181
  } else {
    for (k = 0; k < nr_parts; k++) {
      if (s->parts[k].h > h_max) h_max = s->parts[k].h;
    }
    s->h_max = h_max;
  }

/* If we are running in parallel, make sure everybody agrees on
   how large the largest cell should be. */
#ifdef WITH_MPI
  {
    float buff;
    if (MPI_Allreduce(&h_max, &buff, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD) !=
        MPI_SUCCESS)
182
      error("Failed to aggregate the rebuild flag across nodes.");
183
184
185
    h_max = buff;
  }
#endif
186
  if (verbose) message("h_max is %.3e (cell_max=%.3e).", h_max, cell_max);
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

  /* Get the new putative cell dimensions. */
  for (k = 0; k < 3; k++)
    cdim[k] =
        floor(s->dim[k] / fmax(h_max * kernel_gamma * space_stretch, cell_max));

  /* Check if we have enough cells for periodicity. */
  if (s->periodic && (cdim[0] < 3 || cdim[1] < 3 || cdim[2] < 3))
    error(
        "Must have at least 3 cells in each spatial dimension when periodicity "
        "is switched on.");

/* In MPI-Land, we're not allowed to change the top-level cell size. */
#ifdef WITH_MPI
  if (cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2])
    error("Root-level change of cell size not allowed.");
#endif

  /* Do we need to re-build the upper-level cells? */
  // tic = getticks();
  if (s->cells == NULL || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] ||
      cdim[2] < s->cdim[2]) {

    /* Free the old cells, if they were allocated. */
    if (s->cells != NULL) {
      for (k = 0; k < s->nr_cells; k++) {
        space_rebuild_recycle(s, &s->cells[k]);
        if (s->cells[k].sort != NULL) free(s->cells[k].sort);
      }
      free(s->cells);
      s->maxdepth = 0;
    }

    /* Set the new cell dimensions only if smaller. */
    for (k = 0; k < 3; k++) {
      s->cdim[k] = cdim[k];
      s->h[k] = s->dim[k] / cdim[k];
      s->ih[k] = 1.0 / s->h[k];
    }
    dmin = fminf(s->h[0], fminf(s->h[1], s->h[2]));

    /* Allocate the highest level of cells. */
    s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2];
    if (posix_memalign((void *)&s->cells, 64,
                       s->nr_cells * sizeof(struct cell)) != 0)
      error("Failed to allocate cells.");
    bzero(s->cells, s->nr_cells * sizeof(struct cell));
    for (k = 0; k < s->nr_cells; k++)
      if (lock_init(&s->cells[k].lock) != 0) error("Failed to init spinlock.");

    /* Set the cell location and sizes. */
    for (i = 0; i < cdim[0]; i++)
      for (j = 0; j < cdim[1]; j++)
        for (k = 0; k < cdim[2]; k++) {
          c = &s->cells[cell_getid(cdim, i, j, k)];
          c->loc[0] = i * s->h[0];
          c->loc[1] = j * s->h[1];
          c->loc[2] = k * s->h[2];
          c->h[0] = s->h[0];
          c->h[1] = s->h[1];
          c->h[2] = s->h[2];
          c->dmin = dmin;
          c->depth = 0;
          c->count = 0;
          c->gcount = 0;
          c->super = c;
          lock_init(&c->lock);
Pedro Gonnet's avatar
Pedro Gonnet committed
254
        }
255
256

    /* Be verbose about the change. */
257
258
259
    if (verbose)
      message("set cell dimensions to [ %i %i %i ].", cdim[0], cdim[1],
              cdim[2]);
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    fflush(stdout);

  } /* re-build upper-level cells? */
  // message( "rebuilding upper-level cells took %.3f ms." , (double)(getticks()
  // - tic) / CPU_TPS * 1000 );

  /* Otherwise, just clean up the cells. */
  else {

    /* Free the old cells, if they were allocated. */
    for (k = 0; k < s->nr_cells; k++) {
      space_rebuild_recycle(s, &s->cells[k]);
      s->cells[k].sorts = NULL;
      s->cells[k].nr_tasks = 0;
      s->cells[k].nr_density = 0;
      s->cells[k].nr_force = 0;
      s->cells[k].density = NULL;
      s->cells[k].force = NULL;
      s->cells[k].dx_max = 0.0f;
      s->cells[k].sorted = 0;
      s->cells[k].count = 0;
      s->cells[k].gcount = 0;
Matthieu Schaller's avatar
Matthieu Schaller committed
282
      s->cells[k].init = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
283
      s->cells[k].ghost = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
284
285
      s->cells[k].drift = NULL;
      s->cells[k].kick = NULL;
286
      s->cells[k].super = &s->cells[k];
287
    }
288
289
290
    s->maxdepth = 0;
  }
}
291
292
293
294
295
296

/**
 * @brief Re-build the cells as well as the tasks.
 *
 * @param s The #space in which to update the cells.
 * @param cell_max Maximal cell size.
297
 * @param verbose Print messages to stdout or not
298
299
 *
 */
300

301
void space_rebuild(struct space *s, double cell_max, int verbose) {
302

303
  int j, k, cdim[3], nr_parts = s->nr_parts, nr_gparts = s->nr_gparts;
304
  struct cell *restrict c, *restrict cells;
305
  struct part *restrict p;
306
  int *ind;
307
308
309
310
311
312
313
  double ih[3], dim[3];
  // ticks tic;

  /* Be verbose about this. */
  // message( "re)building space..." ); fflush(stdout);

  /* Re-grid if necessary, or just re-set the cell data. */
314
  space_regrid(s, cell_max, verbose);
315
316
317
318
  cells = s->cells;

  /* Run through the particles and get their cell index. */
  // tic = getticks();
319
320
  const int ind_size = s->size_parts;
  if ((ind = (int *)malloc(sizeof(int) * ind_size)) == NULL)
321
322
323
324
325
326
327
328
329
330
    error("Failed to allocate temporary particle indices.");
  ih[0] = s->ih[0];
  ih[1] = s->ih[1];
  ih[2] = s->ih[2];
  dim[0] = s->dim[0];
  dim[1] = s->dim[1];
  dim[2] = s->dim[2];
  cdim[0] = s->cdim[0];
  cdim[1] = s->cdim[1];
  cdim[2] = s->cdim[2];
331
  for (k = 0; k < nr_parts; k++) {
332
    p = &s->parts[k];
333
334
335
336
337
    for (j = 0; j < 3; j++)
      if (p->x[j] < 0.0)
        p->x[j] += dim[j];
      else if (p->x[j] >= dim[j])
        p->x[j] -= dim[j];
338
    ind[k] =
339
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
340
    cells[ind[k]].count++;
341
342
343
344
345
346
347
  }
// message( "getting particle indices took %.3f ms." , (double)(getticks() -
// tic) / CPU_TPS * 1000 );

#ifdef WITH_MPI
  /* Move non-local parts to the end of the list. */
  int nodeID = s->e->nodeID;
348
349
350
351
  for (k = 0; k < nr_parts; k++)
    if (cells[ind[k]].nodeID != nodeID) {
      cells[ind[k]].count -= 1;
      nr_parts -= 1;
352
353
354
355
356
357
      struct part tp = s->parts[k];
      s->parts[k] = s->parts[nr_parts];
      s->parts[nr_parts] = tp;
      struct xpart txp = s->xparts[k];
      s->xparts[k] = s->xparts[nr_parts];
      s->xparts[nr_parts] = txp;
358
359
360
      int t = ind[k];
      ind[k] = ind[nr_parts];
      ind[nr_parts] = t;
361
362
    }

363
364
365
  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
  s->nr_parts =
366
367
      nr_parts + engine_exchange_strays(s->e, nr_parts, &ind[nr_parts],
                                        s->nr_parts - nr_parts);
368
369

  /* Re-allocate the index array if needed.. */
370
371
372
  if (s->nr_parts > ind_size) {
    int *ind_new;
    if ((ind_new = (int *)malloc(sizeof(int) * s->nr_parts)) == NULL)
373
      error("Failed to allocate temporary particle indices.");
374
375
376
    memcpy(ind_new, ind, sizeof(int) * nr_parts);
    free(ind);
    ind = ind_new;
377
378
379
  }

  /* Assign each particle to its cell. */
380
  for (k = nr_parts; k < s->nr_parts; k++) {
381
    p = &s->parts[k];
382
    ind[k] =
383
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
384
385
386
387
    cells[ind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
388
  }
389
  nr_parts = s->nr_parts;
390
391
392
393
#endif

  /* Sort the parts according to their cells. */
  // tic = getticks();
394
  parts_sort(s->parts, s->xparts, ind, nr_parts, 0, s->nr_cells - 1);
395
396
397
398
  // message( "parts_sort took %.3f ms." , (double)(getticks() - tic) / CPU_TPS
  // * 1000 );

  /* Re-link the gparts. */
399
  for (k = 0; k < nr_parts; k++)
400
    if (s->parts[k].gpart != NULL) s->parts[k].gpart->part = &s->parts[k];
401
402
403

  /* Verify sort. */
  /* for ( k = 1 ; k < nr_parts ; k++ ) {
404
      if ( ind[k-1] > ind[k] ) {
405
406
          error( "Sort failed!" );
          }
407
      else if ( ind[k] != cell_getid( cdim , parts[k].x[0]*ih[0] ,
408
409
410
411
412
     parts[k].x[1]*ih[1] , parts[k].x[2]*ih[2] ) )
          error( "Incorrect indices!" );
      } */

  /* We no longer need the indices as of here. */
413
  free(ind);
414
415
416

  /* Run through the gravity particles and get their cell index. */
  // tic = getticks();
417
  if ((ind = (int *)malloc(sizeof(int) * s->size_gparts)) == NULL)
418
419
    error("Failed to allocate temporary particle indices.");
  for (k = 0; k < nr_gparts; k++) {
420
    struct gpart *gp = &s->gparts[k];
421
422
423
424
425
    for (j = 0; j < 3; j++)
      if (gp->x[j] < 0.0)
        gp->x[j] += dim[j];
      else if (gp->x[j] >= dim[j])
        gp->x[j] -= dim[j];
426
    ind[k] =
427
        cell_getid(cdim, gp->x[0] * ih[0], gp->x[1] * ih[1], gp->x[2] * ih[2]);
428
    cells[ind[k]].gcount++;
429
430
431
432
433
434
435
436
  }
  // message( "getting particle indices took %.3f ms." , (double)(getticks() -
  // tic) / CPU_TPS * 1000 );

  /* TODO: Here we should exchange the gparts as well! */

  /* Sort the parts according to their cells. */
  // tic = getticks();
437
  gparts_sort(s->gparts, ind, nr_gparts, 0, s->nr_cells - 1);
438
439
440
441
442
  // message( "gparts_sort took %.3f ms." , (double)(getticks() - tic) / CPU_TPS
  // * 1000 );

  /* Re-link the parts. */
  for (k = 0; k < nr_gparts; k++)
443
    if (s->gparts[k].id > 0) s->gparts[k].part->gpart = &s->gparts[k];
444
445

  /* We no longer need the indices as of here. */
446
  free(ind);
447
448
449

  /* Hook the cells up to the parts. */
  // tic = getticks();
450
451
452
  struct part *finger = s->parts;
  struct xpart *xfinger = s->xparts;
  struct gpart *gfinger = s->gparts;
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
  for (k = 0; k < s->nr_cells; k++) {
    c = &cells[k];
    c->parts = finger;
    c->xparts = xfinger;
    c->gparts = gfinger;
    finger = &finger[c->count];
    xfinger = &xfinger[c->count];
    gfinger = &gfinger[c->gcount];
  }
  // message( "hooking up cells took %.3f ms." , (double)(getticks() - tic) /
  // CPU_TPS * 1000 );

  /* At this point, we have the upper-level cells, old or new. Now make
     sure that the parts in each cell are ok. */
  // tic = getticks();
468
469
  for (k = 0; k < s->nr_cells; k++) space_split(s, &cells[k]);

470
471
472
  // message( "space_split took %.3f ms." , (double)(getticks() - tic) / CPU_TPS
  // * 1000 );
}
473

474
/**
475
476
 * @brief Sort the particles and condensed particles according to the given
 *indices.
477
478
 *
 * @param parts The list of #part
479
 * @param xparts The list of reduced particles
480
481
482
483
484
 * @param ind The indices with respect to which the parts are sorted.
 * @param N The number of parts
 * @param min Lowest index.
 * @param max highest index.
 */
485

486
487
488
489
490
491
492
493
void parts_sort(struct part *parts, struct xpart *xparts, int *ind, int N,
                int min, int max) {

  struct qstack {
    volatile int i, j, min, max;
    volatile int ready;
  };
  struct qstack *qstack;
494
  unsigned int qstack_size = 2 * (max - min) + 10;
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
  volatile unsigned int first, last, waiting;

  int pivot;
  int i, ii, j, jj, temp_i, qid;
  struct part temp_p;
  struct xpart temp_xp;

  /* for ( int k = 0 ; k < N ; k++ )
      if ( ind[k] > max || ind[k] < min )
          error( "ind[%i]=%i is not in [%i,%i]." , k , ind[k] , min , max ); */

  /* Allocate the stack. */
  if ((qstack = malloc(sizeof(struct qstack) * qstack_size)) == NULL)
    error("Failed to allocate qstack.");

  /* Init the interval stack. */
  qstack[0].i = 0;
  qstack[0].j = N - 1;
  qstack[0].min = min;
  qstack[0].max = max;
  qstack[0].ready = 1;
  for (i = 1; i < qstack_size; i++) qstack[i].ready = 0;
  first = 0;
  last = 1;
  waiting = 1;

521
522
  /* Main loop. */
  while (waiting > 0) {
523

524
525
    /* Grab an interval off the queue. */
    qid = (first++) % qstack_size;
526

527
528
529
530
531
532
    /* Get the stack entry. */
    i = qstack[qid].i;
    j = qstack[qid].j;
    min = qstack[qid].min;
    max = qstack[qid].max;
    qstack[qid].ready = 0;
533

534
535
    /* Loop over sub-intervals. */
    while (1) {
536

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
      /* Bring beer. */
      pivot = (min + max) / 2;

      /* One pass of QuickSort's partitioning. */
      ii = i;
      jj = j;
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
          temp_i = ind[ii];
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
          temp_p = parts[ii];
          parts[ii] = parts[jj];
          parts[jj] = temp_p;
          temp_xp = xparts[ii];
          xparts[ii] = xparts[jj];
          xparts[jj] = temp_xp;
        }
      }
558

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
      /* Verify sort. */
      /* for ( int k = i ; k <= jj ; k++ )
         if ( ind[k] > pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (<=pivot)." );
         }
         for ( int k = jj+1 ; k <= j ; k++ )
         if ( ind[k] <= pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (>pivot)." );
         } */

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          qid = (last++) % qstack_size;
          qstack[qid].i = i;
          qstack[qid].j = jj;
          qstack[qid].min = min;
          qstack[qid].max = pivot;
          qstack[qid].ready = 1;
          if (waiting++ >= qstack_size) error("Qstack overflow.");
        }
586

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;

      } else {

        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          qid = (last++) % qstack_size;
          qstack[qid].i = jj + 1;
          qstack[qid].j = j;
          qstack[qid].min = pivot + 1;
          qstack[qid].max = max;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }
606

607
608
609
610
611
612
613
        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }
614

615
616
617
618
619
    } /* loop over sub-intervals. */

    waiting--;

  } /* main loop. */
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

  /* Verify sort. */
  /* for ( i = 1 ; i < N ; i++ )
      if ( ind[i-1] > ind[i] )
          error( "Sorting failed (ind[%i]=%i,ind[%i]=%i)." , i-1 , ind[i-1] , i
     , ind[i] ); */

  /* Clean up. */
  free(qstack);
}

void gparts_sort(struct gpart *gparts, int *ind, int N, int min, int max) {

  struct qstack {
    volatile int i, j, min, max;
    volatile int ready;
  };
  struct qstack *qstack;
  int qstack_size = 2 * (max - min) + 10;
  volatile unsigned int first, last, waiting;

  int pivot;
  int i, ii, j, jj, temp_i, qid;
  struct gpart temp_p;

  /* for ( int k = 0 ; k < N ; k++ )
      if ( ind[k] > max || ind[k] < min )
          error( "ind[%i]=%i is not in [%i,%i]." , k , ind[k] , min , max ); */

  /* Allocate the stack. */
  if ((qstack = malloc(sizeof(struct qstack) * qstack_size)) == NULL)
    error("Failed to allocate qstack.");

  /* Init the interval stack. */
  qstack[0].i = 0;
  qstack[0].j = N - 1;
  qstack[0].min = min;
  qstack[0].max = max;
  qstack[0].ready = 1;
  for (i = 1; i < qstack_size; i++) qstack[i].ready = 0;
  first = 0;
  last = 1;
  waiting = 1;

664
665
  /* Main loop. */
  while (waiting > 0) {
666

667
668
    /* Grab an interval off the queue. */
    qid = (first++) % qstack_size;
669

670
671
672
673
674
675
676
677
678
    /* Get the stack entry. */
    i = qstack[qid].i;
    j = qstack[qid].j;
    min = qstack[qid].min;
    max = qstack[qid].max;
    qstack[qid].ready = 0;

    /* Loop over sub-intervals. */
    while (1) {
679

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
      /* Bring beer. */
      pivot = (min + max) / 2;

      /* One pass of QuickSort's partitioning. */
      ii = i;
      jj = j;
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
          temp_i = ind[ii];
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
          temp_p = gparts[ii];
          gparts[ii] = gparts[jj];
          gparts[jj] = temp_p;
        }
      }
698

699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
      /* Verify sort. */
      /* for ( int k = i ; k <= jj ; k++ )
         if ( ind[k] > pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (<=pivot)." );
         }
         for ( int k = jj+1 ; k <= j ; k++ )
         if ( ind[k] <= pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (>pivot)." );
         } */

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          qid = (last++) % qstack_size;
          qstack[qid].i = i;
          qstack[qid].j = jj;
          qstack[qid].min = min;
          qstack[qid].max = pivot;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }
726

727
728
729
730
731
732
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;
733

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
      } else {

        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          qid = (last++) % qstack_size;
          qstack[qid].i = jj + 1;
          qstack[qid].j = j;
          qstack[qid].min = pivot + 1;
          qstack[qid].max = max;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }

    } /* loop over sub-intervals. */

    waiting--;

  } /* main loop. */
760
761
762
763
764
765
766
767
768
769

  /* Verify sort. */
  /* for ( i = 1 ; i < N ; i++ )
      if ( ind[i-1] > ind[i] )
          error( "Sorting failed (ind[%i]=%i,ind[%i]=%i)." , i-1 , ind[i-1] , i
     , ind[i] ); */

  /* Clean up. */
  free(qstack);
}
770

Pedro Gonnet's avatar
Pedro Gonnet committed
771
/**
772
 * @brief Mapping function to free the sorted indices buffers.
Pedro Gonnet's avatar
Pedro Gonnet committed
773
774
 */

775
void space_map_clearsort(struct cell *c, void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
776

777
778
779
780
781
  if (c->sort != NULL) {
    free(c->sort);
    c->sort = NULL;
  }
}
Pedro Gonnet's avatar
Pedro Gonnet committed
782

783
784
785
/**
 * @brief Map a function to all particles in a cell recursively.
 *
786
 * @param c The #cell we are working in.
787
788
789
790
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */

Pedro Gonnet's avatar
Pedro Gonnet committed
791
792
793
794
static void rec_map_parts(struct cell *c,
                          void (*fun)(struct part *p, struct cell *c,
                                      void *data),
                          void *data) {
795
796
797
798
799
800

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
801

802
803
804
805
806
807
  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts(c->progeny[k], fun, data);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
808
/**
809
 * @brief Map a function to all particles in a space.
Pedro Gonnet's avatar
Pedro Gonnet committed
810
811
 *
 * @param s The #space we are working in.
812
813
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
814
815
 */

816
817
818
void space_map_parts(struct space *s,
                     void (*fun)(struct part *p, struct cell *c, void *data),
                     void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
819

820
821
  int cid = 0;

822
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
823
824
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts(&s->cells[cid], fun, data);
825
}
826

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868

/**
 * @brief Map a function to all particles in a cell recursively.
 *
 * @param c The #cell we are working in.
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */

static void rec_map_parts_xparts(struct cell *c,
				 void (*fun)(struct part *p, struct xpart *xp, struct cell *c)) {

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], &c->xparts[k], c);

  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts_xparts(c->progeny[k], fun);
}

/**
 * @brief Map a function to all particles (#part and #xpart) in a space.
 *
 * @param s The #space we are working in.
 * @param fun Function pointer to apply on the particles in the cells.
 */

void space_map_parts_xparts(struct space *s,
			    void (*fun)(struct part *p, struct xpart *xp, struct cell *c)) {

  int cid = 0;

  /* Call the recursive function on all higher-level cells. */
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts_xparts(&s->cells[cid], fun);
}


869
870
871
/**
 * @brief Map a function to all particles in a cell recursively.
 *
872
 * @param c The #cell we are working in.
873
874
875
876
 * @param full Map to all cells, including cells with sub-cells.
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */
877

Pedro Gonnet's avatar
Pedro Gonnet committed
878
879
880
static void rec_map_cells_post(struct cell *c, int full,
                               void (*fun)(struct cell *c, void *data),
                               void *data) {
881

882
883
884
885
886
  int k;

  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
887
888
889
      if (c->progeny[k] != NULL)
        rec_map_cells_post(c->progeny[k], full, fun, data);

890
891
  /* No progeny? */
  if (full || !c->split) fun(c, data);
892
}
Pedro Gonnet's avatar
Pedro Gonnet committed
893
894

/**
895
 * @brief Map a function to all particles in a aspace.
Pedro Gonnet's avatar
Pedro Gonnet committed
896
897
 *
 * @param s The #space we are working in.
898
 * @param full Map to all cells, including cells with sub-cells.
899
900
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
901
 */
902

903
void space_map_cells_post(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
904
                          void (*fun)(struct cell *c, void *data), void *data) {
905

906
  int cid = 0;
907

908
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
909
910
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_post(&s->cells[cid], full, fun, data);
911
}
912

Pedro Gonnet's avatar
Pedro Gonnet committed
913
914
915
static void rec_map_cells_pre(struct cell *c, int full,
                              void (*fun)(struct cell *c, void *data),
                              void *data) {
916

917
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
918

919
920
  /* No progeny? */
  if (full || !c->split) fun(c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
921

922
923
924
  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
925
926
      if (c->progeny[k] != NULL)
        rec_map_cells_pre(c->progeny[k], full, fun, data);
927
}
Pedro Gonnet's avatar
Pedro Gonnet committed
928

929
void space_map_cells_pre(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
930
                         void (*fun)(struct cell *c, void *data), void *data) {
931

932
  int cid = 0;
933
934

  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
935
936
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_pre(&s->cells[cid], full, fun, data);
937
}
Pedro Gonnet's avatar
Pedro Gonnet committed
938
939
940
941
942
943
944

/**
 * @brief Split cells that contain too many particles.
 *
 * @param s The #space we are working in.
 * @param c The #cell under consideration.
 */
945

946
947
948
void space_split(struct space *s, struct cell *c) {

  int k, count = c->count, gcount = c->gcount, maxdepth = 0;
Matthieu Schaller's avatar
Matthieu Schaller committed
949
  float h, h_max = 0.0f, t_end_min = FLT_MAX, t_end_max = 0., t_end;
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
  struct cell *temp;
  struct part *p, *parts = c->parts;
  struct xpart *xp, *xparts = c->xparts;

  /* Check the depth. */
  if (c->depth > s->maxdepth) s->maxdepth = c->depth;

  /* Split or let it be? */
  if (count > space_splitsize || gcount > space_splitsize) {

    /* No longer just a leaf. */
    c->split = 1;

    /* Create the cell's progeny. */
    for (k = 0; k < 8; k++) {
      temp = space_getcell(s);
      temp->count = 0;
      temp->gcount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->h[0] = c->h[0] / 2;
      temp->h[1] = c->h[1] / 2;
      temp->h[2] = c->h[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->h[0];
      if (k & 2) temp->loc[1] += temp->h[1];
      if (k & 1) temp->loc[2] += temp->h[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->h_max = 0.0;
      temp->dx_max = 0.0;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
    }

    /* Split the cell data. */
    cell_split(c);

    /* Remove any progeny with zero parts. */
    for (k = 0; k < 8; k++)
      if (c->progeny[k]->count == 0 && c->progeny[k]->gcount == 0) {
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      } else {
        space_split(s, c->progeny[k]);
        h_max = fmaxf(h_max, c->progeny[k]->h_max);
Matthieu Schaller's avatar
Matthieu Schaller committed
998
999
        t_end_min = fminf(t_end_min, c->progeny[k]->t_end_min);
        t_end_max = fmaxf(t_end_max, c->progeny[k]->t_end_max);
1000
1001
1002
1003
1004
1005
        if (c->progeny[k]->maxdepth > maxdepth)
          maxdepth = c->progeny[k]->maxdepth;
      }

    /* Set the values for this cell. */
    c->h_max = h_max;
Matthieu Schaller's avatar
Matthieu Schaller committed
1006
1007
    c->t_end_min = t_end_min;
    c->t_end_max = t_end_max;
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
    c->maxdepth = maxdepth;

  }

  /* Otherwise, collect the data for this cell. */
  else {

    /* Clear the progeny. */
    bzero(c->progeny, sizeof(struct cell *) * 8);
    c->split = 0;
    c->maxdepth = c->depth;

    /* Get dt_min/dt_max. */

    for (k = 0; k < count; k++) {
      p = &parts[k];
      xp = &xparts[k];
      xp->x_old[0] = p->x[0];
      xp->x_old[1] = p->x[1];
      xp->x_old[2] = p->x[2];
      h = p->h;
Matthieu Schaller's avatar
Matthieu Schaller committed
1029
      t_end = p->t_end;
1030
      if (h > h_max) h_max = h;
Matthieu Schaller's avatar
Matthieu Schaller committed
1031
1032
      if (t_end < t_end_min) t_end_min = t_end;
      if (t_end > t_end_max) t_end_max = t_end;
1033
    }
1034
    c->h_max = h_max;
Matthieu Schaller's avatar
Matthieu Schaller committed
1035
1036
    c->t_end_min = t_end_min;
    c->t_end_max = t_end_max;
1037
  }
1038

1039
  /* Set ownership according to the start of the parts array. */
1040
1041
  c->owner = ((c->parts - s->parts) % s->nr_parts) * s->nr_queues / s->nr_parts;
}
1042

Pedro Gonnet's avatar
Pedro Gonnet committed
1043
1044
1045
1046
1047
1048
1049
/**
 * @brief Return a used cell to the cell buffer.
 *
 * @param s The #space.
 * @param c The #cell.
 */

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
void space_recycle(struct space *s, struct cell *c) {

  /* Lock the space. */
  lock_lock(&s->lock);

  /* Clear the cell. */
  if (lock_destroy(&c->lock) != 0) error("Failed to destroy spinlock.");

  /* Clear this cell's sort arrays. */
  if (c->sort != NULL) free(c->sort);

  /* Clear the cell data. */
  bzero(c, sizeof(struct cell));

  /* Hook this cell into the buffer. */
  c->next = s->cells_new;
  s->cells_new = c;
  s->tot_cells -= 1;

  /* Unlock the space. */
  lock_unlock_blind(&s->lock);
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1072
1073
1074
1075
1076
1077
1078

/**
 * @brief Get a new empty cell.
 *
 * @param s The #space.
 */

1079
struct cell *space_getcell(struct space *s) {
Pedro Gonnet's avatar
Pedro Gonnet committed
1080

1081
1082
  struct cell *c;
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
1083

1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
  /* Lock the space. */
  lock_lock(&s->lock);

  /* Is the buffer empty? */
  if (s->cells_new == NULL) {
    if (posix_memalign((void *)&s->cells_new, 64,
                       space_cellallocchunk * sizeof(struct cell)) != 0)
      error("Failed to allocate more cells.");
    bzero(s->cells_new, space_cellallocchunk * sizeof(struct cell));
    for (k = 0; k < space_cellallocchunk - 1; k++)
      s->cells_new[k].next = &s->cells_new[k + 1];
    s->cells_new[space_cellallocchunk - 1].next = NULL;
  }

  /* Pick off the next cell. */
  c = s->cells_new;
  s->cells_new = c->next;
  s->tot_cells += 1;
Pedro Gonnet's avatar
Pedro Gonnet committed
1102

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
  /* Unlock the space. */
  lock_unlock_blind(&s->lock);

  /* Init some things in the cell. */
  bzero(c, sizeof(struct cell));
  c->nodeID = -1;
  if (lock_init(&c->lock) != 0 || lock_init(&c->glock) != 0)
    error("Failed to initialize cell spinlocks.");

  return c;
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1114
1115
1116
1117

/**
 * @brief Split the space into cells given the array of particles.
 *
1118
 * @param s The #space to initialize.
Pedro Gonnet's avatar
Pedro Gonnet committed
1119
1120
1121
1122
 * @param dim Spatial dimensions of the domain.
 * @param parts Pointer to an array of #part.
 * @param N The number of parts in the space.
 * @param periodic flag whether the domain is periodic or not.
1123
 * @param h_max The maximal interaction radius.
1124
 * @param verbose Print messages to stdout or not
Pedro Gonnet's avatar
Pedro Gonnet committed
1125
1126
 *
 * Makes a grid of edge length > r_max and fills the particles
1127
 * into the respective cells. Cells containing more than #space_splitsize
Pedro Gonnet's avatar
Pedro Gonnet committed
1128
1129
1130
1131
 * parts with a cutoff below half the cell width are then split
 * recursively.
 */

1132
void space_init(struct space *s, double dim[3], struct part *parts, int N,
1133
                int periodic, double h_max, int verbose) {
1134

1135
  /* Store everything in the space. */
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
  s->dim[0] = dim[0];
  s->dim[1] = dim[1];
  s->dim[2] = dim[2];
  s->periodic = periodic;
  s->nr_parts = N;
  s->size_parts = N;
  s->parts = parts;
  s->cell_min = h_max;
  s->nr_queues = 1;
  s->size_parts_foreign = 0;

  /* Check that all the particle positions are reasonable, wrap if periodic. */
  if (periodic) {
    for (int k = 0; k < N; k++)
      for (int j = 0; j < 3; j++) {
        while (parts[k].x[j] < 0) parts[k].x[j] += dim[j];
        while (parts[k].x[j] >= dim[j]) parts[k].x[j] -= dim[j];
1153
      }
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
  } else {
    for (int k = 0; k < N; k++)
      for (int j = 0; j < 3; j++)
        if (parts[k].x[j] < 0 || parts[k].x[j] >= dim[j])
          error("Not all particles are within the specified domain.");
  }

  /* Allocate the xtra parts array. */
  if (posix_memalign((void *)&s->xparts, part_align,
                     N * sizeof(struct xpart)) != 0)
    error("Failed to allocate xparts.");
  bzero(s->xparts, N * sizeof(struct xpart));

  /* Initialize the velocities and internal energies. */
  for (int k = 0; k < N; k++) {
    struct part *p = &parts[k];
    struct xpart *xp = &s->xparts[k];
1171
1172
1173
    xp->v_full[0] = p->v[0];
    xp->v_full[1] = p->v[1];
    xp->v_full[2] = p->v[2];
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
    xp->u_hdt = p->u;
  }

  /* For now, clone the parts to make gparts. */
  if (posix_memalign((void *)&s->gparts, part_align,
                     N * sizeof(struct gpart)) != 0)
    error("Failed to allocate gparts.");
  bzero(s->gparts, N * sizeof(struct gpart));
  /* for ( int k = 0 ; k < N ; k++ ) {
      s->gparts[k].x[0] = s->parts[k].x[0];
      s->gparts[k].x[1] = s->parts[k].x[1];
      s->gparts[k].x[2] = s->parts[k].x[2];
      s->gparts[k].v[0] = s->parts[k].v[0];
      s->gparts[k].v[1] = s->parts[k].v[1];
      s->gparts[k].v[2] = s->parts[k].v[2];
      s->gparts[k].mass = s->parts[k].mass;
      s->gparts[k].dt = s->parts[k].dt;
      s->gparts[k].id = s->parts[k].id;
      s->gparts[k].part = &s->parts[k];
      s->parts[k].gpart = &s->gparts[k];
1194
      }
1195
1196
1197
1198
1199
1200
  s->nr_gparts = s->nr_parts; */
  s->nr_gparts = 0;
  s->size_gparts = s->size_parts;

  /* Init the space lock. */
  if (lock_init(&s->lock) != 0) error("Failed to create space spin-lock.");
Pedro Gonnet's avatar
Pedro Gonnet committed
1201

1202
  /* Build the cells and the tasks. */
1203
  space_regrid(s, h_max, verbose);
1204
}