cell.c 16.5 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 * Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <float.h>
#include <limits.h>
#include <math.h>

32
33
34
35
36
/* MPI headers. */
#ifdef WITH_MPI
    #include <mpi.h>
#endif

37
38
39
40
41
/* Switch off timers. */
#ifdef TIMER
    #undef TIMER
#endif

42
/* Local headers. */
43
#include "const.h"
44
#include "atomic.h"
45
46
47
#include "cycle.h"
#include "lock.h"
#include "task.h"
48
#include "timers.h"
49
#include "part.h"
50
#include "space.h"
51
#include "multipole.h"
52
#include "cell.h"
53
54
#include "error.h"
#include "inline.h"
55
56


57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
 
int cell_getsize ( struct cell *c ) {

    int k, count = 1;
    
    /* Sum up the progeny if split. */
    if ( c->split )
        for ( k = 0 ; k < 8 ; k++ )
            if ( c->progeny[k] != NULL )
                count += cell_getsize( c->progeny[k] );
                
    /* Return the final count. */
    return count;

    }


/** 
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
 
89
int cell_unpack ( struct pcell *pc , struct cell *c , struct space *s ) {
90
91
92
93
94
95

    int k, count = 1;
    struct cell *temp;
    
    /* Unpack the current pcell. */
    c->h_max = pc->h_max;
96
97
    c->dt_min = FLT_MAX; // pc->dt_min;
    c->dt_max = FLT_MAX; // pc->dt_max;
98
    c->count = pc->count;
Pedro Gonnet's avatar
Pedro Gonnet committed
99
    c->tag = pc->tag;
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    
    /* Fill the progeny recursively, depth-first. */
    for ( k = 0 ; k < 8 ; k++ )
        if ( pc->progeny[k] >= 0 ) {
            temp = space_getcell( s );
            temp->count = 0;
            temp->loc[0] = c->loc[0];
            temp->loc[1] = c->loc[1];
            temp->loc[2] = c->loc[2];
            temp->h[0] = c->h[0]/2;
            temp->h[1] = c->h[1]/2;
            temp->h[2] = c->h[2]/2;
            temp->dmin = c->dmin/2;
            if ( k & 4 )
                temp->loc[0] += temp->h[0];
            if ( k & 2 )
                temp->loc[1] += temp->h[1];
            if ( k & 1 )
                temp->loc[2] += temp->h[2];
            temp->depth = c->depth + 1;
            temp->split = 0;
            temp->dx_max = 0.0;
            temp->nodeID = c->nodeID;
            temp->parent = c;
            c->progeny[k] = temp;
            c->split = 1;
126
            count += cell_unpack( &pc[ pc->progeny[k] ] , temp , s );
127
128
129
130
131
132
133
134
            }
            
    /* Return the total number of unpacked cells. */
    return count;

    }


135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/**
 * @brief Link the cells recursively to the given part array.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */

int cell_link ( struct cell *c , struct part *parts ) {

    int k, ind = 0;
    
    c->parts = parts;
    
    /* Fill the progeny recursively, depth-first. */
    if ( c->split )
        for ( k = 0 ; k < 8 ; k++ )
            if ( c->progeny[k] != NULL )
                ind += cell_link( c->progeny[k] , &parts[ind] );
            
    /* Return the total number of unpacked cells. */
    return c->count;

    }


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
 
int cell_pack ( struct cell *c , struct pcell *pc ) {

    int k, count = 1;
    
    /* Start by packing the data of the current cell. */
    pc->h_max = c->h_max;
    pc->dt_min = c->dt_min;
    pc->dt_max = c->dt_max;
    pc->count = c->count;
181
    c->tag = pc->tag = ( ((long long int)c) / sizeof(struct cell) ) % (1 << 30);
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    
    /* Fill in the progeny, depth-first recursion. */
    for ( k = 0 ; k < 8 ; k++ )
        if ( c->progeny[k] != NULL ) {
            pc->progeny[k] = count;
            count += cell_pack( c->progeny[k] , &pc[count] );
            }
        else
            pc->progeny[k] = -1;
            
    /* Return the number of packed cells used. */
    return count;

    }


198
199
200
201
202
203
204
205
206
207
208
209
/**
 * @brief Lock a cell and hold its parents.
 *
 * @param c The #cell.
 */
 
int cell_locktree( struct cell *c ) {

    struct cell *finger, *finger2;
    TIMER_TIC

    /* First of all, try to lock this cell. */
210
    if ( c->hold || lock_trylock( &c->lock ) != 0 ) {
211
        TIMER_TOC(timer_locktree);
212
213
214
215
216
217
218
219
220
221
222
        return 1;
        }
        
    /* Did somebody hold this cell in the meantime? */
    if ( c->hold ) {
        
        /* Unlock this cell. */
        if ( lock_unlock( &c->lock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
223
        TIMER_TOC(timer_locktree);
224
225
226
227
228
229
230
231
232
233
234
235
        return 1;
    
        }
        
    /* Climb up the tree and lock/hold/unlock. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent ) {
    
        /* Lock this cell. */
        if ( lock_trylock( &finger->lock ) != 0 )
            break;
            
        /* Increment the hold. */
236
        atomic_inc( &finger->hold );
237
238
239
240
241
242
243
244
245
        
        /* Unlock the cell. */
        if ( lock_unlock( &finger->lock ) != 0 )
            error( "Failed to unlock cell." );
    
        }
        
    /* If we reached the top of the tree, we're done. */
    if ( finger == NULL ) {
246
        TIMER_TOC(timer_locktree);
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        return 0;
        }
        
    /* Otherwise, we hit a snag. */
    else {
    
        /* Undo the holds up to finger. */
        for ( finger2 = c->parent ; finger2 != finger ; finger2 = finger2->parent )
            __sync_fetch_and_sub( &finger2->hold , 1 );
            
        /* Unlock this cell. */
        if ( lock_unlock( &c->lock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
262
        TIMER_TOC(timer_locktree);
263
264
265
266
267
268
269
        return 1;
    
        }

    }
    
    
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
int cell_glocktree( struct cell *c ) {

    struct cell *finger, *finger2;
    TIMER_TIC

    /* First of all, try to lock this cell. */
    if ( c->ghold || lock_trylock( &c->glock ) != 0 ) {
        TIMER_TOC(timer_locktree);
        return 1;
        }
        
    /* Did somebody hold this cell in the meantime? */
    if ( c->ghold ) {
        
        /* Unlock this cell. */
        if ( lock_unlock( &c->glock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
        TIMER_TOC(timer_locktree);
        return 1;
    
        }
        
    /* Climb up the tree and lock/hold/unlock. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent ) {
    
        /* Lock this cell. */
        if ( lock_trylock( &finger->glock ) != 0 )
            break;
            
        /* Increment the hold. */
        __sync_fetch_and_add( &finger->ghold , 1 );
        
        /* Unlock the cell. */
        if ( lock_unlock( &finger->glock ) != 0 )
            error( "Failed to unlock cell." );
    
        }
        
    /* If we reached the top of the tree, we're done. */
    if ( finger == NULL ) {
        TIMER_TOC(timer_locktree);
        return 0;
        }
        
    /* Otherwise, we hit a snag. */
    else {
    
        /* Undo the holds up to finger. */
        for ( finger2 = c->parent ; finger2 != finger ; finger2 = finger2->parent )
            __sync_fetch_and_sub( &finger2->ghold , 1 );
            
        /* Unlock this cell. */
        if ( lock_unlock( &c->glock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
        TIMER_TOC(timer_locktree);
        return 1;
    
        }

    }
    
    
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/**
 * @brief Unock a cell's parents.
 *
 * @param c The #cell.
 */
 
void cell_unlocktree( struct cell *c ) {

    struct cell *finger;
    TIMER_TIC

    /* First of all, try to unlock this cell. */
    if ( lock_unlock( &c->lock ) != 0 )
        error( "Failed to unlock cell." );
        
    /* Climb up the tree and unhold the parents. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent )
        __sync_fetch_and_sub( &finger->hold , 1 );
        
355
    TIMER_TOC(timer_locktree);
356
357
358
359
        
    }
    
    
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
void cell_gunlocktree( struct cell *c ) {

    struct cell *finger;
    TIMER_TIC

    /* First of all, try to unlock this cell. */
    if ( lock_unlock( &c->glock ) != 0 )
        error( "Failed to unlock cell." );
        
    /* Climb up the tree and unhold the parents. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent )
        __sync_fetch_and_sub( &finger->ghold , 1 );
        
    TIMER_TOC(timer_locktree);
        
    }
    
    
378
379
380
381
382
383
384
385
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
 */
 
void cell_split ( struct cell *c  ) {

386
    int i, j, k, count = c->count, gcount = c->gcount;
387
    struct part temp, *parts = c->parts;
388
    struct xpart xtemp, *xparts = c->xparts;
389
    struct gpart gtemp, *gparts = c->gparts;
390
391
392
    int left[8], right[8];
    double pivot[3];
    
393
    /* Init the pivots. */
394
395
396
397
    for ( k = 0 ; k < 3 ; k++ )
        pivot[k] = c->loc[k] + c->h[k]/2;
    
    /* Split along the x-axis. */
398
    i = 0; j = count - 1;
399
    while ( i <= j ) {
400
        while ( i <= count-1 && parts[i].x[0] <= pivot[0] )
401
402
403
404
405
            i += 1;
        while ( j >= 0 && parts[j].x[0] > pivot[0] )
            j -= 1;
        if ( i < j ) {
            temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
406
            xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
407
408
            }
        }
Pedro Gonnet's avatar
Pedro Gonnet committed
409
    /* for ( k = 0 ; k <= j ; k++ )
410
411
        if ( parts[k].x[0] > pivot[0] )
            error( "cell_split: sorting failed." );
412
    for ( k = i ; k < count ; k++ )
413
        if ( parts[k].x[0] < pivot[0] )
Pedro Gonnet's avatar
Pedro Gonnet committed
414
            error( "cell_split: sorting failed." ); */
415
    left[1] = i; right[1] = count - 1;
416
417
418
419
420
421
422
423
424
425
426
427
    left[0] = 0; right[0] = j;
    
    /* Split along the y axis, twice. */
    for ( k = 1 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && parts[i].x[1] <= pivot[1] )
                i += 1;
            while ( j >= left[k] && parts[j].x[1] > pivot[1] )
                j -= 1;
            if ( i < j ) {
                temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
428
                xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
429
430
                }
            }
Pedro Gonnet's avatar
Pedro Gonnet committed
431
        /* for ( int kk = left[k] ; kk <= j ; kk++ )
432
            if ( parts[kk].x[1] > pivot[1] ) {
433
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
434
435
                error( "sorting failed (left)." );
                }
Pedro Gonnet's avatar
Pedro Gonnet committed
436
        for ( int kk = i ; kk <= right[k] ; kk++ )
437
            if ( parts[kk].x[1] < pivot[1] )
Pedro Gonnet's avatar
Pedro Gonnet committed
438
                error( "sorting failed (right)." ); */
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }

    /* Split along the z axis, four times. */
    for ( k = 3 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && parts[i].x[2] <= pivot[2] )
                i += 1;
            while ( j >= left[k] && parts[j].x[2] > pivot[2] )
                j -= 1;
            if ( i < j ) {
                temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
453
                xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
454
455
                }
            }
Pedro Gonnet's avatar
Pedro Gonnet committed
456
        /* for ( int kk = left[k] ; kk <= j ; kk++ )
457
            if ( parts[kk].x[2] > pivot[2] ) {
458
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
459
460
                error( "sorting failed (left)." );
                }
Pedro Gonnet's avatar
Pedro Gonnet committed
461
        for ( int kk = i ; kk <= right[k] ; kk++ )
462
            if ( parts[kk].x[2] < pivot[2] ) {
463
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
464
                error( "sorting failed (right)." );
Pedro Gonnet's avatar
Pedro Gonnet committed
465
                } */
466
467
468
469
470
471
472
473
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }
        
    /* Store the counts and offsets. */
    for ( k = 0 ; k < 8 ; k++ ) {
        c->progeny[k]->count = right[k] - left[k] + 1;
        c->progeny[k]->parts = &c->parts[ left[k] ];
474
        c->progeny[k]->xparts = &c->xparts[ left[k] ];
475
476
        }
        
477
478
    /* Re-link the gparts. */
    for ( k = 0 ; k < count ; k++ )
479
480
        if ( parts[k].gpart != NULL )
            parts[k].gpart->part = &parts[k];
481
        
Pedro Gonnet's avatar
Pedro Gonnet committed
482
483
484
485
486
487
    /* Verify that _all_ the parts have been assigned to a cell. */
    /* for ( k = 1 ; k < 8 ; k++ )
        if ( &c->progeny[k-1]->parts[ c->progeny[k-1]->count ] != c->progeny[k]->parts )
            error( "Particle sorting failed (internal consistency)." );
    if ( c->progeny[0]->parts != c->parts )
        error( "Particle sorting failed (left edge)." );
488
    if ( &c->progeny[7]->parts[ c->progeny[7]->count ] != &c->parts[ count ] )
Pedro Gonnet's avatar
Pedro Gonnet committed
489
490
        error( "Particle sorting failed (right edge)." ); */
        
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
    /* Verify a few sub-cells. */
    /* for ( k = 0 ; k < c->progeny[0]->count ; k++ )
        if ( c->progeny[0]->parts[k].x[0] > pivot[0] ||
             c->progeny[0]->parts[k].x[1] > pivot[1] ||
             c->progeny[0]->parts[k].x[2] > pivot[2] )
            error( "Sorting failed (progeny=0)." );
    for ( k = 0 ; k < c->progeny[1]->count ; k++ )
        if ( c->progeny[1]->parts[k].x[0] > pivot[0] ||
             c->progeny[1]->parts[k].x[1] > pivot[1] ||
             c->progeny[1]->parts[k].x[2] <= pivot[2] )
            error( "Sorting failed (progeny=1)." );
    for ( k = 0 ; k < c->progeny[2]->count ; k++ )
        if ( c->progeny[2]->parts[k].x[0] > pivot[0] ||
             c->progeny[2]->parts[k].x[1] <= pivot[1] ||
             c->progeny[2]->parts[k].x[2] > pivot[2] )
            error( "Sorting failed (progeny=2)." ); */

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    /* Now do the same song and dance for the gparts. */

    /* Split along the x-axis. */
    i = 0; j = gcount - 1;
    while ( i <= j ) {
        while ( i <= gcount-1 && gparts[i].x[0] <= pivot[0] )
            i += 1;
        while ( j >= 0 && gparts[j].x[0] > pivot[0] )
            j -= 1;
        if ( i < j ) {
            gtemp = gparts[i]; gparts[i] = gparts[j]; gparts[j] = gtemp;
            }
        }
    left[1] = i; right[1] = gcount - 1;
    left[0] = 0; right[0] = j;
    
    /* Split along the y axis, twice. */
    for ( k = 1 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && gparts[i].x[1] <= pivot[1] )
                i += 1;
            while ( j >= left[k] && gparts[j].x[1] > pivot[1] )
                j -= 1;
            if ( i < j ) {
                gtemp = gparts[i]; gparts[i] = gparts[j]; gparts[j] = gtemp;
                }
            }
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }

    /* Split along the z axis, four times. */
    for ( k = 3 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && gparts[i].x[2] <= pivot[2] )
                i += 1;
            while ( j >= left[k] && gparts[j].x[2] > pivot[2] )
                j -= 1;
            if ( i < j ) {
                gtemp = gparts[i]; gparts[i] = gparts[j]; gparts[j] = gtemp;
                }
            }
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }
        
    /* Store the counts and offsets. */
    for ( k = 0 ; k < 8 ; k++ ) {
        c->progeny[k]->gcount = right[k] - left[k] + 1;
        c->progeny[k]->gparts = &c->gparts[ left[k] ];
        }
        
    /* Re-link the parts. */
    for ( k = 0 ; k < gcount ; k++ )
        if ( gparts[k].id > 0 )
            gparts[k].part->gpart = &gparts[k];
        
567
568
569
    }