cell.c 38.8 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "drift.h"
53
#include "error.h"
54
#include "gravity.h"
55
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
56
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
57
#include "memswap.h"
58
#include "minmax.h"
59
#include "scheduler.h"
60
61
#include "space.h"
#include "timers.h"
62

63
64
65
/* Global variables. */
int cell_next_tag = 0;

66
67
68
69
70
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
71
int cell_getsize(struct cell *c) {
72

Pedro Gonnet's avatar
Pedro Gonnet committed
73
74
  /* Number of cells in this subtree. */
  int count = 1;
75

76
77
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
78
    for (int k = 0; k < 8; k++)
79
80
81
82
83
84
85
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

/**
86
87
88
89
90
91
92
93
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
94
95
int cell_unpack(struct pcell *pc, struct cell *c, struct space *s) {

96
97
#ifdef WITH_MPI

98
99
  /* Unpack the current pcell. */
  c->h_max = pc->h_max;
100
101
  c->ti_end_min = pc->ti_end_min;
  c->ti_end_max = pc->ti_end_max;
102
  c->ti_old = pc->ti_old;
103
  c->count = pc->count;
104
  c->gcount = pc->gcount;
105
  c->scount = pc->scount;
106
  c->tag = pc->tag;
Matthieu Schaller's avatar
Matthieu Schaller committed
107

108
109
  /* Number of new cells created. */
  int count = 1;
110
111

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
112
  for (int k = 0; k < 8; k++)
113
    if (pc->progeny[k] >= 0) {
114
115
      struct cell *temp;
      space_getcells(s, 1, &temp);
116
      temp->count = 0;
117
      temp->gcount = 0;
118
      temp->scount = 0;
119
120
121
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
122
123
124
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
125
      temp->dmin = c->dmin / 2;
126
127
128
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
129
130
      temp->depth = c->depth + 1;
      temp->split = 0;
131
      temp->dx_max = 0.f;
132
133
134
135
136
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
      count += cell_unpack(&pc[pc->progeny[k]], temp, s);
137
138
    }

139
  /* Return the total number of unpacked cells. */
140
  c->pcell_size = count;
141
  return count;
142
143
144
145
146

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
147
}
148

149
/**
150
 * @brief Link the cells recursively to the given #part array.
151
152
153
154
155
156
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
157
int cell_link_parts(struct cell *c, struct part *parts) {
158

159
160
161
  c->parts = parts;

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
162
163
164
165
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
166
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
Pedro Gonnet's avatar
Pedro Gonnet committed
167
168
    }
  }
169

170
  /* Return the total number of linked particles. */
171
172
  return c->count;
}
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/**
 * @brief Link the cells recursively to the given #gpart array.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_gparts(struct cell *c, struct gpart *gparts) {

  c->gparts = gparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->gcount;
}

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {

  c->sparts = sparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->scount;
}

224
225
226
227
228
229
230
231
232
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
233
234
int cell_pack(struct cell *c, struct pcell *pc) {

235
236
#ifdef WITH_MPI

237
238
  /* Start by packing the data of the current cell. */
  pc->h_max = c->h_max;
239
240
  pc->ti_end_min = c->ti_end_min;
  pc->ti_end_max = c->ti_end_max;
241
  pc->ti_old = c->ti_old;
242
  pc->count = c->count;
243
  pc->gcount = c->gcount;
244
  pc->scount = c->scount;
245
246
247
  c->tag = pc->tag = atomic_inc(&cell_next_tag) % cell_max_tag;

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
248
249
  int count = 1;
  for (int k = 0; k < 8; k++)
250
251
252
253
254
255
256
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
      count += cell_pack(c->progeny[k], &pc[count]);
    } else
      pc->progeny[k] = -1;

  /* Return the number of packed cells used. */
257
258
  c->pcell_size = count;
  return count;
259
260
261
262
263

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
264
265
}

266
267
268
269
270
271
272
273
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param ti_ends (output) The time information we pack into
 *
 * @return The number of packed cells.
 */
274
int cell_pack_ti_ends(struct cell *c, integertime_t *ti_ends) {
275

276
277
#ifdef WITH_MPI

278
279
  /* Pack this cell's data. */
  ti_ends[0] = c->ti_end_min;
280

281
282
283
284
285
286
287
288
289
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_ti_ends(c->progeny[k], &ti_ends[count]);
    }

  /* Return the number of packed values. */
  return count;
290
291
292
293
294

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
295
296
}

297
298
299
300
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
301
 * @param ti_ends The time information to unpack
302
303
304
 *
 * @return The number of cells created.
 */
305
int cell_unpack_ti_ends(struct cell *c, integertime_t *ti_ends) {
306

307
308
#ifdef WITH_MPI

309
310
  /* Unpack this cell's data. */
  c->ti_end_min = ti_ends[0];
311

312
313
314
315
316
317
318
319
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_ti_ends(c->progeny[k], &ti_ends[count]);
    }

  /* Return the number of packed values. */
320
  return count;
321
322
323
324
325

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
326
}
327

328
/**
329
 * @brief Lock a cell for access to its array of #part and hold its parents.
330
331
 *
 * @param c The #cell.
332
 * @return 0 on success, 1 on failure
333
 */
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->hold || lock_trylock(&c->lock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->hold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
356
  struct cell *finger;
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->lock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->hold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->lock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
379
380
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
381
      atomic_dec(&finger2->hold);
382
383
384
385
386
387
388
389
390
391

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

392
393
394
395
396
397
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->ghold || lock_trylock(&c->glock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->ghold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
420
  struct cell *finger;
421
422
423
424
425
426
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->glock) != 0) break;

    /* Increment the hold. */
427
    atomic_inc(&finger->ghold);
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

    /* Unlock the cell. */
    if (lock_unlock(&finger->glock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
443
444
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
445
      atomic_dec(&finger2->ghold);
446
447
448
449
450
451
452
453
454

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
455

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->shold || lock_trylock(&c->slock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->shold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->slock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->shold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->slock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->shold);

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

520
/**
521
 * @brief Unlock a cell's parents for access to #part array.
522
523
524
 *
 * @param c The #cell.
 */
525
526
527
528
529
530
531
532
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
533
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
534
    atomic_dec(&finger->hold);
535
536
537
538

  TIMER_TOC(timer_locktree);
}

539
540
541
542
543
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
544
545
546
547
548
549
550
551
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
552
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
553
    atomic_dec(&finger->ghold);
554
555
556
557

  TIMER_TOC(timer_locktree);
}

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->shold);

  TIMER_TOC(timer_locktree);
}

577
578
579
580
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
581
582
 * @param parts_offset Offset of the cell parts array relative to the
 *        space's parts array, i.e. c->parts - s->parts.
583
584
 * @param sparts_offset Offset of the cell sparts array relative to the
 *        space's sparts array, i.e. c->sparts - s->sparts.
585
586
 * @param buff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices.
587
588
 * @param sbuff A buffer with at least max(c->scount, c->gcount) entries,
 *        used for sorting indices for the sparts.
Peter W. Draper's avatar
Peter W. Draper committed
589
590
 * @param gbuff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices for the gparts.
591
 */
592
593
void cell_split(struct cell *c, ptrdiff_t parts_offset, ptrdiff_t sparts_offset,
                struct cell_buff *buff, struct cell_buff *sbuff,
594
                struct cell_buff *gbuff) {
595

596
  const int count = c->count, gcount = c->gcount, scount = c->scount;
597
598
599
  struct part *parts = c->parts;
  struct xpart *xparts = c->xparts;
  struct gpart *gparts = c->gparts;
Matthieu Schaller's avatar
Matthieu Schaller committed
600
  struct spart *sparts = c->sparts;
601
602
603
604
605
606
  const double pivot[3] = {c->loc[0] + c->width[0] / 2,
                           c->loc[1] + c->width[1] / 2,
                           c->loc[2] + c->width[2] / 2};
  int bucket_count[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  int bucket_offset[9];

607
608
609
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the buffs are OK. */
  for (int k = 0; k < count; k++) {
610
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
611
        buff[k].x[2] != parts[k].x[2])
612
613
      error("Inconsistent buff contents.");
  }
614
615
616
617
618
619
620
621
622
623
  for (int k = 0; k < gcount; k++) {
    if (gbuff[k].x[0] != gparts[k].x[0] || gbuff[k].x[1] != gparts[k].x[1] ||
        gbuff[k].x[2] != gparts[k].x[2])
      error("Inconsistent gbuff contents.");
  }
  for (int k = 0; k < scount; k++) {
    if (sbuff[k].x[0] != sparts[k].x[0] || sbuff[k].x[1] != sparts[k].x[1] ||
        sbuff[k].x[2] != sparts[k].x[2])
      error("Inconsistent sbuff contents.");
  }
624
#endif /* SWIFT_DEBUG_CHECKS */
625
626
627

  /* Fill the buffer with the indices. */
  for (int k = 0; k < count; k++) {
628
629
    const int bid = (buff[k].x[0] > pivot[0]) * 4 +
                    (buff[k].x[1] > pivot[1]) * 2 + (buff[k].x[2] > pivot[2]);
630
    bucket_count[bid]++;
631
    buff[k].ind = bid;
632
  }
633

634
635
636
637
638
  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
639
640
  }

641
642
643
644
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
645
      int bid = buff[k].ind;
646
647
648
      if (bid != bucket) {
        struct part part = parts[k];
        struct xpart xpart = xparts[k];
649
        struct cell_buff temp_buff = buff[k];
650
651
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
652
          while (buff[j].ind == bid) {
653
654
655
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
656
657
          memswap(&parts[j], &part, sizeof(struct part));
          memswap(&xparts[j], &xpart, sizeof(struct xpart));
658
659
          memswap(&buff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
660
661
662
        }
        parts[k] = part;
        xparts[k] = xpart;
663
        buff[k] = temp_buff;
664
      }
665
      bucket_count[bid]++;
666
667
668
669
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
670
  for (int k = 0; k < 8; k++) {
671
672
673
    c->progeny[k]->count = bucket_count[k];
    c->progeny[k]->parts = &c->parts[bucket_offset[k]];
    c->progeny[k]->xparts = &c->xparts[bucket_offset[k]];
674
675
676
  }

  /* Re-link the gparts. */
677
678
  if (count > 0 && gcount > 0)
    part_relink_gparts_to_parts(parts, count, parts_offset);
679

680
#ifdef SWIFT_DEBUG_CHECKS
681
  /* Check that the buffs are OK. */
682
  for (int k = 1; k < count; k++) {
683
684
    if (buff[k].ind < buff[k - 1].ind) error("Buff not sorted.");
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
685
        buff[k].x[2] != parts[k].x[2])
686
687
688
      error("Inconsistent buff contents (k=%i).", k);
  }

689
  /* Verify that _all_ the parts have been assigned to a cell. */
690
691
692
693
694
695
696
697
  for (int k = 1; k < 8; k++)
    if (&c->progeny[k - 1]->parts[c->progeny[k - 1]->count] !=
        c->progeny[k]->parts)
      error("Particle sorting failed (internal consistency).");
  if (c->progeny[0]->parts != c->parts)
    error("Particle sorting failed (left edge).");
  if (&c->progeny[7]->parts[c->progeny[7]->count] != &c->parts[count])
    error("Particle sorting failed (right edge).");
698
699

  /* Verify a few sub-cells. */
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
  for (int k = 0; k < c->progeny[0]->count; k++)
    if (c->progeny[0]->parts[k].x[0] > pivot[0] ||
        c->progeny[0]->parts[k].x[1] > pivot[1] ||
        c->progeny[0]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=0).");
  for (int k = 0; k < c->progeny[1]->count; k++)
    if (c->progeny[1]->parts[k].x[0] > pivot[0] ||
        c->progeny[1]->parts[k].x[1] > pivot[1] ||
        c->progeny[1]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=1).");
  for (int k = 0; k < c->progeny[2]->count; k++)
    if (c->progeny[2]->parts[k].x[0] > pivot[0] ||
        c->progeny[2]->parts[k].x[1] <= pivot[1] ||
        c->progeny[2]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=2).");
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
  for (int k = 0; k < c->progeny[3]->count; k++)
    if (c->progeny[3]->parts[k].x[0] > pivot[0] ||
        c->progeny[3]->parts[k].x[1] <= pivot[1] ||
        c->progeny[3]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=3).");
  for (int k = 0; k < c->progeny[4]->count; k++)
    if (c->progeny[4]->parts[k].x[0] <= pivot[0] ||
        c->progeny[4]->parts[k].x[1] > pivot[1] ||
        c->progeny[4]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=4).");
  for (int k = 0; k < c->progeny[5]->count; k++)
    if (c->progeny[5]->parts[k].x[0] <= pivot[0] ||
        c->progeny[5]->parts[k].x[1] > pivot[1] ||
        c->progeny[5]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=5).");
  for (int k = 0; k < c->progeny[6]->count; k++)
    if (c->progeny[6]->parts[k].x[0] <= pivot[0] ||
        c->progeny[6]->parts[k].x[1] <= pivot[1] ||
        c->progeny[6]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=6).");
  for (int k = 0; k < c->progeny[7]->count; k++)
    if (c->progeny[7]->parts[k].x[0] <= pivot[0] ||
        c->progeny[7]->parts[k].x[1] <= pivot[1] ||
        c->progeny[7]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=7).");
740
#endif
741

742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
  /* Now do the same song and dance for the sparts. */
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < scount; k++) {
    const int bid = (sbuff[k].x[0] > pivot[0]) * 4 +
                    (sbuff[k].x[1] > pivot[1]) * 2 + (sbuff[k].x[2] > pivot[2]);
    bucket_count[bid]++;
    sbuff[k].ind = bid;
  }

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
  }

  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
      int bid = sbuff[k].ind;
      if (bid != bucket) {
        struct spart spart = sparts[k];
        struct cell_buff temp_buff = sbuff[k];
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
          while (sbuff[j].ind == bid) {
            j++;
            bucket_count[bid]++;
          }
          memswap(&sparts[j], &spart, sizeof(struct spart));
          memswap(&sbuff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
        }
        sparts[k] = spart;
        sbuff[k] = temp_buff;
      }
      bucket_count[bid]++;
    }
  }

  /* Store the counts and offsets. */
  for (int k = 0; k < 8; k++) {
    c->progeny[k]->scount = bucket_count[k];
    c->progeny[k]->sparts = &c->sparts[bucket_offset[k]];
  }

  /* Re-link the gparts. */
  if (scount > 0 && gcount > 0)
793
    part_relink_gparts_to_sparts(sparts, scount, sparts_offset);
794
795

  /* Finally, do the same song and dance for the gparts. */
796
797
798
799
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < gcount; k++) {
800
801
    const int bid = (gbuff[k].x[0] > pivot[0]) * 4 +
                    (gbuff[k].x[1] > pivot[1]) * 2 + (gbuff[k].x[2] > pivot[2]);
802
    bucket_count[bid]++;
803
    gbuff[k].ind = bid;
804
  }
805
806
807
808
809
810

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
811
812
  }

813
814
815
816
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
817
      int bid = gbuff[k].ind;
818
819
      if (bid != bucket) {
        struct gpart gpart = gparts[k];
820
        struct cell_buff temp_buff = gbuff[k];
821
822
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
823
          while (gbuff[j].ind == bid) {
824
825
826
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
827
          memswap(&gparts[j], &gpart, sizeof(struct gpart));
828
829
          memswap(&gbuff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
830
831
        }
        gparts[k] = gpart;
832
        gbuff[k] = temp_buff;
833
      }
834
      bucket_count[bid]++;
835
836
837
838
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
839
  for (int k = 0; k < 8; k++) {
840
841
    c->progeny[k]->gcount = bucket_count[k];
    c->progeny[k]->gparts = &c->gparts[bucket_offset[k]];
842
843
844
  }

  /* Re-link the parts. */
845
  if (count > 0 && gcount > 0)
846
    part_relink_parts_to_gparts(gparts, gcount, parts - parts_offset);
847
848
849
850

  /* Re-link the sparts. */
  if (scount > 0 && gcount > 0)
    part_relink_sparts_to_gparts(gparts, gcount, sparts - sparts_offset);
851
}
852

853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
/**
 * @brief Sanitizes the smoothing length values of cells by setting large
 * outliers to more sensible values.
 *
 * We compute the mean and standard deviation of the smoothing lengths in
 * logarithmic space and limit values to mean + 4 sigma.
 *
 * @param c The cell.
 */
void cell_sanitize(struct cell *c) {

  const int count = c->count;
  struct part *parts = c->parts;

  /* First collect some statistics */
  float h_mean = 0.f, h_mean2 = 0.f;
  float h_min = FLT_MAX, h_max = 0.f;
  for (int i = 0; i < count; ++i) {

872
    const float h = logf(parts[i].h);
873
874
875
876
877
878
879
880
    h_mean += h;
    h_mean2 += h * h;
    h_max = max(h_max, h);
    h_min = min(h_min, h);
  }
  h_mean /= count;
  h_mean2 /= count;
  const float h_var = h_mean2 - h_mean * h_mean;
881
  const float h_std = (h_var > 0.f) ? sqrtf(h_var) : 0.1f * h_mean;
882
883

  /* Choose a cut */
884
  const float h_limit = expf(h_mean + 4.f * h_std);
885
886

  /* Be verbose this is not innocuous */
887
888
  message("Cell properties: h_min= %f h_max= %f geometric mean= %f.",
          expf(h_min), expf(h_max), expf(h_mean));
889
890
891

  if (c->h_max > h_limit) {

892
    message("Smoothing lengths will be limited to (mean + 4sigma)= %f.",
893
894
895
896
897
898
            h_limit);

    /* Apply the cut */
    for (int i = 0; i < count; ++i) parts->h = min(parts[i].h, h_limit);

    c->h_max = h_limit;
899
900
901
902

  } else {

    message("Smoothing lengths will not be limited.");
903
904
905
  }
}

906
/**
907
 * @brief Converts hydro quantities to a valid state after the initial density
908
 * calculation
909
910
911
912
913
914
915
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_convert_hydro(struct cell *c, void *data) {

  struct part *p = c->parts;
916
  struct xpart *xp = c->xparts;
917
918

  for (int i = 0; i < c->count; ++i) {
919
    hydro_convert_quantities(&p[i], &xp[i]);
920
921
922
  }
}

Matthieu Schaller's avatar
Matthieu Schaller committed
923
924
925
926
927
928
/**
 * @brief Cleans the links in a given cell.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
929
void cell_clean_links(struct cell *c, void *data) {
Matthieu Schaller's avatar
Matthieu Schaller committed
930
  c->density = NULL;
931
  c->gradient = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
932
  c->force = NULL;
933
  c->grav = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
934
}
935

936
937
938
939
940
941
942
943
944
945
/**
 * @brief Checks that a cell is at the current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_drift_point(struct cell *c, void *data) {

946
  const integertime_t ti_drift = *(integertime_t *)data;
947

948
949
950
  if (c->ti_old != ti_drift && c->nodeID == engine_rank)
    error("Cell in an incorrect time-zone! c->ti_old=%lld ti_drift=%lld",
          c->ti_old, ti_drift);
951
952
}

953
954
955
956
957
958
959
960
961
962
963
964
/**
 * @brief Checks whether the cells are direct neighbours ot not. Both cells have
 * to be of the same size
 *
 * @param ci First #cell.
 * @param cj Second #cell.
 *
 * @todo Deal with periodicity.
 */
int cell_are_neighbours(const struct cell *restrict ci,
                        const struct cell *restrict cj) {

Matthieu Schaller's avatar
Matthieu Schaller committed
965
#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
966
  if (ci->width[0] != cj->width[0]) error("Cells of different size !");
967
968
969
#endif

  /* Maximum allowed distance */
970
971
  const double min_dist =
      1.2 * ci->width[0]; /* 1.2 accounts for rounding errors */
972
973
974
975
976

  /* (Manhattan) Distance between the cells */
  for (int k = 0; k < 3; k++) {
    const double center_i = ci->loc[k];
    const double center_j = cj->loc[k];
977
    if (fabs(center_i - center_j) > min_dist) return 0;
978
979
980
981
982
  }

  return 1;
}

983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
/**
 * @brief Computes the multi-pole brutally and compare to the
 * recursively computed one.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_check_multipole(struct cell *c, void *data) {

  struct multipole ma;

  if (c->gcount > 0) {

    /* Brute-force calculation */
    multipole_init(&ma, c->gparts, c->gcount);

    /* Compare with recursive one */
    struct multipole mb = c->multipole;

    if (fabsf(ma.mass - mb.mass) / fabsf(ma.mass + mb.mass) > 1e-5)
      error("Multipole masses are different (%12.15e vs. %12.15e)", ma.mass,
            mb.mass);

    for (int k = 0; k < 3; ++k)
1007
      if (fabs(ma.CoM[k] - mb.CoM[k]) / fabs(ma.CoM[k] + mb.CoM[k]) > 1e-5)
1008
1009
1010
        error("Multipole CoM are different (%12.15e vs. %12.15e", ma.CoM[k],
              mb.CoM[k]);

1011
#if const_gravity_multipole_order >= 2
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
    if (fabsf(ma.I_xx - mb.I_xx) / fabsf(ma.I_xx + mb.I_xx) > 1e-5 &&
        ma.I_xx > 1e-9)
      error("Multipole I_xx are different (%12.15e vs. %12.15e)", ma.I_xx,
            mb.I_xx);
    if (fabsf(ma.I_yy - mb.I_yy) / fabsf(ma.I_yy + mb.I_yy) > 1e-5 &&
        ma.I_yy > 1e-9)
      error("Multipole I_yy are different (%12.15e vs. %12.15e)", ma.I_yy,
            mb.I_yy);
    if (fabsf(ma.I_zz - mb.I_zz) / fabsf(ma.I_zz + mb.I_zz) > 1e-5 &&
        ma.I_zz > 1e-9)
      error("Multipole I_zz are different (%12.15e vs. %12.15e)", ma.I_zz,
            mb.I_zz);
    if (fabsf(ma.I_xy - mb.I_xy) / fabsf(ma.I_xy + mb.I_xy) > 1e-5 &&
        ma.I_xy > 1e-9)
      error("Multipole I_xy are different (%12.15e vs. %12.15e)", ma.I_xy,
            mb.I_xy);
    if (fabsf(ma.I_xz - mb.I_xz) / fabsf(ma.I_xz + mb.I_xz) > 1e-5 &&
        ma.I_xz > 1e-9)
      error("Multipole I_xz are different (%12.15e vs. %12.15e)", ma.I_xz,
            mb.I_xz);
    if (fabsf(ma.I_yz - mb.I_yz) / fabsf(ma.I_yz + mb.I_yz) > 1e-5 &&
        ma.I_yz > 1e-9)
      error("Multipole I_yz are different (%12.15e vs. %12.15e)", ma.I_yz,
            mb.I_yz);
1036
#endif
1037
  }
1038
1039
}

1040
/**
1041
 * @brief Frees up the memory allocated for this #cell.
1042
 *
1043
 * @param c The #cell.
1044
 */
1045
1046
1047
1048
1049
1050
1051
void cell_clean(struct cell *c) {

  free(c->sort);

  /* Recurse */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k]) cell_clean(c->progeny[k]);
1052
}
1053
1054
1055
1056
1057

/**
 * @brief Checks whether a given cell needs drifting or not.
 *
 * @param c the #cell.
1058
 * @param e The #engine (holding current time information).
1059
1060
1061
 *
 * @return 1 If the cell needs drifting, 0 otherwise.
 */
1062
int cell_is_drift_needed(struct cell *c, const struct engine *e) {
1063
1064

  /* Do we have at least one active particle in the cell ?*/
1065
  if (cell_is_active(c, e)) return 1;
1066
1067
1068
1069
1070
1071
1072

  /* Loop over the pair tasks that involve this cell */
  for (struct link *l = c->density; l != NULL; l = l->next) {

    if (l->t->type != task_type_pair && l->t->type != task_type_sub_pair)
      continue;

1073
1074
1075
    /* Is the other cell in the pair active ? */
    if ((l->t->ci == c && cell_is_active(l->t->cj, e)) ||
        (l->t->cj == c && cell_is_active(l->t->ci, e)))
1076
      return 1;
1077
1078
1079
1080
1081
  }

  /* No neighbouring cell has active particles. Drift not necessary */
  return 0;
}
1082
1083
1084
1085
1086
1087

/**
 * @brief Un-skips all the tasks associated with a given cell and checks
 * if the space needs to be rebuilt.
 *
 * @param c the #cell.
Peter W. Draper's avatar
Peter W. Draper committed
1088
 * @param s the #scheduler.
1089
1090
1091
 *
 * @return 1 If the space needs rebuilding. 0 otherwise.
 */
1092
int cell_unskip_tasks(struct cell *c, struct scheduler *s) {
1093

1094
1095
1096
1097
#ifdef WITH_MPI
  struct engine *e = s->space->e;
#endif

1098
  int rebuild = 0;
1099

1100
1101
1102
1103
1104
  /* Un-skip the density tasks involved with this cell. */
  for (struct link *l = c->density; l != NULL; l = l->next) {
    struct task *t = l->t;
    const struct cell *ci = t->ci;
    const struct cell *cj = t->cj;
1105
    scheduler_activate(s, t);
1106
1107
1108
1109
1110

    /* Set the correct sorting flags */
    if (t->type == task_type_pair) {
      if (!(ci->sorted & (1 << t->flags))) {
        atomic_or(&ci->sorts->flags, (1 << t->flags));
1111
        scheduler_activate(s, ci->sorts);
1112
1113
1114
      }
      if (!(cj->sorted & (1 << t->flags))) {
        atomic_or(&cj->sorts->flags, (1 << t->flags));
1115
        scheduler_activate(s, cj->sorts);
1116
1117
1118
1119
1120
1121
1122
1123
1124
      }
    }

    /* Check whether there was too much particle motion */
    if (t->type == task_type_pair || t->type == task_type_sub_pair) {
      if (t->tight &&
          (max(ci->h_max, cj->h_max) + ci->dx_max + cj->dx_max > cj->dmin ||
           ci->dx_max > space_maxreldx * ci->h_max ||
           cj->dx_max > space_maxreldx * cj->h_max))
1125
        rebuild = 1;
1126
1127

#ifdef WITH_MPI
1128
      /* Activate the send/recv flags. */
1129
      if (ci->nodeID != engine_rank) {
1130
1131

        /* Activate the tasks to recv foreign cell ci's data. */
1132
        scheduler_activate(s, ci->recv_xv);
1133
1134
1135
1136
        if (cell_is_active(ci, e)) {
          scheduler_activate(s, ci->recv_rho);
          scheduler_activate(s, ci->recv_ti);
        }
1137
1138
1139
1140

        /* Look for the local cell cj's send tasks. */
        struct link *l = NULL;
        for (l = cj->send_xv; l != NULL && l->t->cj->nodeID != ci->nodeID;
1141
1142
             l = l->next)
          ;
1143
        if (l == NULL) error("Missing link to send_xv task.");
1144
        scheduler_activate(s, l->t);
Matthieu Schaller's avatar
Matthieu Schaller committed
1145

Matthieu Schaller's avatar
Matthieu Schaller committed
1146
1147
1148
1149
        if (cj->super->drift)
          scheduler_activate(s, cj->super->drift);
        else
          error("Drift task missing !");
1150

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
        if (cell_is_active(cj, e)) {
          for (l = cj->send_rho; l != NULL && l->t->cj->nodeID != ci->nodeID;
               l = l->next)
            ;
          if (l == NULL) error("Missing link to send_rho task.");
          scheduler_activate(s, l->t);

          for (l = cj->send_ti; l != NULL && l->t->cj->nodeID != ci->nodeID;
               l = l->next)
            ;
          if (l == NULL) error("Missing link to send_ti task.");
          scheduler_activate(s, l->t);
        }
1164

1165
      } else if (cj->nodeID != engine_rank) {
1166
1167

        /* Activate the tasks to recv foreign cell cj's data. */
1168
        scheduler_activate(s, cj->recv_xv);
1169
1170
1171
1172
        if (cell_is_active(cj, e)) {
          scheduler_activate(s, cj->recv_rho);
          scheduler_activate(s, cj->recv_ti);
        }
Matthieu Schaller's avatar
Matthieu Schaller committed
1173

1174
1175
1176
        /* Look for the local cell ci's send tasks. */
        struct link *l = NULL;
        for (l = ci->send_xv; l != NULL && l->t->cj->nodeID != cj->nodeID;
1177
1178
             l = l->next)
          ;
1179
        if (l == NULL) error("Missing link to send_xv task.");
1180
        scheduler_activate(s, l->t);
Matthieu Schaller's avatar
Matthieu Schaller committed
1181

Matthieu Schaller's avatar
Matthieu Schaller committed
1182
1183
1184
1185
        if (ci->super->drift)
          scheduler_activate(s, ci->super->drift);
        else
          error("Drift task missing !");
1186

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
        if (cell_is_active(ci, e)) {
          for (l = ci->send_rho; l != NULL && l->t->cj->nodeID != cj->nodeID;
               l = l->next)
            ;
          if (l == NULL) error("Missing link to send_rho task.");
          scheduler_activate(s, l->t);

          for (l = ci->send_ti; l != NULL && l->t->cj->nodeID != cj->nodeID;
               l = l->next)
            ;
          if (l == NULL) error("Missing link to send_ti task.");
          scheduler_activate(s, l->t);
        }
Matthieu Schaller's avatar