cell.c 31.1 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "error.h"
53
#include "gravity.h"
54
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
55
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
56
#include "memswap.h"
57
#include "minmax.h"
58
#include "scheduler.h"
59
60
#include "space.h"
#include "timers.h"
61

62
63
64
/* Global variables. */
int cell_next_tag = 0;

65
66
67
68
69
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
70
int cell_getsize(struct cell *c) {
71

Pedro Gonnet's avatar
Pedro Gonnet committed
72
73
  /* Number of cells in this subtree. */
  int count = 1;
74

75
76
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
77
    for (int k = 0; k < 8; k++)
78
79
80
81
82
83
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
int cell_pack(struct cell *c, struct pcell *pc) {

#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
  pc->h_max = c->h_max;
  pc->ti_end_min = c->ti_end_min;
  pc->ti_end_max = c->ti_end_max;
  pc->count = c->count;
  pc->gcount = c->gcount;
  pc->scount = c->scount;
  c->tag = pc->tag = atomic_inc(&cell_next_tag) % cell_max_tag;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
      count += cell_pack(c->progeny[k], &pc[count]);
    } else
      pc->progeny[k] = -1;

  /* Return the number of packed cells used. */
  c->pcell_size = count;
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

125
/**
126
127
128
129
130
131
132
133
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
134
135
int cell_unpack(struct pcell *pc, struct cell *c, struct space *s) {

136
137
#ifdef WITH_MPI

138
139
  /* Unpack the current pcell. */
  c->h_max = pc->h_max;
140
141
  c->ti_end_min = pc->ti_end_min;
  c->ti_end_max = pc->ti_end_max;
142
  c->count = pc->count;
143
  c->gcount = pc->gcount;
144
  c->scount = pc->scount;
145
  c->tag = pc->tag;
Matthieu Schaller's avatar
Matthieu Schaller committed
146

147
148
  /* Number of new cells created. */
  int count = 1;
149
150

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
151
  for (int k = 0; k < 8; k++)
152
    if (pc->progeny[k] >= 0) {
Pedro Gonnet's avatar
Pedro Gonnet committed
153
      struct cell *temp = space_getcell(s);
154
      temp->count = 0;
155
      temp->gcount = 0;
156
      temp->scount = 0;
157
158
159
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
160
161
162
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
163
      temp->dmin = c->dmin / 2;
164
165
166
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
167
168
      temp->depth = c->depth + 1;
      temp->split = 0;
169
      temp->dx_max = 0.f;
170
171
172
173
174
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
      count += cell_unpack(&pc[pc->progeny[k]], temp, s);
175
176
    }

177
  /* Return the total number of unpacked cells. */
178
  c->pcell_size = count;
179
  return count;
180
181
182
183
184

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
185
}
186

187
/**
188
 * @brief Link the cells recursively to the given #part array.
189
190
191
192
193
194
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
195
int cell_link_parts(struct cell *c, struct part *parts) {
196

197
198
199
  c->parts = parts;

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
200
201
202
203
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
204
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
Pedro Gonnet's avatar
Pedro Gonnet committed
205
206
    }
  }
207

208
  /* Return the total number of linked particles. */
209
210
  return c->count;
}
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/**
 * @brief Link the cells recursively to the given #gpart array.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_gparts(struct cell *c, struct gpart *gparts) {

  c->gparts = gparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->gcount;
}

237
238
239
240
241
242
243
244
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param ti_ends (output) The time information we pack into
 *
 * @return The number of packed cells.
 */
245
246
int cell_pack_ti_ends(struct cell *c, int *ti_ends) {

247
248
#ifdef WITH_MPI

249
250
  /* Pack this cell's data. */
  ti_ends[0] = c->ti_end_min;
251

252
253
254
255
256
257
258
259
260
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_ti_ends(c->progeny[k], &ti_ends[count]);
    }

  /* Return the number of packed values. */
  return count;
261
262
263
264
265

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
266
267
}

268
269
270
271
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
272
 * @param ti_ends The time information to unpack
273
274
275
 *
 * @return The number of cells created.
 */
276
277
int cell_unpack_ti_ends(struct cell *c, int *ti_ends) {

278
279
#ifdef WITH_MPI

280
281
  /* Unpack this cell's data. */
  c->ti_end_min = ti_ends[0];
282

283
284
285
286
287
288
289
290
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_ti_ends(c->progeny[k], &ti_ends[count]);
    }

  /* Return the number of packed values. */
291
  return count;
292
293
294
295
296

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
297
}
298

299
/**
300
 * @brief Lock a cell for access to its array of #part and hold its parents.
301
302
 *
 * @param c The #cell.
303
 * @return 0 on success, 1 on failure
304
 */
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->hold || lock_trylock(&c->lock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->hold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
327
  struct cell *finger;
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->lock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->hold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->lock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
350
351
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
352
      atomic_dec(&finger2->hold);
353
354
355
356
357
358
359
360
361
362

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

363
364
365
366
367
368
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->ghold || lock_trylock(&c->glock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->ghold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
391
  struct cell *finger;
392
393
394
395
396
397
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->glock) != 0) break;

    /* Increment the hold. */
398
    atomic_inc(&finger->ghold);
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

    /* Unlock the cell. */
    if (lock_unlock(&finger->glock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
414
415
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
416
      atomic_dec(&finger2->ghold);
417
418
419
420
421
422
423
424
425

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->shold || lock_trylock(&c->slock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->shold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->slock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->shold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->slock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->shold);

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

491
/**
492
 * @brief Unlock a cell's parents for access to #part array.
493
494
495
 *
 * @param c The #cell.
 */
496
497
498
499
500
501
502
503
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
504
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
505
    atomic_dec(&finger->hold);
506
507
508
509

  TIMER_TOC(timer_locktree);
}

510
511
512
513
514
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
515
516
517
518
519
520
521
522
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
523
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
524
    atomic_dec(&finger->ghold);
525
526
527
528

  TIMER_TOC(timer_locktree);
}

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->shold);

  TIMER_TOC(timer_locktree);
}

548
549
550
551
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
552
553
 * @param parts_offset Offset of the cell parts array relative to the
 *        space's parts array, i.e. c->parts - s->parts.
554
555
 * @param buff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices.
Peter W. Draper's avatar
Peter W. Draper committed
556
557
 * @param gbuff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices for the gparts.
558
 */
559
560
void cell_split(struct cell *c, ptrdiff_t parts_offset, struct cell_buff *buff,
                struct cell_buff *gbuff) {
561

Pedro Gonnet's avatar
Pedro Gonnet committed
562
  const int count = c->count, gcount = c->gcount;
563
564
565
  struct part *parts = c->parts;
  struct xpart *xparts = c->xparts;
  struct gpart *gparts = c->gparts;
566
567
568
569
570
571
  const double pivot[3] = {c->loc[0] + c->width[0] / 2,
                           c->loc[1] + c->width[1] / 2,
                           c->loc[2] + c->width[2] / 2};
  int bucket_count[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  int bucket_offset[9];

572
573
574
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the buffs are OK. */
  for (int k = 0; k < count; k++) {
575
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
576
        buff[k].x[2] != parts[k].x[2])
577
578
579
      error("Inconsistent buff contents.");
  }
#endif /* SWIFT_DEBUG_CHECKS */
580
581
582

  /* Fill the buffer with the indices. */
  for (int k = 0; k < count; k++) {
583
584
    const int bid = (buff[k].x[0] > pivot[0]) * 4 +
                    (buff[k].x[1] > pivot[1]) * 2 + (buff[k].x[2] > pivot[2]);
585
    bucket_count[bid]++;
586
    buff[k].ind = bid;
587
  }
588

589
590
591
592
593
  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
594
595
  }

596
597
598
599
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
600
      int bid = buff[k].ind;
601
602
603
      if (bid != bucket) {
        struct part part = parts[k];
        struct xpart xpart = xparts[k];
604
        struct cell_buff temp_buff = buff[k];
605
606
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
607
          while (buff[j].ind == bid) {
608
609
610
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
611
612
          memswap(&parts[j], &part, sizeof(struct part));
          memswap(&xparts[j], &xpart, sizeof(struct xpart));
613
614
          memswap(&buff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
615
616
617
        }
        parts[k] = part;
        xparts[k] = xpart;
618
        buff[k] = temp_buff;
619
      }
620
      bucket_count[bid]++;
621
622
623
624
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
625
  for (int k = 0; k < 8; k++) {
626
627
628
    c->progeny[k]->count = bucket_count[k];
    c->progeny[k]->parts = &c->parts[bucket_offset[k]];
    c->progeny[k]->xparts = &c->xparts[bucket_offset[k]];
629
630
631
  }

  /* Re-link the gparts. */
632
633
  if (count > 0 && gcount > 0)
    part_relink_gparts_to_parts(parts, count, parts_offset);
634

635
#ifdef SWIFT_DEBUG_CHECKS
636
  /* Check that the buffs are OK. */
637
  for (int k = 1; k < count; k++) {
638
639
    if (buff[k].ind < buff[k - 1].ind) error("Buff not sorted.");
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
640
        buff[k].x[2] != parts[k].x[2])
641
642
643
      error("Inconsistent buff contents (k=%i).", k);
  }

644
  /* Verify that _all_ the parts have been assigned to a cell. */
645
646
647
648
649
650
651
652
  for (int k = 1; k < 8; k++)
    if (&c->progeny[k - 1]->parts[c->progeny[k - 1]->count] !=
        c->progeny[k]->parts)
      error("Particle sorting failed (internal consistency).");
  if (c->progeny[0]->parts != c->parts)
    error("Particle sorting failed (left edge).");
  if (&c->progeny[7]->parts[c->progeny[7]->count] != &c->parts[count])
    error("Particle sorting failed (right edge).");
653
654

  /* Verify a few sub-cells. */
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
  for (int k = 0; k < c->progeny[0]->count; k++)
    if (c->progeny[0]->parts[k].x[0] > pivot[0] ||
        c->progeny[0]->parts[k].x[1] > pivot[1] ||
        c->progeny[0]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=0).");
  for (int k = 0; k < c->progeny[1]->count; k++)
    if (c->progeny[1]->parts[k].x[0] > pivot[0] ||
        c->progeny[1]->parts[k].x[1] > pivot[1] ||
        c->progeny[1]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=1).");
  for (int k = 0; k < c->progeny[2]->count; k++)
    if (c->progeny[2]->parts[k].x[0] > pivot[0] ||
        c->progeny[2]->parts[k].x[1] <= pivot[1] ||
        c->progeny[2]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=2).");
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
  for (int k = 0; k < c->progeny[3]->count; k++)
    if (c->progeny[3]->parts[k].x[0] > pivot[0] ||
        c->progeny[3]->parts[k].x[1] <= pivot[1] ||
        c->progeny[3]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=3).");
  for (int k = 0; k < c->progeny[4]->count; k++)
    if (c->progeny[4]->parts[k].x[0] <= pivot[0] ||
        c->progeny[4]->parts[k].x[1] > pivot[1] ||
        c->progeny[4]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=4).");
  for (int k = 0; k < c->progeny[5]->count; k++)
    if (c->progeny[5]->parts[k].x[0] <= pivot[0] ||
        c->progeny[5]->parts[k].x[1] > pivot[1] ||
        c->progeny[5]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=5).");
  for (int k = 0; k < c->progeny[6]->count; k++)
    if (c->progeny[6]->parts[k].x[0] <= pivot[0] ||
        c->progeny[6]->parts[k].x[1] <= pivot[1] ||
        c->progeny[6]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=6).");
  for (int k = 0; k < c->progeny[7]->count; k++)
    if (c->progeny[7]->parts[k].x[0] <= pivot[0] ||
        c->progeny[7]->parts[k].x[1] <= pivot[1] ||
        c->progeny[7]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=7).");
695
#endif
696
697

  /* Now do the same song and dance for the gparts. */
698
699
700
701
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < gcount; k++) {
702
703
    const int bid = (gbuff[k].x[0] > pivot[0]) * 4 +
                    (gbuff[k].x[1] > pivot[1]) * 2 + (gbuff[k].x[2] > pivot[2]);
704
    bucket_count[bid]++;
705
    gbuff[k].ind = bid;
706
  }
707
708
709
710
711
712

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
713
714
  }

715
716
717
718
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
719
      int bid = gbuff[k].ind;
720
721
      if (bid != bucket) {
        struct gpart gpart = gparts[k];
722
        struct cell_buff temp_buff = gbuff[k];
723
724
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
725
          while (gbuff[j].ind == bid) {
726
727
728
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
729
          memswap(&gparts[j], &gpart, sizeof(struct gpart));
730
731
          memswap(&gbuff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
732
733
        }
        gparts[k] = gpart;
734
        gbuff[k] = temp_buff;
735
      }
736
      bucket_count[bid]++;
737
738
739
740
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
741
  for (int k = 0; k < 8; k++) {
742
743
    c->progeny[k]->gcount = bucket_count[k];
    c->progeny[k]->gparts = &c->gparts[bucket_offset[k]];
744
745
746
  }

  /* Re-link the parts. */
747
  if (count > 0 && gcount > 0)
748
    part_relink_parts_to_gparts(gparts, gcount, parts - parts_offset);
749
}
750

751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
/**
 * @brief Sanitizes the smoothing length values of cells by setting large
 * outliers to more sensible values.
 *
 * We compute the mean and standard deviation of the smoothing lengths in
 * logarithmic space and limit values to mean + 4 sigma.
 *
 * @param c The cell.
 */
void cell_sanitize(struct cell *c) {

  const int count = c->count;
  struct part *parts = c->parts;

  /* First collect some statistics */
  float h_mean = 0.f, h_mean2 = 0.f;
  float h_min = FLT_MAX, h_max = 0.f;
  for (int i = 0; i < count; ++i) {

770
    const float h = logf(parts[i].h);
771
772
773
774
775
776
777
778
    h_mean += h;
    h_mean2 += h * h;
    h_max = max(h_max, h);
    h_min = min(h_min, h);
  }
  h_mean /= count;
  h_mean2 /= count;
  const float h_var = h_mean2 - h_mean * h_mean;
779
  const float h_std = (h_var > 0.f) ? sqrtf(h_var) : 0.1f * h_mean;
780
781

  /* Choose a cut */
782
  const float h_limit = expf(h_mean + 4.f * h_std);
783
784

  /* Be verbose this is not innocuous */
785
786
  message("Cell properties: h_min= %f h_max= %f geometric mean= %f.",
          expf(h_min), expf(h_max), expf(h_mean));
787
788
789

  if (c->h_max > h_limit) {

790
    message("Smoothing lengths will be limited to (mean + 4sigma)= %f.",
791
792
793
794
795
796
            h_limit);

    /* Apply the cut */
    for (int i = 0; i < count; ++i) parts->h = min(parts[i].h, h_limit);

    c->h_max = h_limit;
797
798
799
800

  } else {

    message("Smoothing lengths will not be limited.");
801
802
803
  }
}

804
/**
805
 * @brief Converts hydro quantities to a valid state after the initial density
806
 * calculation
807
808
809
810
811
812
813
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_convert_hydro(struct cell *c, void *data) {

  struct part *p = c->parts;
814
815

  for (int i = 0; i < c->count; ++i) {
816
817
818
819
    hydro_convert_quantities(&p[i]);
  }
}

Matthieu Schaller's avatar
Matthieu Schaller committed
820
821
822
823
824
825
/**
 * @brief Cleans the links in a given cell.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
826
void cell_clean_links(struct cell *c, void *data) {
Matthieu Schaller's avatar
Matthieu Schaller committed
827
  c->density = NULL;
828
  c->gradient = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
829
  c->force = NULL;
830
  c->grav = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
831
}
832

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/**
 * @brief Checks that a cell is at the current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_drift_point(struct cell *c, void *data) {

  const int ti_current = *(int *)data;

  if (c->ti_old != ti_current)
    error("Cell in an incorrect time-zone! c->ti_old=%d ti_current=%d",
          c->ti_old, ti_current);
}

850
851
852
853
854
855
856
857
858
859
860
861
/**
 * @brief Checks whether the cells are direct neighbours ot not. Both cells have
 * to be of the same size
 *
 * @param ci First #cell.
 * @param cj Second #cell.
 *
 * @todo Deal with periodicity.
 */
int cell_are_neighbours(const struct cell *restrict ci,
                        const struct cell *restrict cj) {

Matthieu Schaller's avatar
Matthieu Schaller committed
862
#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
863
  if (ci->width[0] != cj->width[0]) error("Cells of different size !");
864
865
866
#endif

  /* Maximum allowed distance */
867
868
  const double min_dist =
      1.2 * ci->width[0]; /* 1.2 accounts for rounding errors */
869
870
871
872
873

  /* (Manhattan) Distance between the cells */
  for (int k = 0; k < 3; k++) {
    const double center_i = ci->loc[k];
    const double center_j = cj->loc[k];
874
    if (fabs(center_i - center_j) > min_dist) return 0;
875
876
877
878
879
  }

  return 1;
}

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
/**
 * @brief Computes the multi-pole brutally and compare to the
 * recursively computed one.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_check_multipole(struct cell *c, void *data) {

  struct multipole ma;

  if (c->gcount > 0) {

    /* Brute-force calculation */
    multipole_init(&ma, c->gparts, c->gcount);

    /* Compare with recursive one */
    struct multipole mb = c->multipole;

    if (fabsf(ma.mass - mb.mass) / fabsf(ma.mass + mb.mass) > 1e-5)
      error("Multipole masses are different (%12.15e vs. %12.15e)", ma.mass,
            mb.mass);

    for (int k = 0; k < 3; ++k)
904
      if (fabs(ma.CoM[k] - mb.CoM[k]) / fabs(ma.CoM[k] + mb.CoM[k]) > 1e-5)
905
906
907
        error("Multipole CoM are different (%12.15e vs. %12.15e", ma.CoM[k],
              mb.CoM[k]);

908
#if const_gravity_multipole_order >= 2
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
    if (fabsf(ma.I_xx - mb.I_xx) / fabsf(ma.I_xx + mb.I_xx) > 1e-5 &&
        ma.I_xx > 1e-9)
      error("Multipole I_xx are different (%12.15e vs. %12.15e)", ma.I_xx,
            mb.I_xx);
    if (fabsf(ma.I_yy - mb.I_yy) / fabsf(ma.I_yy + mb.I_yy) > 1e-5 &&
        ma.I_yy > 1e-9)
      error("Multipole I_yy are different (%12.15e vs. %12.15e)", ma.I_yy,
            mb.I_yy);
    if (fabsf(ma.I_zz - mb.I_zz) / fabsf(ma.I_zz + mb.I_zz) > 1e-5 &&
        ma.I_zz > 1e-9)
      error("Multipole I_zz are different (%12.15e vs. %12.15e)", ma.I_zz,
            mb.I_zz);
    if (fabsf(ma.I_xy - mb.I_xy) / fabsf(ma.I_xy + mb.I_xy) > 1e-5 &&
        ma.I_xy > 1e-9)
      error("Multipole I_xy are different (%12.15e vs. %12.15e)", ma.I_xy,
            mb.I_xy);
    if (fabsf(ma.I_xz - mb.I_xz) / fabsf(ma.I_xz + mb.I_xz) > 1e-5 &&
        ma.I_xz > 1e-9)
      error("Multipole I_xz are different (%12.15e vs. %12.15e)", ma.I_xz,
            mb.I_xz);
    if (fabsf(ma.I_yz - mb.I_yz) / fabsf(ma.I_yz + mb.I_yz) > 1e-5 &&
        ma.I_yz > 1e-9)
      error("Multipole I_yz are different (%12.15e vs. %12.15e)", ma.I_yz,
            mb.I_yz);
933
#endif
934
  }
935
936
}

937
/**
938
 * @brief Frees up the memory allocated for this #cell.
939
 *
940
 * @param c The #cell.
941
 */
942
943
944
945
946
947
948
void cell_clean(struct cell *c) {

  free(c->sort);

  /* Recurse */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k]) cell_clean(c->progeny[k]);
949
}
950
951
952
953
954

/**
 * @brief Checks whether a given cell needs drifting or not.
 *
 * @param c the #cell.
955
 * @param e The #engine (holding current time information).
956
957
958
 *
 * @return 1 If the cell needs drifting, 0 otherwise.
 */
959
int cell_is_drift_needed(struct cell *c, const struct engine *e) {
960
961

  /* Do we have at least one active particle in the cell ?*/
962
  if (cell_is_active(c, e)) return 1;
963
964
965
966
967
968
969

  /* Loop over the pair tasks that involve this cell */
  for (struct link *l = c->density; l != NULL; l = l->next) {

    if (l->t->type != task_type_pair && l->t->type != task_type_sub_pair)
      continue;

970
971
972
    /* Is the other cell in the pair active ? */
    if ((l->t->ci == c && cell_is_active(l->t->cj, e)) ||
        (l->t->cj == c && cell_is_active(l->t->ci, e)))
973
      return 1;
974
975
976
977
978
  }

  /* No neighbouring cell has active particles. Drift not necessary */
  return 0;
}
979
980
981
982
983
984

/**
 * @brief Un-skips all the tasks associated with a given cell and checks
 * if the space needs to be rebuilt.
 *
 * @param c the #cell.
Peter W. Draper's avatar
Peter W. Draper committed
985
 * @param s the #scheduler.
986
987
988
 *
 * @return 1 If the space needs rebuilding. 0 otherwise.
 */
989
int cell_unskip_tasks(struct cell *c, struct scheduler *s) {
990
991
992
993
994
995

  /* Un-skip the density tasks involved with this cell. */
  for (struct link *l = c->density; l != NULL; l = l->next) {
    struct task *t = l->t;
    const struct cell *ci = t->ci;
    const struct cell *cj = t->cj;
996
    scheduler_activate(s, t);
997
998
999
1000
1001

    /* Set the correct sorting flags */
    if (t->type == task_type_pair) {
      if (!(ci->sorted & (1 << t->flags))) {
        atomic_or(&ci->sorts->flags, (1 << t->flags));
1002
        scheduler_activate(s, ci->sorts);
1003
1004
1005
      }
      if (!(cj->sorted & (1 << t->flags))) {
        atomic_or(&cj->sorts->flags, (1 << t->flags));
1006
        scheduler_activate(s, cj->sorts);
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
      }
    }

    /* Check whether there was too much particle motion */
    if (t->type == task_type_pair || t->type == task_type_sub_pair) {
      if (t->tight &&
          (max(ci->h_max, cj->h_max) + ci->dx_max + cj->dx_max > cj->dmin ||
           ci->dx_max > space_maxreldx * ci->h_max ||
           cj->dx_max > space_maxreldx * cj->h_max))
        return 1;

#ifdef WITH_MPI
1019
      /* Activate the send/recv flags. */
1020
      if (ci->nodeID != engine_rank) {
1021
1022

        /* Activate the tasks to recv foreign cell ci's data. */
1023
1024
1025
        scheduler_activate(s, ci->recv_xv);
        scheduler_activate(s, ci->recv_rho);
        scheduler_activate(s, ci->recv_ti);
1026
1027
1028
1029

        /* Look for the local cell cj's send tasks. */
        struct link *l = NULL;
        for (l = cj->send_xv; l != NULL && l->t->cj->nodeID != ci->nodeID;
1030
1031
             l = l->next)
          ;
1032
        if (l == NULL) error("Missing link to send_xv task.");
1033
        scheduler_activate(s, l->t);
1034
1035

        for (l = cj->send_rho; l != NULL && l->t->cj->nodeID != ci->nodeID;
1036
1037
             l = l->next)
          ;
1038
        if (l == NULL) error("Missing link to send_rho task.");
1039
        scheduler_activate(s, l->t);
1040
1041

        for (l = cj->send_ti; l != NULL && l->t->cj->nodeID != ci->nodeID;
1042
1043
             l = l->next)
          ;
1044
        if (l == NULL) error("Missing link to send_ti task.");
1045
        scheduler_activate(s, l->t);
1046

1047
      } else if (cj->nodeID != engine_rank) {
1048
1049

        /* Activate the tasks to recv foreign cell cj's data. */
1050
1051
1052
        scheduler_activate(s, cj->recv_xv);
        scheduler_activate(s, cj->recv_rho);
        scheduler_activate(s, cj->recv_ti);
1053
1054
1055
        /* Look for the local cell ci's send tasks. */
        struct link *l = NULL;
        for (l = ci->send_xv; l != NULL && l->t->cj->nodeID != cj->nodeID;
1056
1057
             l = l->next)
          ;
1058
        if (l == NULL) error("Missing link to send_xv task.");
1059
        scheduler_activate(s, l->t);
1060
1061

        for (l = ci->send_rho; l != NULL && l->t->cj->nodeID != cj->nodeID;
1062
1063
             l = l->next)
          ;
1064
        if (l == NULL) error("Missing link to send_rho task.");
1065
        scheduler_activate(s, l->t);
1066
1067

        for (l = ci->send_ti; l != NULL && l->t->cj->nodeID != cj->nodeID;
1068
1069
             l = l->next)
          ;
1070
        if (l == NULL) error("Missing link to send_ti task.");
1071
        scheduler_activate(s, l->t);
1072
1073
1074
1075
1076
1077
      }
#endif
    }
  }

  /* Unskip all the other task types. */
1078
  for (struct link *l = c->gradient; l != NULL; l = l->next)
1079
    scheduler_activate(s, l->t);
1080
  for (struct link *l = c->force; l != NULL; l = l->next)
1081
    scheduler_activate(s, l->t);
1082
  for (struct link *l = c->grav; l != NULL; l = l->next)
1083
1084
1085
1086
1087
1088
1089
    scheduler_activate(s, l->t);
  if (c->extra_ghost != NULL) scheduler_activate(s, c->extra_ghost);
  if (c->ghost != NULL) scheduler_activate(s, c->ghost);
  if (c->init != NULL) scheduler_activate(s, c->init);
  if (c->kick != NULL) scheduler_activate(s, c->kick);
  if (c->cooling != NULL) scheduler_activate(s, c->cooling);
  if (c->sourceterms != NULL) scheduler_activate(s, c->sourceterms);
1090
1091
1092

  return 0;
}
1093

1094
1095
1096
1097
1098
1099
1100
1101
1102
/**
 * @brief Set the super-cell pointers for all cells in a hierarchy.
 *
 * @param c The top-level #cell to play with.
 * @param super Pointer to the deepest cell with tasks in this part of the tree.
 */
void cell_set_super(struct cell *c, struct cell *super) {

  /* Are we in a cell with some kind of self/pair task ? */
1103
  if (super == NULL && c->nr_tasks > 0) super = c;
1104
1105
1106
1107

  /* Set the super-cell */
  c->super = super;

1108
1109
  /* Recurse */
  if (c->split)
1110
1111
1112
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) cell_set_super(c->progeny[k], super);
}