runner.c 57.3 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
 ******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
23

Pedro Gonnet's avatar
Pedro Gonnet committed
24
25
/* Config parameters. */
#include "../config.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
26
27
28
29

/* Some standard headers. */
#include <float.h>
#include <limits.h>
30
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
31

32
33
/* MPI headers. */
#ifdef WITH_MPI
34
#include <mpi.h>
35
36
#endif

37
38
39
/* This object's header. */
#include "runner.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
40
/* Local headers. */
41
#include "active.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
42
#include "approx_math.h"
43
#include "atomic.h"
44
#include "cell.h"
45
#include "const.h"
Stefan Arridge's avatar
Stefan Arridge committed
46
#include "cooling.h"
47
#include "debug.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
48
#include "drift.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
49
#include "engine.h"
50
#include "error.h"
51
52
#include "gravity.h"
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
53
#include "hydro_properties.h"
54
#include "kick.h"
55
#include "minmax.h"
56
#include "runner_doiact_fft.h"
James Willis's avatar
James Willis committed
57
#include "runner_doiact_vec.h"
58
#include "scheduler.h"
59
#include "sort_part.h"
60
#include "sourceterms.h"
61
#include "space.h"
62
#include "stars.h"
63
64
#include "task.h"
#include "timers.h"
65
#include "timestep.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
66

67
/* Import the density loop functions. */
68
69
70
#define FUNCTION density
#include "runner_doiact.h"

71
/* Import the gradient loop functions (if required). */
72
73
74
75
76
77
#ifdef EXTRA_HYDRO_LOOP
#undef FUNCTION
#define FUNCTION gradient
#include "runner_doiact.h"
#endif

78
/* Import the force loop functions. */
79
80
81
82
#undef FUNCTION
#define FUNCTION force
#include "runner_doiact.h"

83
/* Import the gravity loop functions. */
84
#include "runner_doiact_fft.h"
85
#include "runner_doiact_grav.h"
86

Tom Theuns's avatar
Tom Theuns committed
87
/**
Tom Theuns's avatar
Tom Theuns committed
88
 * @brief Perform source terms
Tom Theuns's avatar
Tom Theuns committed
89
90
91
92
93
94
95
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_sourceterms(struct runner *r, struct cell *c, int timer) {
  const int count = c->count;
96
  const double cell_min[3] = {c->loc[0], c->loc[1], c->loc[2]};
Tom Theuns's avatar
Tom Theuns committed
97
  const double cell_width[3] = {c->width[0], c->width[1], c->width[2]};
Tom Theuns's avatar
Tom Theuns committed
98
  struct sourceterms *sourceterms = r->e->sourceterms;
99
  const int dimen = 3;
Tom Theuns's avatar
Tom Theuns committed
100
101
102
103
104
105
106

  TIMER_TIC;

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_sourceterms(r, c->progeny[k], 0);
107
  } else {
Tom Theuns's avatar
Tom Theuns committed
108

109
    if (count > 0) {
Tom Theuns's avatar
Tom Theuns committed
110

111
112
113
114
115
116
      /* do sourceterms in this cell? */
      const int incell =
          sourceterms_test_cell(cell_min, cell_width, sourceterms, dimen);
      if (incell == 1) {
        sourceterms_apply(r, sourceterms, c);
      }
Tom Theuns's avatar
Tom Theuns committed
117
118
    }
  }
Tom Theuns's avatar
Tom Theuns committed
119
120
121
122

  if (timer) TIMER_TOC(timer_dosource);
}

Tom Theuns's avatar
Tom Theuns committed
123
124
125
/**
 * @brief Calculate gravity acceleration from external potential
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
126
127
128
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
Tom Theuns's avatar
Tom Theuns committed
129
 */
130
void runner_do_grav_external(struct runner *r, struct cell *c, int timer) {
Tom Theuns's avatar
Tom Theuns committed
131

Matthieu Schaller's avatar
Matthieu Schaller committed
132
133
  struct gpart *restrict gparts = c->gparts;
  const int gcount = c->gcount;
134
135
136
  const struct engine *e = r->e;
  const struct external_potential *potential = e->external_potential;
  const struct phys_const *constants = e->physical_constants;
137
  const double time = r->e->time;
Matthieu Schaller's avatar
Matthieu Schaller committed
138

139
  TIMER_TIC;
Tom Theuns's avatar
Tom Theuns committed
140

141
  /* Anything to do here? */
142
  if (!cell_is_active(c, e)) return;
143

Tom Theuns's avatar
Tom Theuns committed
144
145
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
146
    for (int k = 0; k < 8; k++)
147
      if (c->progeny[k] != NULL) runner_do_grav_external(r, c->progeny[k], 0);
148
  } else {
149

150
151
    /* Loop over the gparts in this cell. */
    for (int i = 0; i < gcount; i++) {
152

153
154
      /* Get a direct pointer on the part. */
      struct gpart *restrict gp = &gparts[i];
Matthieu Schaller's avatar
Matthieu Schaller committed
155

156
      /* Is this part within the time step? */
157
      if (gpart_is_active(gp, e)) {
158
159
        external_gravity_acceleration(time, potential, constants, gp);
      }
160
    }
161
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
162

163
  if (timer) TIMER_TOC(timer_dograv_external);
Tom Theuns's avatar
Tom Theuns committed
164
165
}

Stefan Arridge's avatar
Stefan Arridge committed
166
/**
167
168
 * @brief Calculate change in thermal state of particles induced
 * by radiative cooling and heating.
Stefan Arridge's avatar
Stefan Arridge committed
169
170
171
172
173
174
175
176
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_cooling(struct runner *r, struct cell *c, int timer) {

  struct part *restrict parts = c->parts;
177
  struct xpart *restrict xparts = c->xparts;
Stefan Arridge's avatar
Stefan Arridge committed
178
  const int count = c->count;
179
180
181
  const struct engine *e = r->e;
  const struct cooling_function_data *cooling_func = e->cooling_func;
  const struct phys_const *constants = e->physical_constants;
182
  const struct unit_system *us = e->internal_units;
183
  const double timeBase = e->timeBase;
Stefan Arridge's avatar
Stefan Arridge committed
184
185
186

  TIMER_TIC;

187
188
189
  /* Anything to do here? */
  if (!cell_is_active(c, e)) return;

Stefan Arridge's avatar
Stefan Arridge committed
190
191
192
193
  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_cooling(r, c->progeny[k], 0);
194
  } else {
Stefan Arridge's avatar
Stefan Arridge committed
195

196
197
    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {
Stefan Arridge's avatar
Stefan Arridge committed
198

199
200
201
      /* Get a direct pointer on the part. */
      struct part *restrict p = &parts[i];
      struct xpart *restrict xp = &xparts[i];
Stefan Arridge's avatar
Stefan Arridge committed
202

203
      if (part_is_active(p, e)) {
204

205
206
        /* Let's cool ! */
        const double dt = get_timestep(p->time_bin, timeBase);
207
208
        cooling_cool_part(constants, us, cooling_func, p, xp, dt);
      }
Stefan Arridge's avatar
Stefan Arridge committed
209
210
211
212
213
214
    }
  }

  if (timer) TIMER_TOC(timer_do_cooling);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
215
216
217
218
219
220
/**
 * @brief Sort the entries in ascending order using QuickSort.
 *
 * @param sort The entries
 * @param N The number of entries.
 */
221
void runner_do_sort_ascending(struct entry *sort, int N) {
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

  struct {
    short int lo, hi;
  } qstack[10];
  int qpos, i, j, lo, hi, imin;
  struct entry temp;
  float pivot;

  /* Sort parts in cell_i in decreasing order with quicksort */
  qstack[0].lo = 0;
  qstack[0].hi = N - 1;
  qpos = 0;
  while (qpos >= 0) {
    lo = qstack[qpos].lo;
    hi = qstack[qpos].hi;
    qpos -= 1;
    if (hi - lo < 15) {
      for (i = lo; i < hi; i++) {
        imin = i;
        for (j = i + 1; j <= hi; j++)
          if (sort[j].d < sort[imin].d) imin = j;
        if (imin != i) {
          temp = sort[imin];
          sort[imin] = sort[i];
          sort[i] = temp;
        }
      }
    } else {
      pivot = sort[(lo + hi) / 2].d;
      i = lo;
      j = hi;
      while (i <= j) {
        while (sort[i].d < pivot) i++;
        while (sort[j].d > pivot) j--;
        if (i <= j) {
          if (i < j) {
            temp = sort[i];
            sort[i] = sort[j];
            sort[j] = temp;
          }
          i += 1;
          j -= 1;
        }
      }
      if (j > (lo + hi) / 2) {
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
Pedro Gonnet's avatar
Pedro Gonnet committed
276
        }
277
278
279
280
281
282
283
284
285
286
287
288
      } else {
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
        }
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
      }
Pedro Gonnet's avatar
Pedro Gonnet committed
289
    }
290
291
292
  }
}

Matthieu Schaller's avatar
Matthieu Schaller committed
293
294
295
296
297
298
299
300
/**
 * @brief Recursively checks that the flags are consistent in a cell hierarchy.
 *
 * Debugging function.
 *
 * @param c The #cell to check.
 * @param flags The sorting flags to check.
 */
301
void runner_check_sorts(struct cell *c, int flags) {
Matthieu Schaller's avatar
Matthieu Schaller committed
302
303

#ifdef SWIFT_DEBUG_CHECKS
Pedro Gonnet's avatar
Pedro Gonnet committed
304
  if (flags & ~c->sorted) error("Inconsistent sort flags (downward)!");
305
306
  if (c->split)
    for (int k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
307
      if (c->progeny[k] != NULL) runner_check_sorts(c->progeny[k], c->sorted);
Matthieu Schaller's avatar
Matthieu Schaller committed
308
309
310
#else
  error("Calling debugging code without debugging flag activated.");
#endif
311
312
}

Pedro Gonnet's avatar
Pedro Gonnet committed
313
314
315
316
317
/**
 * @brief Sort the particles in the given cell along all cardinal directions.
 *
 * @param r The #runner.
 * @param c The #cell.
318
 * @param flags Cell flag.
319
320
 * @param cleanup If true, re-build the sorts for the selected flags instead
 *        of just adding them.
321
322
 * @param clock Flag indicating whether to record the timing or not, needed
 *      for recursive calls.
Pedro Gonnet's avatar
Pedro Gonnet committed
323
 */
324
325
void runner_do_sort(struct runner *r, struct cell *c, int flags, int cleanup,
                    int clock) {
326
327
328
329

  struct entry *finger;
  struct entry *fingers[8];
  struct part *parts = c->parts;
330
  struct xpart *xparts = c->xparts;
331
  const int count = c->count;
Matthieu Schaller's avatar
Matthieu Schaller committed
332
  float buff[8];
333

334
  TIMER_TIC;
335
336
337
338
  
  /* We need to do the local sorts plus whatever was requested further up. */
  flags |= c->do_sort;
  if (flags == 0 && !c->do_sub_sort) return;
339
340

  /* Check that the particles have been moved to the current time */
341
  if (flags && !cell_are_part_drifted(c, r->e)) error("Sorting un-drifted cell");
Pedro Gonnet's avatar
Pedro Gonnet committed
342

343
344
345
346
347
#ifdef SWIFT_DEBUG_CHECKS
  /* Make sure the sort flags are consistent (downward). */
  runner_check_sorts(c, c->sorted);

  /* Make sure the sort flags are consistent (upard). */
Pedro Gonnet's avatar
Pedro Gonnet committed
348
349
350
  for (struct cell *finger = c->parent; finger != NULL;
       finger = finger->parent) {
    if (finger->sorted & ~c->sorted) error("Inconsistent sort flags (upward).");
351
352
  }
#endif
353

354
355
  /* Update the sort timer which represents the last time the sorts
     were re-set. */
356
357
  if (c->sorted == 0) c->ti_sort = r->e->ti_current;

358
  /* start by allocating the entry arrays. */
359
360
361
  if (c->sort == NULL) {
    if ((c->sort = (struct entry *)malloc(sizeof(struct entry) * (count + 1) *
                                          13)) == NULL)
362
363
      error("Failed to allocate sort memory.");
  }
364
  struct entry *sort = c->sort;
365
366
367
368
369

  /* Does this cell have any progeny? */
  if (c->split) {

    /* Fill in the gaps within the progeny. */
370
    float dx_max_sort = 0.0f;
371
    float dx_max_sort_old = 0.0f;
372
    for (int k = 0; k < 8; k++) {
373
      if (c->progeny[k] != NULL) {
374
375
376
377
378
        /* Only propagate cleanup if the progeny is stale. */
        runner_do_sort(r, c->progeny[k], flags,
                       cleanup && (c->progeny[k]->dx_max_sort >
                                   space_maxreldx * c->progeny[k]->dmin),
                       0);
379
        dx_max_sort = max(dx_max_sort, c->progeny[k]->dx_max_sort);
380
        dx_max_sort_old = max(dx_max_sort_old, c->progeny[k]->dx_max_sort_old);
381
      }
382
    }
383
384
    c->dx_max_sort = dx_max_sort;
    c->dx_max_sort_old = dx_max_sort_old;
385
386

    /* Loop over the 13 different sort arrays. */
387
    for (int j = 0; j < 13; j++) {
388
389
390
391
392

      /* Has this sort array been flagged? */
      if (!(flags & (1 << j))) continue;

      /* Init the particle index offsets. */
393
      int off[8];
394
395
      off[0] = 0;
      for (int k = 1; k < 8; k++)
396
397
398
399
400
401
        if (c->progeny[k - 1] != NULL)
          off[k] = off[k - 1] + c->progeny[k - 1]->count;
        else
          off[k] = off[k - 1];

      /* Init the entries and indices. */
402
      int inds[8];
403
      for (int k = 0; k < 8; k++) {
404
405
406
407
408
409
410
411
412
413
        inds[k] = k;
        if (c->progeny[k] != NULL && c->progeny[k]->count > 0) {
          fingers[k] = &c->progeny[k]->sort[j * (c->progeny[k]->count + 1)];
          buff[k] = fingers[k]->d;
          off[k] = off[k];
        } else
          buff[k] = FLT_MAX;
      }

      /* Sort the buffer. */
414
415
      for (int i = 0; i < 7; i++)
        for (int k = i + 1; k < 8; k++)
416
          if (buff[inds[k]] < buff[inds[i]]) {
417
            int temp_i = inds[i];
418
419
420
421
422
423
            inds[i] = inds[k];
            inds[k] = temp_i;
          }

      /* For each entry in the new sort list. */
      finger = &sort[j * (count + 1)];
424
      for (int ind = 0; ind < count; ind++) {
425
426
427
428
429
430
431
432
433
434

        /* Copy the minimum into the new sort array. */
        finger[ind].d = buff[inds[0]];
        finger[ind].i = fingers[inds[0]]->i + off[inds[0]];

        /* Update the buffer. */
        fingers[inds[0]] += 1;
        buff[inds[0]] = fingers[inds[0]]->d;

        /* Find the smallest entry. */
435
        for (int k = 1; k < 8 && buff[inds[k]] < buff[inds[k - 1]]; k++) {
436
          int temp_i = inds[k - 1];
437
438
          inds[k - 1] = inds[k];
          inds[k] = temp_i;
Pedro Gonnet's avatar
Pedro Gonnet committed
439
        }
440

441
442
443
444
445
446
447
      } /* Merge. */

      /* Add a sentinel. */
      sort[j * (count + 1) + count].d = FLT_MAX;
      sort[j * (count + 1) + count].i = 0;

      /* Mark as sorted. */
448
      atomic_or(&c->sorted, 1 << j);
449
450
451
452
453
454
455
456

    } /* loop over sort arrays. */

  } /* progeny? */

  /* Otherwise, just sort. */
  else {

457
    /* Reset the sort distance */
458
    if (c->sorted == 0) {
459
460
461
462
463
464
465
466

      /* And the individual sort distances if we are a local cell */
      if (xparts != NULL) {
        for (int k = 0; k < count; k++) {
          xparts[k].x_diff_sort[0] = 0.0f;
          xparts[k].x_diff_sort[1] = 0.0f;
          xparts[k].x_diff_sort[2] = 0.0f;
        }
467
      }
468
      c->dx_max_sort_old = c->dx_max_sort = 0.f;
469
470
    }

471
    /* Fill the sort array. */
472
    for (int k = 0; k < count; k++) {
473
      const double px[3] = {parts[k].x[0], parts[k].x[1], parts[k].x[2]};
474
      for (int j = 0; j < 13; j++)
475
476
        if (flags & (1 << j)) {
          sort[j * (count + 1) + k].i = k;
Matthieu Schaller's avatar
Matthieu Schaller committed
477
478
479
          sort[j * (count + 1) + k].d = px[0] * runner_shift[j][0] +
                                        px[1] * runner_shift[j][1] +
                                        px[2] * runner_shift[j][2];
480
        }
481
    }
482
483

    /* Add the sentinel and sort. */
484
    for (int j = 0; j < 13; j++)
485
486
487
      if (flags & (1 << j)) {
        sort[j * (count + 1) + count].d = FLT_MAX;
        sort[j * (count + 1) + count].i = 0;
488
        runner_do_sort_ascending(&sort[j * (count + 1)], count);
489
        atomic_or(&c->sorted, 1 << j);
490
491
492
      }
  }

493
#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
494
  /* Verify the sorting. */
495
  for (int j = 0; j < 13; j++) {
496
497
    if (!(flags & (1 << j))) continue;
    finger = &sort[j * (count + 1)];
498
    for (int k = 1; k < count; k++) {
499
500
501
502
503
      if (finger[k].d < finger[k - 1].d)
        error("Sorting failed, ascending array.");
      if (finger[k].i >= count) error("Sorting failed, indices borked.");
    }
  }
Pedro Gonnet's avatar
Pedro Gonnet committed
504

505
506
507
508
  /* Make sure the sort flags are consistent (downward). */
  runner_check_sorts(c, flags);

  /* Make sure the sort flags are consistent (upward). */
Pedro Gonnet's avatar
Pedro Gonnet committed
509
510
511
  for (struct cell *finger = c->parent; finger != NULL;
       finger = finger->parent) {
    if (finger->sorted & ~c->sorted) error("Inconsistent sort flags.");
512
  }
513
#endif
514
515
516
517

  if (clock) TIMER_TOC(timer_dosort);
}

518
/**
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
 * @brief Initialize the multipoles before the gravity calculation.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_init_grav(struct runner *r, struct cell *c, int timer) {

  const struct engine *e = r->e;

  TIMER_TIC;

#ifdef SWIFT_DEBUG_CHECKS
  if (!(e->policy & engine_policy_self_gravity))
    error("Grav-init task called outside of self-gravity calculation");
#endif

  /* Anything to do here? */
  if (!cell_is_active(c, e)) return;

  /* Drift the multipole */
  cell_drift_multipole(c, e);
541

542
543
544
545
546
547
548
549
550
551
552
553
554
  /* Reset the gravity acceleration tensors */
  gravity_field_tensors_init(&c->multipole->pot);

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) runner_do_init_grav(r, c->progeny[k], 0);
    }
  }

  if (timer) TIMER_TOC(timer_init_grav);
}

555
/**
556
557
558
559
560
 * @brief Intermediate task after the gradient loop that does final operations
 * on the gradient quantities and optionally slope limits the gradients
 *
 * @param r The runner thread.
 * @param c The cell.
561
 * @param timer Are we timing this ?
562
 */
563
void runner_do_extra_ghost(struct runner *r, struct cell *c, int timer) {
564

565
#ifdef EXTRA_HYDRO_LOOP
566

567
568
  struct part *restrict parts = c->parts;
  const int count = c->count;
569
  const struct engine *e = r->e;
570

571
572
  TIMER_TIC;

573
  /* Anything to do here? */
574
  if (!cell_is_active(c, e)) return;
575

576
577
578
  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
579
      if (c->progeny[k] != NULL) runner_do_extra_ghost(r, c->progeny[k], 0);
580
581
582
583
584
585
586
587
  } else {

    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {

      /* Get a direct pointer on the part. */
      struct part *restrict p = &parts[i];

588
      if (part_is_active(p, e)) {
589
590
591
592
593
594

        /* Get ready for a force calculation */
        hydro_end_gradient(p);
      }
    }
  }
595

596
597
  if (timer) TIMER_TOC(timer_do_extra_ghost);

598
599
#else
  error("SWIFT was not compiled with the extra hydro loop activated.");
600
#endif
601
}
602

603
/**
604
605
 * @brief Intermediate task after the density to check that the smoothing
 * lengths are correct.
606
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
607
 * @param r The runner thread.
608
 * @param c The cell.
609
 * @param timer Are we timing this ?
610
 */
611
void runner_do_ghost(struct runner *r, struct cell *c, int timer) {
612

Matthieu Schaller's avatar
Matthieu Schaller committed
613
614
  struct part *restrict parts = c->parts;
  struct xpart *restrict xparts = c->xparts;
615
  const struct engine *e = r->e;
616
  const struct space *s = e->s;
617
  const float hydro_h_max = e->hydro_properties->h_max;
618
619
620
  const float eps = e->hydro_properties->h_tolerance;
  const float hydro_eta_dim =
      pow_dimension(e->hydro_properties->eta_neighbours);
621
  const int max_smoothing_iter = e->hydro_properties->max_smoothing_iterations;
622
  int redo = 0, count = 0;
623

624
625
  TIMER_TIC;

626
  /* Anything to do here? */
627
  if (!cell_is_active(c, e)) return;
628

629
630
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
631
    for (int k = 0; k < 8; k++)
632
633
      if (c->progeny[k] != NULL) runner_do_ghost(r, c->progeny[k], 0);
  } else {
634

635
    /* Init the list of active particles that have to be updated. */
636
    int *pid = NULL;
637
    if ((pid = malloc(sizeof(int) * c->count)) == NULL)
638
      error("Can't allocate memory for pid.");
639
640
641
642
643
    for (int k = 0; k < c->count; k++)
      if (part_is_active(&parts[k], e)) {
        pid[count] = k;
        ++count;
      }
644

645
646
647
    /* While there are particles that need to be updated... */
    for (int num_reruns = 0; count > 0 && num_reruns < max_smoothing_iter;
         num_reruns++) {
648

649
650
      /* Reset the redo-count. */
      redo = 0;
651

652
      /* Loop over the remaining active parts in this cell. */
653
      for (int i = 0; i < count; i++) {
654

655
656
657
        /* Get a direct pointer on the part. */
        struct part *restrict p = &parts[pid[i]];
        struct xpart *restrict xp = &xparts[pid[i]];
658

659
#ifdef SWIFT_DEBUG_CHECKS
660
        /* Is this part within the timestep? */
661
662
663
        if (!part_is_active(p, e)) error("Ghost applied to inactive particle");
#endif

664
665
666
667
668
        /* Get some useful values */
        const float h_old = p->h;
        const float h_old_dim = pow_dimension(h_old);
        const float h_old_dim_minus_one = pow_dimension_minus_one(h_old);
        float h_new;
669

670
        if (p->density.wcount == 0.f) { /* No neighbours case */
671

672
673
674
          /* Double h and try again */
          h_new = 2.f * h_old;
        } else {
Matthieu Schaller's avatar
Matthieu Schaller committed
675

676
677
          /* Finish the density calculation */
          hydro_end_density(p);
678

679
680
681
682
683
684
685
          /* Compute one step of the Newton-Raphson scheme */
          const float n_sum = p->density.wcount * h_old_dim;
          const float n_target = hydro_eta_dim;
          const float f = n_sum - n_target;
          const float f_prime =
              p->density.wcount_dh * h_old_dim +
              hydro_dimension * p->density.wcount * h_old_dim_minus_one;
686

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
          h_new = h_old - f / f_prime;

#ifdef SWIFT_DEBUG_CHECKS
          if ((f > 0.f && h_new > h_old) || (f < 0.f && h_new < h_old))
            error(
                "Smoothing length correction not going in the right direction");
#endif

          /* Safety check: truncate to the range [ h_old/2 , 2h_old ]. */
          h_new = min(h_new, 2.f * h_old);
          h_new = max(h_new, 0.5f * h_old);
        }

        /* Check whether the particle has an inappropriate smoothing length */
        if (fabsf(h_new - h_old) > eps * h_old) {
702

703
          /* Ok, correct then */
704
          p->h = h_new;
705

706
707
          /* If below the absolute maximum, try again */
          if (p->h < hydro_h_max) {
708

709
710
711
            /* Flag for another round of fun */
            pid[redo] = pid[i];
            redo += 1;
712

713
            /* Re-initialise everything */
714
            hydro_init_part(p, &s->hs);
715
716
717
718
719
720
721

            /* Off we go ! */
            continue;
          } else {

            /* Ok, this particle is a lost cause... */
            p->h = hydro_h_max;
722
723
724
725

            /* Do some damage control if no neighbours at all were found */
            if (p->density.wcount == kernel_root * kernel_norm)
              hydro_part_has_no_neighbours(p, xp);
726
          }
727
        }
728

729
        /* We now have a particle whose smoothing length has converged */
Matthieu Schaller's avatar
Matthieu Schaller committed
730

731
        /* As of here, particle force variables will be set. */
732

733
734
        /* Compute variables required for the force loop */
        hydro_prepare_force(p, xp);
735

736
737
        /* The particle force values are now set.  Do _NOT_
           try to read any particle density variables! */
Matthieu Schaller's avatar
Matthieu Schaller committed
738

739
740
        /* Prepare the particle for the force loop over neighbours */
        hydro_reset_acceleration(p);
741
742
      }

743
744
      /* We now need to treat the particles whose smoothing length had not
       * converged again */
745

746
747
748
      /* Re-set the counter for the next loop (potentially). */
      count = redo;
      if (count > 0) {
749

750
751
        /* Climb up the cell hierarchy. */
        for (struct cell *finger = c; finger != NULL; finger = finger->parent) {
Matthieu Schaller's avatar
Matthieu Schaller committed
752

753
754
          /* Run through this cell's density interactions. */
          for (struct link *l = finger->density; l != NULL; l = l->next) {
755

756
757
758
759
#ifdef SWIFT_DEBUG_CHECKS
            if (l->t->ti_run < r->e->ti_current)
              error("Density task should have been run.");
#endif
Matthieu Schaller's avatar
Matthieu Schaller committed
760

761
762
763
            /* Self-interaction? */
            if (l->t->type == task_type_self)
              runner_doself_subset_density(r, finger, parts, pid, count);
764

765
766
            /* Otherwise, pair interaction? */
            else if (l->t->type == task_type_pair) {
767

768
769
770
771
772
773
774
              /* Left or right? */
              if (l->t->ci == finger)
                runner_dopair_subset_density(r, finger, parts, pid, count,
                                             l->t->cj);
              else
                runner_dopair_subset_density(r, finger, parts, pid, count,
                                             l->t->ci);
775

776
            }
777

778
779
780
781
            /* Otherwise, sub-self interaction? */
            else if (l->t->type == task_type_sub_self)
              runner_dosub_subset_density(r, finger, parts, pid, count, NULL,
                                          -1, 1);
782

783
784
785
786
787
788
789
790
791
792
793
            /* Otherwise, sub-pair interaction? */
            else if (l->t->type == task_type_sub_pair) {

              /* Left or right? */
              if (l->t->ci == finger)
                runner_dosub_subset_density(r, finger, parts, pid, count,
                                            l->t->cj, -1, 1);
              else
                runner_dosub_subset_density(r, finger, parts, pid, count,
                                            l->t->ci, -1, 1);
            }
794
795
796
          }
        }
      }
797
    }
798

799
800
#ifdef SWIFT_DEBUG_CHECKS
    if (count) {
801
      error("Smoothing length failed to converge on %i particles.", count);
802
803
    }
#else
804
    if (count)
805
      error("Smoothing length failed to converge on %i particles.", count);
806
#endif
807

808
809
810
    /* Be clean */
    free(pid);
  }
811

812
  if (timer) TIMER_TOC(timer_do_ghost);
813
814
}

815
/**
816
 * @brief Unskip any tasks associated with active cells.
817
818
 *
 * @param c The cell.
819
 * @param e The engine.
820
 */
821
static void runner_do_unskip(struct cell *c, struct engine *e) {
822

823
824
825
  /* Ignore empty cells. */
  if (c->count == 0 && c->gcount == 0) return;

826
827
  /* Skip inactive cells. */
  if (!cell_is_active(c, e)) return;
828

829
  /* Recurse */
830
831
  if (c->split) {
    for (int k = 0; k < 8; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
832
      if (c->progeny[k] != NULL) {
Matthieu Schaller's avatar
Matthieu Schaller committed
833
        struct cell *cp = c->progeny[k];
834
        runner_do_unskip(cp, e);
835
836
837
      }
    }
  }
838
839

  /* Unskip any active tasks. */
840
841
  const int forcerebuild = cell_unskip_tasks(c, &e->sched);
  if (forcerebuild) atomic_inc(&e->forcerebuild);
842
}
843

844
/**
845
 * @brief Mapper function to unskip active tasks.
846
847
848
849
850
 *
 * @param map_data An array of #cell%s.
 * @param num_elements Chunk size.
 * @param extra_data Pointer to an #engine.
 */
851
852
void runner_do_unskip_mapper(void *map_data, int num_elements,
                             void *extra_data) {
853

854
855
  struct engine *e = (struct engine *)extra_data;
  struct cell *cells = (struct cell *)map_data;
856

857
858
  for (int ind = 0; ind < num_elements; ind++) {
    struct cell *c = &cells[ind];
859
    if (c != NULL) runner_do_unskip(c, e);
860
  }
861
}
862
/**
863
 * @brief Drift all part in a cell.
864
865
866
867
868
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
869
void runner_do_drift_part(struct runner *r, struct cell *c, int timer) {
870

871
  TIMER_TIC;
Matthieu Schaller's avatar
Matthieu Schaller committed
872

873
  cell_drift_part(c, r->e, 0);
874

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
  if (timer) TIMER_TOC(timer_drift_part);
}

/**
 * @brief Drift all gpart in a cell.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
void runner_do_drift_gpart(struct runner *r, struct cell *c, int timer) {

  TIMER_TIC;

  cell_drift_gpart(c, r->e);

  if (timer) TIMER_TOC(timer_drift_gpart);
892
}
893

894
895
896
897
898
899
900
/**
 * @brief Perform the first half-kick on all the active particles in a cell.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
901
void runner_do_kick1(struct runner *r, struct cell *c, int timer) {
902

903
904
905
906
  const struct engine *e = r->e;
  struct part *restrict parts = c->parts;
  struct xpart *restrict xparts = c->xparts;
  struct gpart *restrict gparts = c->gparts;
907
  struct spart *restrict sparts = c->sparts;
908
909
  const int count = c->count;
  const int gcount = c->gcount;
910
  const int scount = c->scount;
911
  const integertime_t ti_current = e->ti_current;
912
  const double timeBase = e->timeBase;
913

914
915
916
  TIMER_TIC;

  /* Anything to do here? */
917
  if (!cell_is_starting(c, e)) return;
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_kick1(r, c->progeny[k], 0);
  } else {

    /* Loop over the parts in this cell. */
    for (int k = 0; k < count; k++) {

      /* Get a handle on the part. */
      struct part *restrict p = &parts[k];
      struct xpart *restrict xp = &xparts[k];

      /* If particle needs to be kicked */
933
      if (part_is_starting(p, e)) {
934
935
936

        const integertime_t ti_step = get_integer_timestep(p->time_bin);
        const integertime_t ti_begin =
937
            get_integer_time_begin(ti_current + 1, p->time_bin);