runner_doiact_vec.c 57.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2016 James Willis (james.s.willis@durham.ac.uk)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* This object's header. */
#include "runner_doiact_vec.h"

26
27
28
/* Local headers. */
#include "active.h"

29
30
31
#ifdef WITH_VECTORIZATION
static const vector kernel_gamma2_vec = FILL_VEC(kernel_gamma2);

James Willis's avatar
James Willis committed
32
33
34
/**
 * @brief Compute the vector remainder interactions from the secondary cache.
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
35
 * @param int_cache (return) secondary #cache of interactions between two
James Willis's avatar
James Willis committed
36
 * particles.
James Willis's avatar
James Willis committed
37
 * @param icount Interaction count.
Matthieu Schaller's avatar
Matthieu Schaller committed
38
 * @param rhoSum (return) #vector holding the cumulative sum of the density
James Willis's avatar
James Willis committed
39
 * update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
40
 * @param rho_dhSum (return) #vector holding the cumulative sum of the density
James Willis's avatar
James Willis committed
41
 * gradient update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
42
 * @param wcountSum (return) #vector holding the cumulative sum of the wcount
James Willis's avatar
James Willis committed
43
 * update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
44
 * @param wcount_dhSum (return) #vector holding the cumulative sum of the wcount
James Willis's avatar
James Willis committed
45
 * gradient update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
46
 * @param div_vSum (return) #vector holding the cumulative sum of the divergence
James Willis's avatar
James Willis committed
47
 * update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
48
 * @param curlvxSum (return) #vector holding the cumulative sum of the curl of
James Willis's avatar
James Willis committed
49
 * vx update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
50
 * @param curlvySum (return) #vector holding the cumulative sum of the curl of
James Willis's avatar
James Willis committed
51
 * vy update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
52
 * @param curlvzSum (return) #vector holding the cumulative sum of the curl of
James Willis's avatar
James Willis committed
53
 * vz update on pi.
James Willis's avatar
James Willis committed
54
55
56
57
 * @param v_hi_inv #vector of 1/h for pi.
 * @param v_vix #vector of x velocity of pi.
 * @param v_viy #vector of y velocity of pi.
 * @param v_viz #vector of z velocity of pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
58
 * @param icount_align (return) Interaction count after the remainder
James Willis's avatar
James Willis committed
59
 * interactions have been performed, should be a multiple of the vector length.
James Willis's avatar
James Willis committed
60
 */
James Willis's avatar
James Willis committed
61
__attribute__((always_inline)) INLINE static void calcRemInteractions(
Matthieu Schaller's avatar
Matthieu Schaller committed
62
63
64
65
66
    struct c2_cache *const int_cache, const int icount, vector *rhoSum,
    vector *rho_dhSum, vector *wcountSum, vector *wcount_dhSum,
    vector *div_vSum, vector *curlvxSum, vector *curlvySum, vector *curlvzSum,
    vector v_hi_inv, vector v_vix, vector v_viy, vector v_viz,
    int *icount_align) {
67

68
  mask_t int_mask, int_mask2;
James Willis's avatar
James Willis committed
69
70

  /* Work out the number of remainder interactions and pad secondary cache. */
71
72
73
74
75
76
  *icount_align = icount;
  int rem = icount % (NUM_VEC_PROC * VEC_SIZE);
  if (rem != 0) {
    int pad = (NUM_VEC_PROC * VEC_SIZE) - rem;
    *icount_align += pad;

77
    /* Initialise masks to true. */
78
79
    vec_init_mask_true(int_mask);
    vec_init_mask_true(int_mask2);
80

James Willis's avatar
James Willis committed
81
82
83
    /* Pad secondary cache so that there are no contributions in the interaction
     * function. */
    for (int i = icount; i < *icount_align; i++) {
84
85
86
87
88
89
90
91
      int_cache->mq[i] = 0.f;
      int_cache->r2q[i] = 1.f;
      int_cache->dxq[i] = 0.f;
      int_cache->dyq[i] = 0.f;
      int_cache->dzq[i] = 0.f;
      int_cache->vxq[i] = 0.f;
      int_cache->vyq[i] = 0.f;
      int_cache->vzq[i] = 0.f;
92
93
94
95
    }

    /* Zero parts of mask that represent the padded values.*/
    if (pad < VEC_SIZE) {
James Willis's avatar
James Willis committed
96
      vec_pad_mask(int_mask2, pad);
James Willis's avatar
James Willis committed
97
    } else {
James Willis's avatar
James Willis committed
98
      vec_pad_mask(int_mask, VEC_SIZE - rem);
99
      vec_zero_mask(int_mask2);
100
101
    }

James Willis's avatar
James Willis committed
102
103
    /* Perform remainder interaction and remove remainder from aligned
     * interaction count. */
104
    *icount_align = icount - rem;
James Willis's avatar
James Willis committed
105
106
107
108
109
110
    runner_iact_nonsym_2_vec_density(
        &int_cache->r2q[*icount_align], &int_cache->dxq[*icount_align],
        &int_cache->dyq[*icount_align], &int_cache->dzq[*icount_align],
        v_hi_inv, v_vix, v_viy, v_viz, &int_cache->vxq[*icount_align],
        &int_cache->vyq[*icount_align], &int_cache->vzq[*icount_align],
        &int_cache->mq[*icount_align], rhoSum, rho_dhSum, wcountSum,
James Willis's avatar
James Willis committed
111
112
        wcount_dhSum, div_vSum, curlvxSum, curlvySum, curlvzSum, int_mask,
        int_mask2, 1);
113
114
115
  }
}

James Willis's avatar
James Willis committed
116
/**
James Willis's avatar
James Willis committed
117
118
 * @brief Left-packs the values needed by an interaction into the secondary
 * cache (Supports AVX, AVX2 and AVX512 instruction sets).
James Willis's avatar
James Willis committed
119
120
 *
 * @param mask Contains which particles need to interact.
Matthieu Schaller's avatar
Matthieu Schaller committed
121
 * @param pjd Index of the particle to store into.
James Willis's avatar
James Willis committed
122
123
124
125
126
 * @param v_r2 #vector of the separation between two particles squared.
 * @param v_dx #vector of the x separation between two particles.
 * @param v_dy #vector of the y separation between two particles.
 * @param v_dz #vector of the z separation between two particles.
 * @param cell_cache #cache of all particles in the cell.
Matthieu Schaller's avatar
Matthieu Schaller committed
127
 * @param int_cache (return) secondary #cache of interactions between two
James Willis's avatar
James Willis committed
128
 * particles.
James Willis's avatar
James Willis committed
129
130
 * @param icount Interaction count.
 * @param rhoSum #vector holding the cumulative sum of the density update on pi.
James Willis's avatar
James Willis committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
 * @param rho_dhSum #vector holding the cumulative sum of the density gradient
 * update on pi.
 * @param wcountSum #vector holding the cumulative sum of the wcount update on
 * pi.
 * @param wcount_dhSum #vector holding the cumulative sum of the wcount gradient
 * update on pi.
 * @param div_vSum #vector holding the cumulative sum of the divergence update
 * on pi.
 * @param curlvxSum #vector holding the cumulative sum of the curl of vx update
 * on pi.
 * @param curlvySum #vector holding the cumulative sum of the curl of vy update
 * on pi.
 * @param curlvzSum #vector holding the cumulative sum of the curl of vz update
 * on pi.
James Willis's avatar
James Willis committed
145
146
147
148
149
 * @param v_hi_inv #vector of 1/h for pi.
 * @param v_vix #vector of x velocity of pi.
 * @param v_viy #vector of y velocity of pi.
 * @param v_viz #vector of z velocity of pi.
 */
James Willis's avatar
James Willis committed
150
__attribute__((always_inline)) INLINE static void storeInteractions(
151
    const int mask, const int pjd, vector *v_r2, vector *v_dx, vector *v_dy,
James Willis's avatar
James Willis committed
152
153
154
155
156
    vector *v_dz, const struct cache *const cell_cache,
    struct c2_cache *const int_cache, int *icount, vector *rhoSum,
    vector *rho_dhSum, vector *wcountSum, vector *wcount_dhSum,
    vector *div_vSum, vector *curlvxSum, vector *curlvySum, vector *curlvzSum,
    vector v_hi_inv, vector v_vix, vector v_viy, vector v_viz) {
James Willis's avatar
James Willis committed
157
158
159

/* Left-pack values needed into the secondary cache using the interaction mask.
 */
160
#if defined(HAVE_AVX2) || defined(HAVE_AVX512_F)
161
162
163
164
165
166
167
  mask_t packed_mask;
  VEC_FORM_PACKED_MASK(mask, packed_mask);

  VEC_LEFT_PACK(v_r2->v, packed_mask, &int_cache->r2q[*icount]);
  VEC_LEFT_PACK(v_dx->v, packed_mask, &int_cache->dxq[*icount]);
  VEC_LEFT_PACK(v_dy->v, packed_mask, &int_cache->dyq[*icount]);
  VEC_LEFT_PACK(v_dz->v, packed_mask, &int_cache->dzq[*icount]);
James Willis's avatar
James Willis committed
168
169
170
171
172
173
174
175
  VEC_LEFT_PACK(vec_load(&cell_cache->m[pjd]), packed_mask,
                &int_cache->mq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vx[pjd]), packed_mask,
                &int_cache->vxq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vy[pjd]), packed_mask,
                &int_cache->vyq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vz[pjd]), packed_mask,
                &int_cache->vzq[*icount]);
176
177
178

  /* Increment interaction count by number of bits set in mask. */
  (*icount) += __builtin_popcount(mask);
179
#else
James Willis's avatar
James Willis committed
180
  /* Quicker to do it serially in AVX rather than use intrinsics. */
James Willis's avatar
James Willis committed
181
  for (int bit_index = 0; bit_index < VEC_SIZE; bit_index++) {
182
183
    if (mask & (1 << bit_index)) {
      /* Add this interaction to the queue. */
184
185
186
187
188
189
190
191
      int_cache->r2q[*icount] = v_r2->f[bit_index];
      int_cache->dxq[*icount] = v_dx->f[bit_index];
      int_cache->dyq[*icount] = v_dy->f[bit_index];
      int_cache->dzq[*icount] = v_dz->f[bit_index];
      int_cache->mq[*icount] = cell_cache->m[pjd + bit_index];
      int_cache->vxq[*icount] = cell_cache->vx[pjd + bit_index];
      int_cache->vyq[*icount] = cell_cache->vy[pjd + bit_index];
      int_cache->vzq[*icount] = cell_cache->vz[pjd + bit_index];
192
193
194
195

      (*icount)++;
    }
  }
196

James Willis's avatar
James Willis committed
197
198
#endif /* defined(HAVE_AVX2) || defined(HAVE_AVX512_F) */

James Willis's avatar
James Willis committed
199
  /* Flush the c2 cache if it has reached capacity. */
James Willis's avatar
James Willis committed
200
  if (*icount >= (C2_CACHE_SIZE - (NUM_VEC_PROC * VEC_SIZE))) {
201
202

    int icount_align = *icount;
James Willis's avatar
James Willis committed
203

James Willis's avatar
James Willis committed
204
    /* Peform remainder interactions. */
Matthieu Schaller's avatar
Matthieu Schaller committed
205
206
207
    calcRemInteractions(int_cache, *icount, rhoSum, rho_dhSum, wcountSum,
                        wcount_dhSum, div_vSum, curlvxSum, curlvySum, curlvzSum,
                        v_hi_inv, v_vix, v_viy, v_viz, &icount_align);
208

209
    mask_t int_mask, int_mask2;
210
211
    vec_init_mask_true(int_mask);
    vec_init_mask_true(int_mask2);
James Willis's avatar
James Willis committed
212
213

    /* Perform interactions. */
214
    for (int j = 0; j < icount_align; j += (NUM_VEC_PROC * VEC_SIZE)) {
James Willis's avatar
James Willis committed
215
      runner_iact_nonsym_2_vec_density(
216
217
218
219
220
          &int_cache->r2q[j], &int_cache->dxq[j], &int_cache->dyq[j],
          &int_cache->dzq[j], v_hi_inv, v_vix, v_viy, v_viz, &int_cache->vxq[j],
          &int_cache->vyq[j], &int_cache->vzq[j], &int_cache->mq[j], rhoSum,
          rho_dhSum, wcountSum, wcount_dhSum, div_vSum, curlvxSum, curlvySum,
          curlvzSum, int_mask, int_mask2, 0);
221
    }
James Willis's avatar
James Willis committed
222
223

    /* Reset interaction count. */
224
225
226
    *icount = 0;
  }
}
227

228
/**
229
230
 * @brief Populates the arrays max_index_i and max_index_j with the maximum
 * indices of
James Willis's avatar
James Willis committed
231
232
233
 * particles into their neighbouring cells. Also finds the first pi that
 * interacts with any particle in cj and the last pj that interacts with any
 * particle in ci.
234
 *
James Willis's avatar
James Willis committed
235
236
237
238
239
240
 * @param ci #cell pointer to ci
 * @param cj #cell pointer to cj
 * @param sort_i #entry array for particle distance in ci
 * @param sort_j #entry array for particle distance in cj
 * @param dx_max maximum particle movement allowed in cell
 * @param rshift cutoff shift
241
242
243
244
 * @param hi_max Maximal smoothing length in cell ci
 * @param hj_max Maximal smoothing length in cell cj
 * @param di_max Maximal position on the axis that can interact in cell ci
 * @param dj_min Minimal position on the axis that can interact in cell ci
245
 * @param max_index_i array to hold the maximum distances of pi particles into
246
 * #cell cj
247
 * @param max_index_j array to hold the maximum distances of pj particles into
248
 * #cell cj
James Willis's avatar
James Willis committed
249
250
 * @param init_pi first pi to interact with a pj particle
 * @param init_pj last pj to interact with a pi particle
251
 * @param max_active_bin The largest time-bin active during this step.
James Willis's avatar
James Willis committed
252
 */
253
__attribute__((always_inline)) INLINE static void populate_max_index_no_cache(
James Willis's avatar
James Willis committed
254
255
    const struct cell *ci, const struct cell *cj,
    const struct entry *restrict sort_i, const struct entry *restrict sort_j,
256
257
    const float dx_max, const float rshift, const double hi_max,
    const double hj_max, const double di_max, const double dj_min,
258
    int *max_index_i, int *max_index_j, int *init_pi, int *init_pj,
259
    const timebin_t max_active_bin) {
260

261
262
  const struct part *restrict parts_i = ci->parts;
  const struct part *restrict parts_j = cj->parts;
263
264

  int first_pi = 0, last_pj = cj->count - 1;
265
  int temp;
266

James Willis's avatar
James Willis committed
267
268
  /* Find the leftmost active particle in cell i that interacts with any
   * particle in cell j. */
269
  first_pi = ci->count;
270
  int active_id = first_pi - 1;
271
  while (first_pi > 0 && sort_i[first_pi - 1].d + dx_max + hi_max > dj_min) {
272
    first_pi--;
273
    /* Store the index of the particle if it is active. */
James Willis's avatar
James Willis committed
274
275
    if (part_is_active_no_debug(&parts_i[sort_i[first_pi].i], max_active_bin))
      active_id = first_pi;
276
  }
James Willis's avatar
James Willis committed
277

278
279
  /* Set the first active pi in range of any particle in cell j. */
  first_pi = active_id;
280

281
  /* Find the maximum index into cell j for each particle in range in cell i. */
James Willis's avatar
James Willis committed
282
  if (first_pi < ci->count) {
283

284
285
    /* Start from the first particle in cell j. */
    temp = 0;
286

287
    const struct part *pi = &parts_i[sort_i[first_pi].i];
288
289
    const float first_di =
        sort_i[first_pi].d + pi->h * kernel_gamma + dx_max - rshift;
290

291
    /* Loop through particles in cell j until they are not in range of pi. */
292
    while (temp < cj->count && first_di > sort_j[temp].d) temp++;
293

294
    max_index_i[first_pi] = temp;
295

296
    /* Populate max_index_i for remaining particles that are within range. */
James Willis's avatar
James Willis committed
297
    for (int i = first_pi + 1; i < ci->count; i++) {
298
      temp = max_index_i[i - 1];
299
      pi = &parts_i[sort_i[i].i];
300

301
      const float di = sort_i[i].d + pi->h * kernel_gamma + dx_max - rshift;
302

303
      while (temp < cj->count && di > sort_j[temp].d) temp++;
304

305
      max_index_i[i] = temp;
306
    }
James Willis's avatar
James Willis committed
307
  } else {
308
309
    /* Make sure that max index is set to first particle in cj.*/
    max_index_i[ci->count - 1] = 0;
310
311
  }

James Willis's avatar
James Willis committed
312
313
  /* Find the rightmost active particle in cell j that interacts with any
   * particle in cell i. */
314
  last_pj = -1;
315
  active_id = last_pj;
James Willis's avatar
James Willis committed
316
317
  while (last_pj < cj->count &&
         sort_j[last_pj + 1].d - hj_max - dx_max < di_max) {
318
    last_pj++;
319
    /* Store the index of the particle if it is active. */
James Willis's avatar
James Willis committed
320
321
    if (part_is_active_no_debug(&parts_j[sort_j[last_pj].i], max_active_bin))
      active_id = last_pj;
322
  }
James Willis's avatar
James Willis committed
323

324
  /* Set the last active pj in range of any particle in cell i. */
325
  last_pj = active_id;
Matthieu Schaller's avatar
Matthieu Schaller committed
326

327
  /* Find the maximum index into cell i for each particle in range in cell j. */
328
  if (last_pj >= 0) {
Matthieu Schaller's avatar
Matthieu Schaller committed
329

330
331
    /* Start from the last particle in cell i. */
    temp = ci->count - 1;
332

333
    const struct part *pj = &parts_j[sort_j[last_pj].i];
334
335
    const float last_dj =
        sort_j[last_pj].d - dx_max - pj->h * kernel_gamma + rshift;
336

337
    /* Loop through particles in cell i until they are not in range of pj. */
338
    while (temp > 0 && last_dj < sort_i[temp].d) temp--;
339

340
    max_index_j[last_pj] = temp;
341

342
    /* Populate max_index_j for remaining particles that are within range. */
James Willis's avatar
James Willis committed
343
    for (int i = last_pj - 1; i >= 0; i--) {
344
      temp = max_index_j[i + 1];
345
      pj = &parts_j[sort_j[i].i];
346
      const float dj = sort_j[i].d - dx_max - (pj->h * kernel_gamma) + rshift;
347

348
      while (temp > 0 && dj < sort_i[temp].d) temp--;
349

350
351
      max_index_j[i] = temp;
    }
James Willis's avatar
James Willis committed
352
  } else {
353
    /* Make sure that max index is set to last particle in ci.*/
James Willis's avatar
James Willis committed
354
    max_index_j[0] = ci->count - 1;
355
356
  }

James Willis's avatar
James Willis committed
357
358
  *init_pi = first_pi;
  *init_pj = last_pj;
359
}
James Willis's avatar
James Willis committed
360
#endif /* WITH_VECTORIZATION */
361
362

/**
James Willis's avatar
James Willis committed
363
364
 * @brief Compute the cell self-interaction (non-symmetric) using vector
 * intrinsics with one particle pi at a time.
365
366
367
368
 *
 * @param r The #runner.
 * @param c The #cell.
 */
James Willis's avatar
James Willis committed
369
370
__attribute__((always_inline)) INLINE void runner_doself1_density_vec(
    struct runner *r, struct cell *restrict c) {
371
372

#ifdef WITH_VECTORIZATION
373
  const struct engine *e = r->e;
374
375
376
377
378
379
  struct part *restrict pi;
  int count_align;
  int num_vec_proc = NUM_VEC_PROC;

  struct part *restrict parts = c->parts;
  const int count = c->count;
James Willis's avatar
James Willis committed
380

381
382
  const timebin_t max_active_bin = e->max_active_bin;

383
384
  vector v_hi, v_vix, v_viy, v_viz, v_hig2, v_r2;

James Willis's avatar
James Willis committed
385
  TIMER_TIC
386

387
388
  if (!cell_is_active(c, e)) return;

389
  if (!cell_are_part_drifted(c, e)) error("Interacting undrifted cell.");
390

James Willis's avatar
James Willis committed
391
  /* Get the particle cache from the runner and re-allocate
392
   * the cache if it is not big enough for the cell. */
393
  struct cache *restrict cell_cache = &r->ci_cache;
James Willis's avatar
James Willis committed
394
395
396

  if (cell_cache->count < count) {
    cache_init(cell_cache, count);
397
398
  }

James Willis's avatar
James Willis committed
399
  /* Read the particles from the cell and store them locally in the cache. */
James Willis's avatar
James Willis committed
400
  cache_read_particles(c, cell_cache);
401
402
403
404

  /* Create secondary cache to store particle interactions. */
  struct c2_cache int_cache;
  int icount = 0, icount_align = 0;
405
406
407
408
409
410
411
412

  /* Loop over the particles in the cell. */
  for (int pid = 0; pid < count; pid++) {

    /* Get a pointer to the ith particle. */
    pi = &parts[pid];

    /* Is the ith particle active? */
413
    if (!part_is_active_no_debug(pi, max_active_bin)) continue;
414
415
416
417
418

    vector pix, piy, piz;

    const float hi = cell_cache->h[pid];

James Willis's avatar
James Willis committed
419
    /* Fill particle pi vectors. */
420
421
422
423
424
425
426
427
428
429
430
    pix.v = vec_set1(cell_cache->x[pid]);
    piy.v = vec_set1(cell_cache->y[pid]);
    piz.v = vec_set1(cell_cache->z[pid]);
    v_hi.v = vec_set1(hi);
    v_vix.v = vec_set1(cell_cache->vx[pid]);
    v_viy.v = vec_set1(cell_cache->vy[pid]);
    v_viz.v = vec_set1(cell_cache->vz[pid]);

    const float hig2 = hi * hi * kernel_gamma2;
    v_hig2.v = vec_set1(hig2);

James Willis's avatar
James Willis committed
431
    /* Reset cumulative sums of update vectors. */
James Willis's avatar
James Willis committed
432
433
434
    vector rhoSum, rho_dhSum, wcountSum, wcount_dhSum, div_vSum, curlvxSum,
        curlvySum, curlvzSum;

James Willis's avatar
James Willis committed
435
    /* Get the inverse of hi. */
436
    vector v_hi_inv;
James Willis's avatar
James Willis committed
437

438
    v_hi_inv = vec_reciprocal(v_hi);
James Willis's avatar
James Willis committed
439

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
    rhoSum.v = vec_setzero();
    rho_dhSum.v = vec_setzero();
    wcountSum.v = vec_setzero();
    wcount_dhSum.v = vec_setzero();
    div_vSum.v = vec_setzero();
    curlvxSum.v = vec_setzero();
    curlvySum.v = vec_setzero();
    curlvzSum.v = vec_setzero();

    /* Pad cache if there is a serial remainder. */
    count_align = count;
    int rem = count % (num_vec_proc * VEC_SIZE);
    if (rem != 0) {
      int pad = (num_vec_proc * VEC_SIZE) - rem;

      count_align += pad;
456
457
458
459
460
461
462
463

      /* Set positions to the same as particle pi so when the r2 > 0 mask is
       * applied these extra contributions are masked out.*/
      for (int i = count; i < count_align; i++) {
        cell_cache->x[i] = pix.f[0];
        cell_cache->y[i] = piy.f[0];
        cell_cache->z[i] = piz.f[0];
      }
464
465
466
467
468
    }

    vector pjx, pjy, pjz;
    vector pjx2, pjy2, pjz2;

James Willis's avatar
James Willis committed
469
470
    /* Find all of particle pi's interacions and store needed values in the
     * secondary cache.*/
471
472
473
474
475
476
    for (int pjd = 0; pjd < count_align; pjd += (num_vec_proc * VEC_SIZE)) {

      /* Load 2 sets of vectors from the particle cache. */
      pjx.v = vec_load(&cell_cache->x[pjd]);
      pjy.v = vec_load(&cell_cache->y[pjd]);
      pjz.v = vec_load(&cell_cache->z[pjd]);
477

478
479
480
      pjx2.v = vec_load(&cell_cache->x[pjd + VEC_SIZE]);
      pjy2.v = vec_load(&cell_cache->y[pjd + VEC_SIZE]);
      pjz2.v = vec_load(&cell_cache->z[pjd + VEC_SIZE]);
James Willis's avatar
James Willis committed
481

482
      /* Compute the pairwise distance. */
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
      vector v_dx, v_dy, v_dz;
      vector v_dx_2, v_dy_2, v_dz_2, v_r2_2;

      v_dx.v = vec_sub(pix.v, pjx.v);
      v_dx_2.v = vec_sub(pix.v, pjx2.v);
      v_dy.v = vec_sub(piy.v, pjy.v);
      v_dy_2.v = vec_sub(piy.v, pjy2.v);
      v_dz.v = vec_sub(piz.v, pjz.v);
      v_dz_2.v = vec_sub(piz.v, pjz2.v);

      v_r2.v = vec_mul(v_dx.v, v_dx.v);
      v_r2_2.v = vec_mul(v_dx_2.v, v_dx_2.v);
      v_r2.v = vec_fma(v_dy.v, v_dy.v, v_r2.v);
      v_r2_2.v = vec_fma(v_dy_2.v, v_dy_2.v, v_r2_2.v);
      v_r2.v = vec_fma(v_dz.v, v_dz.v, v_r2.v);
      v_r2_2.v = vec_fma(v_dz_2.v, v_dz_2.v, v_r2_2.v);
James Willis's avatar
James Willis committed
499

500
      /* Form a mask from r2 < hig2 and r2 > 0.*/
James Willis's avatar
James Willis committed
501
502
      mask_t v_doi_mask, v_doi_mask_self_check, v_doi_mask2,
          v_doi_mask2_self_check;
503
      int doi_mask, doi_mask_self_check, doi_mask2, doi_mask2_self_check;
504

James Willis's avatar
James Willis committed
505
      /* Form r2 > 0 mask and r2 < hig2 mask. */
506
      vec_create_mask(v_doi_mask_self_check, vec_cmp_gt(v_r2.v, vec_setzero()));
507
      vec_create_mask(v_doi_mask, vec_cmp_lt(v_r2.v, v_hig2.v));
508

James Willis's avatar
James Willis committed
509
      /* Form r2 > 0 mask and r2 < hig2 mask. */
James Willis's avatar
James Willis committed
510
511
      vec_create_mask(v_doi_mask2_self_check,
                      vec_cmp_gt(v_r2_2.v, vec_setzero()));
512
      vec_create_mask(v_doi_mask2, vec_cmp_lt(v_r2_2.v, v_hig2.v));
513

514
515
516
517
518
519
      /* Form integer masks. */
      doi_mask_self_check = vec_form_int_mask(v_doi_mask_self_check);
      doi_mask = vec_form_int_mask(v_doi_mask);

      doi_mask2_self_check = vec_form_int_mask(v_doi_mask2_self_check);
      doi_mask2 = vec_form_int_mask(v_doi_mask2);
James Willis's avatar
James Willis committed
520

521
522
523
      /* Combine the two masks. */
      doi_mask = doi_mask & doi_mask_self_check;
      doi_mask2 = doi_mask2 & doi_mask2_self_check;
524

James Willis's avatar
James Willis committed
525
526
      /* If there are any interactions left pack interaction values into c2
       * cache. */
527
      if (doi_mask) {
James Willis's avatar
James Willis committed
528
529
        storeInteractions(doi_mask, pjd, &v_r2, &v_dx, &v_dy, &v_dz, cell_cache,
                          &int_cache, &icount, &rhoSum, &rho_dhSum, &wcountSum,
James Willis's avatar
James Willis committed
530
531
                          &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum,
                          &curlvzSum, v_hi_inv, v_vix, v_viy, v_viz);
532
      }
James Willis's avatar
James Willis committed
533
534
535
536
537
538
539
      if (doi_mask2) {
        storeInteractions(doi_mask2, pjd + VEC_SIZE, &v_r2_2, &v_dx_2, &v_dy_2,
                          &v_dz_2, cell_cache, &int_cache, &icount, &rhoSum,
                          &rho_dhSum, &wcountSum, &wcount_dhSum, &div_vSum,
                          &curlvxSum, &curlvySum, &curlvzSum, v_hi_inv, v_vix,
                          v_viy, v_viz);
      }
540
541
    }

James Willis's avatar
James Willis committed
542
    /* Perform padded vector remainder interactions if any are present. */
Matthieu Schaller's avatar
Matthieu Schaller committed
543
544
545
    calcRemInteractions(&int_cache, icount, &rhoSum, &rho_dhSum, &wcountSum,
                        &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum,
                        &curlvzSum, v_hi_inv, v_vix, v_viy, v_viz,
James Willis's avatar
James Willis committed
546
547
548
549
                        &icount_align);

    /* Initialise masks to true in case remainder interactions have been
     * performed. */
550
    mask_t int_mask, int_mask2;
551
552
    vec_init_mask_true(int_mask);
    vec_init_mask_true(int_mask2);
553
554

    /* Perform interaction with 2 vectors. */
James Willis's avatar
James Willis committed
555
556
557
558
559
560
    for (int pjd = 0; pjd < icount_align; pjd += (num_vec_proc * VEC_SIZE)) {
      runner_iact_nonsym_2_vec_density(
          &int_cache.r2q[pjd], &int_cache.dxq[pjd], &int_cache.dyq[pjd],
          &int_cache.dzq[pjd], v_hi_inv, v_vix, v_viy, v_viz,
          &int_cache.vxq[pjd], &int_cache.vyq[pjd], &int_cache.vzq[pjd],
          &int_cache.mq[pjd], &rhoSum, &rho_dhSum, &wcountSum, &wcount_dhSum,
James Willis's avatar
James Willis committed
561
562
          &div_vSum, &curlvxSum, &curlvySum, &curlvzSum, int_mask, int_mask2,
          0);
563
564
    }

James Willis's avatar
James Willis committed
565
566
567
568
569
570
571
572
573
574
    /* Perform horizontal adds on vector sums and store result in particle pi.
     */
    VEC_HADD(rhoSum, pi->rho);
    VEC_HADD(rho_dhSum, pi->density.rho_dh);
    VEC_HADD(wcountSum, pi->density.wcount);
    VEC_HADD(wcount_dhSum, pi->density.wcount_dh);
    VEC_HADD(div_vSum, pi->density.div_v);
    VEC_HADD(curlvxSum, pi->density.rot_v[0]);
    VEC_HADD(curlvySum, pi->density.rot_v[1]);
    VEC_HADD(curlvzSum, pi->density.rot_v[2]);
575
576
577
578
579

    /* Reset interaction count. */
    icount = 0;
  } /* loop over all particles. */

James Willis's avatar
James Willis committed
580
  TIMER_TOC(timer_doself_density);
581
#endif /* WITH_VECTORIZATION */
582
583
}

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
__attribute__((always_inline)) INLINE void runner_doself_subset_density_vec(
    struct runner *r, struct cell *restrict c, struct part *restrict parts, int *restrict ind, int pi_count) {

#ifdef WITH_VECTORIZATION
  const struct engine *e = r->e;
  struct part *restrict pi;
  int count_align;
  int num_vec_proc = NUM_VEC_PROC;

  //struct part *restrict parts = c->parts;
  const int count = c->count;

  int intCount = 0;

  const timebin_t max_active_bin = e->max_active_bin;

  vector v_hi, v_vix, v_viy, v_viz, v_hig2, v_r2;

  TIMER_TIC

  if (!cell_is_active(c, e)) return;

  if (!cell_are_part_drifted(c, e)) error("Interacting undrifted cell.");

  /* Get the particle cache from the runner and re-allocate
   * the cache if it is not big enough for the cell. */
  struct cache *restrict cell_cache = &r->ci_cache;

  if (cell_cache->count < count) {
    cache_init(cell_cache, count);
  }

  /* Read the particles from the cell and store them locally in the cache. */
  cache_read_particles(c, cell_cache);

  /* Create secondary cache to store particle interactions. */
  struct c2_cache int_cache;
  int icount = 0, icount_align = 0;

  /* Loop over the particles in the cell. */
  for (int pid = 0; pid < pi_count; pid++) {

    const int pi_index = ind[pid];

    /* Get a pointer to the ith particle. */
    pi = &parts[pi_index];

    /* Is the ith particle active? */
    if (!part_is_active_no_debug(pi, max_active_bin)) continue;

    vector pix, piy, piz;

    const float hi = cell_cache->h[pi_index];

    /* Fill particle pi vectors. */
    pix.v = vec_set1(cell_cache->x[pi_index]);
    piy.v = vec_set1(cell_cache->y[pi_index]);
    piz.v = vec_set1(cell_cache->z[pi_index]);
    v_hi.v = vec_set1(hi);
    v_vix.v = vec_set1(cell_cache->vx[pi_index]);
    v_viy.v = vec_set1(cell_cache->vy[pi_index]);
    v_viz.v = vec_set1(cell_cache->vz[pi_index]);

    const float hig2 = hi * hi * kernel_gamma2;
    v_hig2.v = vec_set1(hig2);

    /* Reset cumulative sums of update vectors. */
    vector rhoSum, rho_dhSum, wcountSum, wcount_dhSum, div_vSum, curlvxSum,
        curlvySum, curlvzSum;

    /* Get the inverse of hi. */
    vector v_hi_inv;

    v_hi_inv = vec_reciprocal(v_hi);

    rhoSum.v = vec_setzero();
    rho_dhSum.v = vec_setzero();
    wcountSum.v = vec_setzero();
    wcount_dhSum.v = vec_setzero();
    div_vSum.v = vec_setzero();
    curlvxSum.v = vec_setzero();
    curlvySum.v = vec_setzero();
    curlvzSum.v = vec_setzero();

    /* Pad cache if there is a serial remainder. */
    count_align = count;
    int rem = count % (num_vec_proc * VEC_SIZE);
    if (rem != 0) {
      int pad = (num_vec_proc * VEC_SIZE) - rem;

      count_align += pad;

      /* Set positions to the same as particle pi so when the r2 > 0 mask is
       * applied these extra contributions are masked out.*/
      for (int i = count; i < count_align; i++) {
        cell_cache->x[i] = pix.f[0];
        cell_cache->y[i] = piy.f[0];
        cell_cache->z[i] = piz.f[0];
      }
    }

    vector pjx, pjy, pjz;
    vector pjx2, pjy2, pjz2;

    /* Find all of particle pi's interacions and store needed values in the
     * secondary cache.*/
    for (int pjd = 0; pjd < count_align; pjd += (num_vec_proc * VEC_SIZE)) {

      /* Load 2 sets of vectors from the particle cache. */
      pjx.v = vec_load(&cell_cache->x[pjd]);
      pjy.v = vec_load(&cell_cache->y[pjd]);
      pjz.v = vec_load(&cell_cache->z[pjd]);

      pjx2.v = vec_load(&cell_cache->x[pjd + VEC_SIZE]);
      pjy2.v = vec_load(&cell_cache->y[pjd + VEC_SIZE]);
      pjz2.v = vec_load(&cell_cache->z[pjd + VEC_SIZE]);

      /* Compute the pairwise distance. */
      vector v_dx, v_dy, v_dz;
      vector v_dx_2, v_dy_2, v_dz_2, v_r2_2;

      v_dx.v = vec_sub(pix.v, pjx.v);
      v_dx_2.v = vec_sub(pix.v, pjx2.v);
      v_dy.v = vec_sub(piy.v, pjy.v);
      v_dy_2.v = vec_sub(piy.v, pjy2.v);
      v_dz.v = vec_sub(piz.v, pjz.v);
      v_dz_2.v = vec_sub(piz.v, pjz2.v);

      v_r2.v = vec_mul(v_dx.v, v_dx.v);
      v_r2_2.v = vec_mul(v_dx_2.v, v_dx_2.v);
      v_r2.v = vec_fma(v_dy.v, v_dy.v, v_r2.v);
      v_r2_2.v = vec_fma(v_dy_2.v, v_dy_2.v, v_r2_2.v);
      v_r2.v = vec_fma(v_dz.v, v_dz.v, v_r2.v);
      v_r2_2.v = vec_fma(v_dz_2.v, v_dz_2.v, v_r2_2.v);

      /* Form a mask from r2 < hig2 and r2 > 0.*/
      mask_t v_doi_mask, v_doi_mask_self_check, v_doi_mask2,
          v_doi_mask2_self_check;
      int doi_mask, doi_mask_self_check, doi_mask2, doi_mask2_self_check;

      /* Form r2 > 0 mask and r2 < hig2 mask. */
      vec_create_mask(v_doi_mask_self_check, vec_cmp_gt(v_r2.v, vec_setzero()));
      vec_create_mask(v_doi_mask, vec_cmp_lt(v_r2.v, v_hig2.v));

      /* Form r2 > 0 mask and r2 < hig2 mask. */
      vec_create_mask(v_doi_mask2_self_check,
                      vec_cmp_gt(v_r2_2.v, vec_setzero()));
      vec_create_mask(v_doi_mask2, vec_cmp_lt(v_r2_2.v, v_hig2.v));

      /* Form integer masks. */
      doi_mask_self_check = vec_form_int_mask(v_doi_mask_self_check);
      doi_mask = vec_form_int_mask(v_doi_mask);

      doi_mask2_self_check = vec_form_int_mask(v_doi_mask2_self_check);
      doi_mask2 = vec_form_int_mask(v_doi_mask2);

      /* Combine the two masks. */
      doi_mask = doi_mask & doi_mask_self_check;
      doi_mask2 = doi_mask2 & doi_mask2_self_check;

      /* If there are any interactions left pack interaction values into c2
       * cache. */
      if (doi_mask) {
        storeInteractions(doi_mask, pjd, &v_r2, &v_dx, &v_dy, &v_dz, cell_cache,
                          &int_cache, &icount, &rhoSum, &rho_dhSum, &wcountSum,
                          &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum,
                          &curlvzSum, v_hi_inv, v_vix, v_viy, v_viz);
      }
      if (doi_mask2) {
        storeInteractions(doi_mask2, pjd + VEC_SIZE, &v_r2_2, &v_dx_2, &v_dy_2,
                          &v_dz_2, cell_cache, &int_cache, &icount, &rhoSum,
                          &rho_dhSum, &wcountSum, &wcount_dhSum, &div_vSum,
                          &curlvxSum, &curlvySum, &curlvzSum, v_hi_inv, v_vix,
                          v_viy, v_viz);
      }
    }

    /* Perform padded vector remainder interactions if any are present. */
    calcRemInteractions(&int_cache, icount, &rhoSum, &rho_dhSum, &wcountSum,
                        &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum,
                        &curlvzSum, v_hi_inv, v_vix, v_viy, v_viz,
                        &icount_align);

    /* Initialise masks to true in case remainder interactions have been
     * performed. */
    mask_t int_mask, int_mask2;
    vec_init_mask_true(int_mask);
    vec_init_mask_true(int_mask2);

    /* Perform interaction with 2 vectors. */
    for (int pjd = 0; pjd < icount_align; pjd += (num_vec_proc * VEC_SIZE)) {
      runner_iact_nonsym_2_vec_density(
          &int_cache.r2q[pjd], &int_cache.dxq[pjd], &int_cache.dyq[pjd],
          &int_cache.dzq[pjd], v_hi_inv, v_vix, v_viy, v_viz,
          &int_cache.vxq[pjd], &int_cache.vyq[pjd], &int_cache.vzq[pjd],
          &int_cache.mq[pjd], &rhoSum, &rho_dhSum, &wcountSum, &wcount_dhSum,
          &div_vSum, &curlvxSum, &curlvySum, &curlvzSum, int_mask, int_mask2,
          0);
    }

    /* Perform horizontal adds on vector sums and store result in particle pi.
     */
    VEC_HADD(rhoSum, pi->rho);
    VEC_HADD(rho_dhSum, pi->density.rho_dh);
    VEC_HADD(wcountSum, pi->density.wcount);
    VEC_HADD(wcount_dhSum, pi->density.wcount_dh);
    VEC_HADD(div_vSum, pi->density.div_v);
    VEC_HADD(curlvxSum, pi->density.rot_v[0]);
    VEC_HADD(curlvySum, pi->density.rot_v[1]);
    VEC_HADD(curlvzSum, pi->density.rot_v[2]);

    intCount += icount;

    /* Reset interaction count. */
    icount = 0;
  } /* loop over all particles. */

  message("No. of interactions: %d", intCount);

  TIMER_TOC(timer_doself_density);
#endif /* WITH_VECTORIZATION */
}

//void runner_doself_subset_density_vec_1(struct runner *r, struct cell *restrict ci,
//                   struct part *restrict parts, int *restrict ind, int count) {
//
//#ifdef SWIFT_DEBUG_CHECKS
//  const struct engine *e = r->e;
//#endif
//
//  TIMER_TIC;
//
//  const int count_i = ci->count;
//  struct part *restrict parts_j = ci->parts;
//
//  /* Get the particle cache from the runner and re-allocate
//   * the cache if it is not big enough for the cell. */
//  struct cache *restrict cell_cache = &r->ci_cache;
//
//  if (cell_cache->count < count_i) {
//    cache_init(cell_cache, count_i);
//  }
//
//  /* Read the particles from the cell and store them locally in the cache. */
//  cache_read_particles(ci, cell_cache);
//
//  /* Loop over the parts in ci. */
//  for (int pid = 0; pid < count; pid++) {
//
//    /* Get a hold of the ith part in ci. */
//    struct part *pi = &parts[ind[pid]];
//    //const float pix[3] = {pi->x[0] - ci->loc[0], pi->x[1] - ci->loc[1],
//    //                      pi->x[2] - ci->loc[2]};
//    //const float hi = pi->h;
//
//    const float pix = cell_cache->x[ind[pid]];
//    const float piy = cell_cache->y[ind[pid]];
//    const float piz = cell_cache->z[ind[pid]];
//    
//    const float hi = cell_cache->h[ind[pid]];
//
//    //const float hi_inv = 1.0f / hi;
//    const float hig2 = hi * hi * kernel_gamma2;
//
//#ifdef SWIFT_DEBUG_CHECKS
//    if (!part_is_active(pi, e)) error("Inactive particle in subset function!");
//#endif
//
//    //float rhoSum = 0, rho_dhSum = 0, wcountSum = 0, wcount_dhSum = 0,div_vSum = 0, curlvxSum = 0, curlvySum = 0, curlvzSum = 0;
//
//    //swift_align_information(cell_cache->x, SWIFT_CACHE_ALIGNMENT);
//    //swift_align_information(cell_cache->y, SWIFT_CACHE_ALIGNMENT);
//    //swift_align_information(cell_cache->z, SWIFT_CACHE_ALIGNMENT);
//
//    /* Loop over the parts in cj. */
////#pragma simd
//    for (int pjd = 0; pjd < count_i; pjd++) {
//
//      /* Get a pointer to the jth particle. */
//      struct part *restrict pj = &parts_j[pjd];
//
//      const float pjx = cell_cache->x[pjd];
//      const float pjy = cell_cache->y[pjd];
//      const float pjz = cell_cache->z[pjd];
//
//      /* Compute the pairwise distance. */
//      //float dx[3] = {pix[0] - pjx, pix[1] - pjy, pix[2] - pjz};
//      float dx[3] = {pix - pjx, piy - pjy, piz - pjz};
//      const float r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];
//
//      //const float pjx[3] = {pj->x[0] - ci->loc[0], pj->x[1] - ci->loc[1],
//      //                      pj->x[2] - ci->loc[2]};
//      //float dx[3] = {pix[0] - pjx[0], pix[1] - pjx[1], pix[2] - pjx[2]};
//      //const float r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];
//
//#ifdef SWIFT_DEBUG_CHECKS
//      /* Check that particles have been drifted to the current time */
//      if (pi->ti_drift != e->ti_current)
//        error("Particle pi not drifted to current time");
//      if (pj->ti_drift != e->ti_current)
//        error("Particle pj not drifted to current time");
//#endif
//
//      //runner_iact_nonsym_density_self_cond(r2, hig2, dx, hi_inv, pj->h, pi, pj, &rhoSum, &rho_dhSum, &wcountSum, &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum, &curlvzSum);//, cell_cache, pjd);
//      if (r2 > 0.f && r2 < hig2) {
//        runner_iact_nonsym_density(r2, dx, hi, pj->h, pi, pj);
//      }
//
//    } /* loop over the parts in cj. */
//
//    //message("No. of interactions: %d.", intCount);
//    //pi->rho += rhoSum;
//    //pi->density.rho_dh += rho_dhSum;
//    //pi->density.wcount += wcountSum;
//    //pi->density.wcount_dh += wcount_dhSum;
//    //pi->density.div_v += div_vSum;
//    //pi->density.rot_v[0] += curlvxSum;
//    //pi->density.rot_v[1] += curlvySum;
//    //pi->density.rot_v[2] += curlvzSum;
//  }   /* loop over the parts in ci. */
//
//  TIMER_TOC(timer_doself_subset);
//}
//
//void runner_doself_subset_density_vec(struct runner *r, struct cell *restrict ci,
//                   struct part *restrict parts, int *restrict ind, int count) {
//
//#ifdef SWIFT_DEBUG_CHECKS
//  const struct engine *e = r->e;
//#endif
//
//  TIMER_TIC;
//
//  const int count_i = ci->count;
//  struct part *restrict parts_j = ci->parts;
//
//  /* Get the particle cache from the runner and re-allocate
//   * the cache if it is not big enough for the cell. */
//  struct cache *restrict cell_cache = &r->ci_cache;
//
//  if (cell_cache->count < count_i) {
//    cache_init(cell_cache, count_i);
//  }
//
//  /* Read the particles from the cell and store them locally in the cache. */
//  cache_read_particles(ci, cell_cache);
//
//  /* Loop over the parts in ci. */
//  for (int pid = 0; pid < count; pid++) {
//
//    /* Get a hold of the ith part in ci. */
//    struct part *pi = &parts[ind[pid]];
//    //const float pix[3] = {pi->x[0] - ci->loc[0], pi->x[1] - ci->loc[1],
//    //                      pi->x[2] - ci->loc[2]};
//    //const float hi = pi->h;
//
//    const float pix = cell_cache->x[ind[pid]];
//    const float piy = cell_cache->y[ind[pid]];
//    const float piz = cell_cache->z[ind[pid]];
//    
//    const float hi = cell_cache->h[ind[pid]];
//
//    //const float hi_inv = 1.0f / hi;
//    const float hig2 = hi * hi * kernel_gamma2;
//
//#ifdef SWIFT_DEBUG_CHECKS
//    if (!part_is_active(pi, e)) error("Inactive particle in subset function!");
//#endif
//
//    //float rhoSum = 0, rho_dhSum = 0, wcountSum = 0, wcount_dhSum = 0,div_vSum = 0, curlvxSum = 0, curlvySum = 0, curlvzSum = 0;
//
//    //swift_align_information(cell_cache->x, SWIFT_CACHE_ALIGNMENT);
//    //swift_align_information(cell_cache->y, SWIFT_CACHE_ALIGNMENT);
//    //swift_align_information(cell_cache->z, SWIFT_CACHE_ALIGNMENT);
//
//    /* Loop over the parts in cj. */
////#pragma simd
//    for (int pjd = 0; pjd < count_i; pjd++) {
//
//      /* Get a pointer to the jth particle. */
//      struct part *restrict pj = &parts_j[pjd];
//
//      const float pjx = cell_cache->x[pjd];
//      const float pjy = cell_cache->y[pjd];
//      const float pjz = cell_cache->z[pjd];
//
//      /* Compute the pairwise distance. */
//      //float dx[3] = {pix[0] - pjx, pix[1] - pjy, pix[2] - pjz};
//      float dx[3] = {pix - pjx, piy - pjy, piz - pjz};
//      const float r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];
//
//      //const float pjx[3] = {pj->x[0] - ci->loc[0], pj->x[1] - ci->loc[1],
//      //                      pj->x[2] - ci->loc[2]};
//      //float dx[3] = {pix[0] - pjx[0], pix[1] - pjx[1], pix[2] - pjx[2]};
//      //const float r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];
//
//#ifdef SWIFT_DEBUG_CHECKS
//      /* Check that particles have been drifted to the current time */
//      if (pi->ti_drift != e->ti_current)
//        error("Particle pi not drifted to current time");
//      if (pj->ti_drift != e->ti_current)
//        error("Particle pj not drifted to current time");
//#endif
//
//      //runner_iact_nonsym_density_self_cond(r2, hig2, dx, hi_inv, pj->h, pi, pj, &rhoSum, &rho_dhSum, &wcountSum, &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum, &curlvzSum);//, cell_cache, pjd);
//      if (r2 > 0.f && r2 < hig2) {
//        runner_iact_nonsym_density(r2, dx, hi, pj->h, pi, pj);
//      }
//
//    } /* loop over the parts in cj. */
//
//    //message("No. of interactions: %d.", intCount);
//    //pi->rho += rhoSum;
//    //pi->density.rho_dh += rho_dhSum;
//    //pi->density.wcount += wcountSum;
//    //pi->density.wcount_dh += wcount_dhSum;
//    //pi->density.div_v += div_vSum;
//    //pi->density.rot_v[0] += curlvxSum;
//    //pi->density.rot_v[1] += curlvySum;
//    //pi->density.rot_v[2] += curlvzSum;
//  }   /* loop over the parts in ci. */
//
//  TIMER_TOC(timer_doself_subset);
//}

1009
/**
James Willis's avatar
James Willis committed
1010
 * @brief Compute the force cell self-interaction (non-symmetric) using vector
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
 * intrinsics with one particle pi at a time.
 *
 * @param r The #runner.
 * @param c The #cell.
 */
__attribute__((always_inline)) INLINE void runner_doself2_force_vec(
    struct runner *r, struct cell *restrict c) {

#ifdef WITH_VECTORIZATION
  const struct engine *e = r->e;
  struct part *restrict pi;
  int count_align;
James Willis's avatar
James Willis committed
1023
  const int num_vec_proc = 1;
1024

1025
  const timebin_t max_active_bin = e->max_active_bin;
James Willis's avatar
James Willis committed
1026

1027
1028
1029
1030
1031
1032
  struct part *restrict parts = c->parts;
  const int count = c->count;

  vector v_hi, v_vix, v_viy, v_viz, v_hig2, v_r2;
  vector v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci;

James Willis's avatar
James Willis committed
1033
  TIMER_TIC;
1034
1035
1036

  if (!cell_is_active(c, e)) return;

1037
  if (!cell_are_part_drifted(c, e)) error("Interacting undrifted cell.");
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047

  /* Get the particle cache from the runner and re-allocate
   * the cache if it is not big enough for the cell. */
  struct cache *restrict cell_cache = &r->ci_cache;

  if (cell_cache->count < count) {
    cache_init(cell_cache, count);
  }

  /* Read the particles from the cell and store them locally in the cache. */
1048
  cache_read_force_particles(c, cell_cache);
1049

James Willis's avatar
James Willis committed
1050
#ifdef SWIFT_DEBUG_CHECKS
James Willis's avatar
James Willis committed
1051
  for (int i = 0; i < count; i++) {
James Willis's avatar
James Willis committed
1052
1053
1054
1055
1056
1057
1058
    pi = &c->parts[i];
    /* Check that particles have been drifted to the current time */
    if (pi->ti_drift != e->ti_current)
      error("Particle pi not drifted to current time");
  }
#endif

James Willis's avatar
James Willis committed
1059
1060
  /* Loop over the particles in the cell. */
  for (int pid = 0; pid < count; pid++) {
1061

James Willis's avatar
James Willis committed
1062
1063
    /* Get a pointer to the ith particle. */
    pi = &parts[pid];
1064

James Willis's avatar
James Willis committed
1065
1066
    /* Is the ith particle active? */
    if (!part_is_active_no_debug(pi, max_active_bin)) continue;
1067

James Willis's avatar
James Willis committed
1068
    vector pix, piy, piz;
1069

James Willis's avatar
James Willis committed
1070
    const float hi = cell_cache->h[pid];
1071

James Willis's avatar
James Willis committed
1072
1073
1074
1075
1076
1077
1078
1079
    /* Fill particle pi vectors. */
    pix.v = vec_set1(cell_cache->x[pid]);
    piy.v = vec_set1(cell_cache->y[pid]);
    piz.v = vec_set1(cell_cache->z[pid]);
    v_hi.v = vec_set1(hi);
    v_vix.v = vec_set1(cell_cache->vx[pid]);
    v_viy.v = vec_set1(cell_cache->vy[pid]);
    v_viz.v = vec_set1(cell_cache->vz[pid]);
1080

James Willis's avatar
James Willis committed
1081
1082
1083
1084
1085
    v_rhoi.v = vec_set1(cell_cache->rho[pid]);
    v_grad_hi.v = vec_set1(cell_cache->grad_h[pid]);
    v_pOrhoi2.v = vec_set1(cell_cache->pOrho2[pid]);
    v_balsara_i.v = vec_set1(cell_cache->balsara[pid]);
    v_ci.v = vec_set1(cell_cache->soundspeed[pid]);
1086

James Willis's avatar
James Willis committed
1087
1088
    const float hig2 = hi * hi * kernel_gamma2;
    v_hig2.v = vec_set1(hig2);
1089

James Willis's avatar
James Willis committed
1090
1091
1092
    /* Reset cumulative sums of update vectors. */
    vector a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum,
        entropy_dtSum;
1093

James Willis's avatar
James Willis committed
1094
1095
    /* Get the inverse of hi. */
    vector v_hi_inv;
1096

James Willis's avatar
James Willis committed
1097
    v_hi_inv = vec_reciprocal(v_hi);
1098

James Willis's avatar
James Willis committed
1099
1100
1101
1102
1103
1104
    a_hydro_xSum.v = vec_setzero();
    a_hydro_ySum.v = vec_setzero();
    a_hydro_zSum.v = vec_setzero();
    h_dtSum.v = vec_setzero();
    v_sigSum.v = vec_set1(pi->force.v_sig);
    entropy_dtSum.v = vec_setzero();
1105

James Willis's avatar
James Willis committed
1106
1107
1108
1109
1110
    /* Pad cache if there is a serial remainder. */
    count_align = count;
    int rem = count % (num_vec_proc * VEC_SIZE);
    if (rem != 0) {
      int pad = (num_vec_proc * VEC_SIZE) - rem;
1111

James Willis's avatar
James Willis committed
1112
      count_align += pad;
1113

James Willis's avatar
James Willis committed
1114
1115
1116
1117
1118
1119
1120
      /* Set positions to the same as particle pi so when the r2 > 0 mask is
       * applied these extra contributions are masked out.*/
      for (int i = count; i < count_align; i++) {
        cell_cache->x[i] = pix.f[0];
        cell_cache->y[i] = piy.f[0];
        cell_cache->z[i] = piz.f[0];
        cell_cache->h[i] = 1.f;
1121
1122
        cell_cache->rho[i] = 1.f;
        cell_cache->grad_h[i] = 1.f;
1123
        cell_cache->pOrho2[i] = 1.f;
1124
1125
        cell_cache->balsara[i] = 1.f;
        cell_cache->soundspeed[i] = 1.f;
James Willis's avatar
James Willis committed
1126
      }
1127
1128
    }

James Willis's avatar
James Willis committed
1129
    vector pjx, pjy, pjz, hj, hjg2;
1130

James Willis's avatar
James Willis committed
1131
1132
1133
    /* Find all of particle pi's interacions and store needed values in the
     * secondary cache.*/
    for (int pjd = 0; pjd < count_align; pjd += (num_vec_proc * VEC_SIZE)) {
1134

James Willis's avatar
James Willis committed
1135
1136
1137
1138
1139
1140
      /* Load 1 set of vectors from the particle cache. */
      pjx.v = vec_load(&cell_cache->x[pjd]);
      pjy.v = vec_load(&cell_cache->y[pjd]);
      pjz.v = vec_load(&cell_cache->z[pjd]);
      hj.v = vec_load(&cell_cache->h[pjd]);
      hjg2.v = vec_mul(vec_mul(hj.v, hj.v), kernel_gamma2_vec.v);
1141

James Willis's avatar
James Willis committed
1142
1143
      /* Compute the pairwise distance. */
      vector v_dx, v_dy, v_dz;
1144

James Willis's avatar
James Willis committed
1145
1146
1147
      v_dx.v = vec_sub(pix.v, pjx.v);
      v_dy.v = vec_sub(piy.v, pjy.v);
      v_dz.v = vec_sub(piz.v, pjz.v);
1148

James Willis's avatar
James Willis committed
1149
1150
1151
      v_r2.v = vec_mul(v_dx.v, v_dx.v);
      v_r2.v = vec_fma(v_dy.v, v_dy.v, v_r2.v);
      v_r2.v = vec_fma(v_dz.v, v_dz.v, v_r2.v);
1152

James Willis's avatar
James Willis committed
1153
1154
1155
      /* Form r2 > 0 mask, r2 < hig2 mask and r2 < hjg2 mask. */
      mask_t v_doi_mask, v_doi_mask_self_check;
      int doi_mask;
1156

James Willis's avatar
James Willis committed
1157
1158
      /* Form r2 > 0 mask.*/
      vec_create_mask(v_doi_mask_self_check, vec_cmp_gt(v_r2.v, vec_setzero()));
1159

James Willis's avatar
James Willis committed
1160
1161
1162
1163
      /* Form a mask from r2 < hig2 mask and r2 < hjg2 mask. */
      vector v_h2;
      v_h2.v = vec_fmax(v_hig2.v, hjg2.v);
      vec_create_mask(v_doi_mask, vec_cmp_lt(v_r2.v, v_h2.v));
1164

James Willis's avatar
James Willis committed
1165
      /* Combine all 3 masks and form integer mask. */
1166
      vec_combine_masks(v_doi_mask, v_doi_mask_self_check);
James Willis's avatar
James Willis committed
1167
      doi_mask = vec_form_int_mask(v_doi_mask);
1168

James Willis's avatar
James Willis committed
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
      /* If there are any interactions perform them. */
      if (doi_mask) {
        vector v_hj_inv;
        v_hj_inv = vec_reciprocal(hj);

        /* To stop floating point exceptions for when particle separations are
         * 0.
        */
        v_r2.v = vec_add(v_r2.v, vec_set1(FLT_MIN));

        runner_iact_nonsym_1_vec_force(
            &v_r2, &v_dx, &v_dy, &v_dz, v_vix, v_viy, v_viz, v_rhoi, v_grad_hi,
            v_pOrhoi2, v_balsara_i, v_ci, &cell_cache->vx[pjd],
            &cell_cache->vy[pjd], &cell_cache->vz[pjd], &cell_cache->rho[pjd],
            &cell_cache->grad_h[pjd], &cell_cache->pOrho2[pjd],
            &cell_cache->balsara[pjd], &cell_cache->soundspeed[pjd],
            &cell_cache->m[pjd], v_hi_inv, v_hj_inv, &a_hydro_xSum,
            &a_hydro_ySum, &a_hydro_zSum, &h_dtSum, &v_sigSum, &entropy_dtSum,
            v_doi_mask);
      }
1189

James Willis's avatar
James Willis committed
1190
    } /* Loop over all other particles. */
1191

James Willis's avatar
James Willis committed
1192
1193
1194
1195
1196
1197
    VEC_HADD(a_hydro_xSum, pi->a_hydro[0]);
    VEC_HADD(a_hydro_ySum, pi->a_hydro[1]);
    VEC_HADD(a_hydro_zSum, pi->a_hydro[2]);
    VEC_HADD(h_dtSum, pi->force.h_dt);
    VEC_HMAX(v_sigSum, pi->force.v_sig);
    VEC_HADD(entropy_dtSum, pi->entropy_dt);
1198

James Willis's avatar
James Willis committed
1199
  } /* loop over all particles. */
1200

James Willis's avatar
James Willis committed
1201
  TIMER_TOC(timer_doself_force);
1202
1203
1204
#endif /* WITH_VECTORIZATION */
}

1205
/**
James Willis's avatar
James Willis committed
1206
1207
 * @brief Compute the density interactions between a cell pair (non-symmetric)
 * using vector intrinsics.
1208
1209
1210
1211
 *
 * @param r The #runner.
 * @param ci The first #cell.
 * @param cj The second #cell.
1212
1213
 * @param sid The direction of the pair
 * @param shift The shift vector to apply to the particles in ci.
1214
 */
James Willis's avatar
James Willis committed
1215
void runner_dopair1_density_vec(struct runner *r, struct cell *ci,
1216
1217
                                struct cell *cj, const int sid,
                                const double *shift) {
1218
1219
1220

#ifdef WITH_VECTORIZATION
  const struct engine *restrict e = r->e;
1221
  const timebin_t max_active_bin = e->max_active_bin;
1222

James Willis's avatar
James Willis committed
1223
  vector v_hi, v_vix, v_viy, v_viz, v_hig2;
1224
1225
1226

  TIMER_TIC;

1227
1228
1229
1230
1231
  /* Get the cutoff shift. */
  double rshift = 0.0;
  for (int k = 0; k < 3; k++) rshift += shift[k] * runner_shift[sid][k];

  /* Pick-out the sorted lists. */
Peter W. Draper's avatar
Peter W. Draper committed
1232
1233
  const struct entry *restrict sort_i = ci->sort[sid];
  const struct entry *restrict sort_j = cj->sort[sid];
1234

1235
1236
1237
1238
1239
1240
1241
1242