cell.c 74.1 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "drift.h"
53
#include "error.h"
54
#include "gravity.h"
55
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
56
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
57
#include "memswap.h"
58
#include "minmax.h"
59
#include "scheduler.h"
60
61
#include "space.h"
#include "timers.h"
62

63
64
65
/* Global variables. */
int cell_next_tag = 0;

66
67
68
69
70
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
71
int cell_getsize(struct cell *c) {
72

Pedro Gonnet's avatar
Pedro Gonnet committed
73
74
  /* Number of cells in this subtree. */
  int count = 1;
75

76
77
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
78
    for (int k = 0; k < 8; k++)
79
80
81
82
83
84
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

85
/**
86
 * @brief Link the cells recursively to the given #part array.
87
88
89
90
91
92
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
93
int cell_link_parts(struct cell *c, struct part *parts) {
94

95
96
97
  c->parts = parts;

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
98
99
100
101
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
102
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
Pedro Gonnet's avatar
Pedro Gonnet committed
103
104
    }
  }
105

106
  /* Return the total number of linked particles. */
107
108
  return c->count;
}
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/**
 * @brief Link the cells recursively to the given #gpart array.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_gparts(struct cell *c, struct gpart *gparts) {

  c->gparts = gparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->gcount;
}

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {

  c->sparts = sparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->scount;
}

160
161
162
163
164
165
166
167
168
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
169
int cell_pack(struct cell *restrict c, struct pcell *restrict pc) {
170

171
172
#ifdef WITH_MPI

173
174
  /* Start by packing the data of the current cell. */
  pc->h_max = c->h_max;
175
176
  pc->ti_end_min = c->ti_end_min;
  pc->ti_end_max = c->ti_end_max;
177
178
  pc->ti_old_part = c->ti_old_part;
  pc->ti_old_gpart = c->ti_old_gpart;
179
  pc->count = c->count;
180
  pc->gcount = c->gcount;
181
  pc->scount = c->scount;
182
183
184
  c->tag = pc->tag = atomic_inc(&cell_next_tag) % cell_max_tag;

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
185
186
  int count = 1;
  for (int k = 0; k < 8; k++)
187
188
189
190
191
192
193
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
      count += cell_pack(c->progeny[k], &pc[count]);
    } else
      pc->progeny[k] = -1;

  /* Return the number of packed cells used. */
194
195
  c->pcell_size = count;
  return count;
196
197
198
199
200

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
201
202
}

203
204
205
206
207
208
209
210
211
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
212
213
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
                struct space *restrict s) {
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

#ifdef WITH_MPI

  /* Unpack the current pcell. */
  c->h_max = pc->h_max;
  c->ti_end_min = pc->ti_end_min;
  c->ti_end_max = pc->ti_end_max;
  c->ti_old_part = pc->ti_old_part;
  c->ti_old_gpart = pc->ti_old_gpart;
  c->count = pc->count;
  c->gcount = pc->gcount;
  c->scount = pc->scount;
  c->tag = pc->tag;

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
      temp->count = 0;
      temp->gcount = 0;
      temp->scount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->dx_max_part = 0.f;
      temp->dx_max_gpart = 0.f;
      temp->dx_max_sort = 0.f;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
      count += cell_unpack(&pc[pc->progeny[k]], temp, s);
    }

  /* Return the total number of unpacked cells. */
  c->pcell_size = count;
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

271
272
273
274
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
275
 * @param pcells (output) The end-of-timestep information we pack into
276
277
278
 *
 * @return The number of packed cells.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
279
280
int cell_pack_end_step(struct cell *restrict c,
                       struct pcell_step *restrict pcells) {
281

282
283
#ifdef WITH_MPI

284
  /* Pack this cell's data. */
285
286
287
  pcells[0].ti_end_min = c->ti_end_min;
  pcells[0].dx_max_part = c->dx_max_part;
  pcells[0].dx_max_gpart = c->dx_max_gpart;
288

289
290
291
292
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
293
      count += cell_pack_end_step(c->progeny[k], &pcells[count]);
294
295
296
297
    }

  /* Return the number of packed values. */
  return count;
298
299
300
301
302

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
303
304
}

305
306
307
308
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
309
 * @param pcells The end-of-timestep information to unpack
310
311
312
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
313
314
int cell_unpack_end_step(struct cell *restrict c,
                         struct pcell_step *restrict pcells) {
315

316
317
#ifdef WITH_MPI

318
  /* Unpack this cell's data. */
Matthieu Schaller's avatar
Matthieu Schaller committed
319
  c->ti_end_min = pcells[0].ti_end_min;
320
321
  c->dx_max_part = pcells[0].dx_max_part;
  c->dx_max_gpart = pcells[0].dx_max_gpart;
322

323
324
325
326
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
327
      count += cell_unpack_end_step(c->progeny[k], &pcells[count]);
328
329
330
    }

  /* Return the number of packed values. */
331
  return count;
332
333
334
335
336

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
337
}
338

339
/**
340
 * @brief Lock a cell for access to its array of #part and hold its parents.
341
342
 *
 * @param c The #cell.
343
 * @return 0 on success, 1 on failure
344
 */
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->hold || lock_trylock(&c->lock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->hold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
367
  struct cell *finger;
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->lock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->hold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->lock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
390
391
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
392
      atomic_dec(&finger2->hold);
393
394
395
396
397
398
399
400
401
402

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

403
404
405
406
407
408
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->ghold || lock_trylock(&c->glock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->ghold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
431
  struct cell *finger;
432
433
434
435
436
437
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->glock) != 0) break;

    /* Increment the hold. */
438
    atomic_inc(&finger->ghold);
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

    /* Unlock the cell. */
    if (lock_unlock(&finger->glock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
454
455
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
456
      atomic_dec(&finger2->ghold);
457
458
459
460
461
462
463
464
465

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
466

467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->mhold || lock_trylock(&c->mlock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->mhold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->mlock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->mhold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->mlock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->mhold);

    /* Unlock this cell. */
    if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->shold || lock_trylock(&c->slock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->shold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->slock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->shold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->slock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->shold);

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

595
/**
596
 * @brief Unlock a cell's parents for access to #part array.
597
598
599
 *
 * @param c The #cell.
 */
600
601
602
603
604
605
606
607
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
608
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
609
    atomic_dec(&finger->hold);
610
611
612
613

  TIMER_TOC(timer_locktree);
}

614
615
616
617
618
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
619
620
621
622
623
624
625
626
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
627
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
628
    atomic_dec(&finger->ghold);
629
630
631
632

  TIMER_TOC(timer_locktree);
}

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/**
 * @brief Unlock a cell's parents for access to its #multipole.
 *
 * @param c The #cell.
 */
void cell_munlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->mhold);

  TIMER_TOC(timer_locktree);
}

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->shold);

  TIMER_TOC(timer_locktree);
}

671
672
673
674
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
675
676
 * @param parts_offset Offset of the cell parts array relative to the
 *        space's parts array, i.e. c->parts - s->parts.
677
678
 * @param sparts_offset Offset of the cell sparts array relative to the
 *        space's sparts array, i.e. c->sparts - s->sparts.
679
680
 * @param buff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices.
681
682
 * @param sbuff A buffer with at least max(c->scount, c->gcount) entries,
 *        used for sorting indices for the sparts.
Peter W. Draper's avatar
Peter W. Draper committed
683
684
 * @param gbuff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices for the gparts.
685
 */
686
687
void cell_split(struct cell *c, ptrdiff_t parts_offset, ptrdiff_t sparts_offset,
                struct cell_buff *buff, struct cell_buff *sbuff,
688
                struct cell_buff *gbuff) {
689

690
  const int count = c->count, gcount = c->gcount, scount = c->scount;
691
692
693
  struct part *parts = c->parts;
  struct xpart *xparts = c->xparts;
  struct gpart *gparts = c->gparts;
Matthieu Schaller's avatar
Matthieu Schaller committed
694
  struct spart *sparts = c->sparts;
695
696
697
698
699
700
  const double pivot[3] = {c->loc[0] + c->width[0] / 2,
                           c->loc[1] + c->width[1] / 2,
                           c->loc[2] + c->width[2] / 2};
  int bucket_count[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  int bucket_offset[9];

701
702
703
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the buffs are OK. */
  for (int k = 0; k < count; k++) {
704
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
705
        buff[k].x[2] != parts[k].x[2])
706
707
      error("Inconsistent buff contents.");
  }
708
709
710
711
712
713
714
715
716
717
  for (int k = 0; k < gcount; k++) {
    if (gbuff[k].x[0] != gparts[k].x[0] || gbuff[k].x[1] != gparts[k].x[1] ||
        gbuff[k].x[2] != gparts[k].x[2])
      error("Inconsistent gbuff contents.");
  }
  for (int k = 0; k < scount; k++) {
    if (sbuff[k].x[0] != sparts[k].x[0] || sbuff[k].x[1] != sparts[k].x[1] ||
        sbuff[k].x[2] != sparts[k].x[2])
      error("Inconsistent sbuff contents.");
  }
718
#endif /* SWIFT_DEBUG_CHECKS */
719
720
721

  /* Fill the buffer with the indices. */
  for (int k = 0; k < count; k++) {
722
723
    const int bid = (buff[k].x[0] > pivot[0]) * 4 +
                    (buff[k].x[1] > pivot[1]) * 2 + (buff[k].x[2] > pivot[2]);
724
    bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
725
    buff[k].ind = bid;
726
  }
727

728
729
730
731
732
  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
733
734
  }

735
736
737
738
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
739
      int bid = buff[k].ind;
740
741
742
      if (bid != bucket) {
        struct part part = parts[k];
        struct xpart xpart = xparts[k];
743
        struct cell_buff temp_buff = buff[k];
744
745
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
746
          while (buff[j].ind == bid) {
747
748
749
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
750
751
          memswap(&parts[j], &part, sizeof(struct part));
          memswap(&xparts[j], &xpart, sizeof(struct xpart));
752
753
          memswap(&buff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
754
755
756
        }
        parts[k] = part;
        xparts[k] = xpart;
757
        buff[k] = temp_buff;
758
      }
759
      bucket_count[bid]++;
760
761
762
763
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
764
  for (int k = 0; k < 8; k++) {
765
766
767
    c->progeny[k]->count = bucket_count[k];
    c->progeny[k]->parts = &c->parts[bucket_offset[k]];
    c->progeny[k]->xparts = &c->xparts[bucket_offset[k]];
768
769
770
  }

  /* Re-link the gparts. */
771
772
  if (count > 0 && gcount > 0)
    part_relink_gparts_to_parts(parts, count, parts_offset);
773

774
#ifdef SWIFT_DEBUG_CHECKS
775
776
777
778
779
780
781
782
  /* Check that the buffs are OK. */
  for (int k = 1; k < count; k++) {
    if (buff[k].ind < buff[k - 1].ind) error("Buff not sorted.");
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
        buff[k].x[2] != parts[k].x[2])
      error("Inconsistent buff contents (k=%i).", k);
  }

783
  /* Verify that _all_ the parts have been assigned to a cell. */
784
785
786
787
788
789
790
791
  for (int k = 1; k < 8; k++)
    if (&c->progeny[k - 1]->parts[c->progeny[k - 1]->count] !=
        c->progeny[k]->parts)
      error("Particle sorting failed (internal consistency).");
  if (c->progeny[0]->parts != c->parts)
    error("Particle sorting failed (left edge).");
  if (&c->progeny[7]->parts[c->progeny[7]->count] != &c->parts[count])
    error("Particle sorting failed (right edge).");
792
793

  /* Verify a few sub-cells. */
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
  for (int k = 0; k < c->progeny[0]->count; k++)
    if (c->progeny[0]->parts[k].x[0] > pivot[0] ||
        c->progeny[0]->parts[k].x[1] > pivot[1] ||
        c->progeny[0]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=0).");
  for (int k = 0; k < c->progeny[1]->count; k++)
    if (c->progeny[1]->parts[k].x[0] > pivot[0] ||
        c->progeny[1]->parts[k].x[1] > pivot[1] ||
        c->progeny[1]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=1).");
  for (int k = 0; k < c->progeny[2]->count; k++)
    if (c->progeny[2]->parts[k].x[0] > pivot[0] ||
        c->progeny[2]->parts[k].x[1] <= pivot[1] ||
        c->progeny[2]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=2).");
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
  for (int k = 0; k < c->progeny[3]->count; k++)
    if (c->progeny[3]->parts[k].x[0] > pivot[0] ||
        c->progeny[3]->parts[k].x[1] <= pivot[1] ||
        c->progeny[3]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=3).");
  for (int k = 0; k < c->progeny[4]->count; k++)
    if (c->progeny[4]->parts[k].x[0] <= pivot[0] ||
        c->progeny[4]->parts[k].x[1] > pivot[1] ||
        c->progeny[4]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=4).");
  for (int k = 0; k < c->progeny[5]->count; k++)
    if (c->progeny[5]->parts[k].x[0] <= pivot[0] ||
        c->progeny[5]->parts[k].x[1] > pivot[1] ||
        c->progeny[5]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=5).");
  for (int k = 0; k < c->progeny[6]->count; k++)
    if (c->progeny[6]->parts[k].x[0] <= pivot[0] ||
        c->progeny[6]->parts[k].x[1] <= pivot[1] ||
        c->progeny[6]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=6).");
  for (int k = 0; k < c->progeny[7]->count; k++)
    if (c->progeny[7]->parts[k].x[0] <= pivot[0] ||
        c->progeny[7]->parts[k].x[1] <= pivot[1] ||
        c->progeny[7]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=7).");
834
#endif
835

836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
  /* Now do the same song and dance for the sparts. */
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < scount; k++) {
    const int bid = (sbuff[k].x[0] > pivot[0]) * 4 +
                    (sbuff[k].x[1] > pivot[1]) * 2 + (sbuff[k].x[2] > pivot[2]);
    bucket_count[bid]++;
    sbuff[k].ind = bid;
  }

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
  }

  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
      int bid = sbuff[k].ind;
      if (bid != bucket) {
        struct spart spart = sparts[k];
        struct cell_buff temp_buff = sbuff[k];
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
          while (sbuff[j].ind == bid) {
            j++;
            bucket_count[bid]++;
          }
          memswap(&sparts[j], &spart, sizeof(struct spart));
          memswap(&sbuff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
        }
        sparts[k] = spart;
        sbuff[k] = temp_buff;
      }
      bucket_count[bid]++;
    }
  }

  /* Store the counts and offsets. */
  for (int k = 0; k < 8; k++) {
    c->progeny[k]->scount = bucket_count[k];
    c->progeny[k]->sparts = &c->sparts[bucket_offset[k]];
  }

  /* Re-link the gparts. */
  if (scount > 0 && gcount > 0)
887
    part_relink_gparts_to_sparts(sparts, scount, sparts_offset);
888
889

  /* Finally, do the same song and dance for the gparts. */
890
891
892
893
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < gcount; k++) {
894
895
    const int bid = (gbuff[k].x[0] > pivot[0]) * 4 +
                    (gbuff[k].x[1] > pivot[1]) * 2 + (gbuff[k].x[2] > pivot[2]);
896
    bucket_count[bid]++;
897
    gbuff[k].ind = bid;
898
  }
899
900
901
902
903
904

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
905
906
  }

907
908
909
910
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
911
      int bid = gbuff[k].ind;
912
913
      if (bid != bucket) {
        struct gpart gpart = gparts[k];
914
        struct cell_buff temp_buff = gbuff[k];
915
916
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
917
          while (gbuff[j].ind == bid) {
918
919
920
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
921
          memswap(&gparts[j], &gpart, sizeof(struct gpart));
922
923
          memswap(&gbuff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
924
925
        }
        gparts[k] = gpart;
926
        gbuff[k] = temp_buff;
927
      }
928
      bucket_count[bid]++;
929
930
931
932
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
933
  for (int k = 0; k < 8; k++) {
934
935
    c->progeny[k]->gcount = bucket_count[k];
    c->progeny[k]->gparts = &c->gparts[bucket_offset[k]];
936
937
938
  }

  /* Re-link the parts. */
939
  if (count > 0 && gcount > 0)
940
    part_relink_parts_to_gparts(gparts, gcount, parts - parts_offset);
941
942
943
944

  /* Re-link the sparts. */
  if (scount > 0 && gcount > 0)
    part_relink_sparts_to_gparts(gparts, gcount, sparts - sparts_offset);
945
}
946

947
948
949
950
/**
 * @brief Sanitizes the smoothing length values of cells by setting large
 * outliers to more sensible values.
 *
951
952
 * Each cell with <1000 part will be processed. We limit h to be the size of
 * the cell and replace 0s with a good estimate.
953
954
 *
 * @param c The cell.
955
 * @param treated Has the cell already been sanitized at this level ?
956
 */
957
void cell_sanitize(struct cell *c, int treated) {
958
959
960

  const int count = c->count;
  struct part *parts = c->parts;
961
  float h_max = 0.f;
962

963
964
  /* Treat cells will <1000 particles */
  if (count < 1000 && !treated) {
965

966
967
    /* Get an upper bound on h */
    const float upper_h_max = c->dmin / (1.2f * kernel_gamma);
968

969
970
971
972
973
974
    /* Apply it */
    for (int i = 0; i < count; ++i) {
      if (parts[i].h == 0.f || parts[i].h > upper_h_max)
        parts[i].h = upper_h_max;
    }
  }
975

976
977
  /* Recurse and gather the new h_max values */
  if (c->split) {
978

979
980
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
981

982
983
        /* Recurse */
        cell_sanitize(c->progeny[k], (count < 1000));
984

985
986
987
988
        /* And collect */
        h_max = max(h_max, c->progeny[k]->h_max);
      }
    }
989
990
  } else {

991
992
    /* Get the new value of h_max */
    for (int i = 0; i < count; ++i) h_max = max(h_max, parts[i].h);
993
  }
994
995
996

  /* Record the change */
  c->h_max = h_max;
997
998
}

999
/**
1000
 * @brief Converts hydro quantities to a valid state after the initial density
1001
 * calculation
1002
1003
1004
1005
1006
1007
1008
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_convert_hydro(struct cell *c, void *data) {

  struct part *p = c->parts;
1009
  struct xpart *xp = c->xparts;
1010
1011

  for (int i = 0; i < c->count; ++i) {
1012
    hydro_convert_quantities(&p[i], &xp[i]);
1013
1014
1015
  }
}

Matthieu Schaller's avatar
Matthieu Schaller committed
1016
1017
1018
1019
1020
1021
/**
 * @brief Cleans the links in a given cell.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
1022
void cell_clean_links(struct cell *c, void *data) {
Matthieu Schaller's avatar
Matthieu Schaller committed
1023
  c->density = NULL;
1024
  c->gradient = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1025
  c->force = NULL;
1026
  c->grav = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1027
}
1028

1029
/**
1030
 * @brief Checks that the #part in a cell are at the
1031
 * current point in time
1032
1033
1034
1035
1036
1037
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
1038
void cell_check_part_drift_point(struct cell *c, void *data) {
1039

1040
1041
#ifdef SWIFT_DEBUG_CHECKS

1042
  const integertime_t ti_drift = *(integertime_t *)data;
1043

1044
  /* Only check local cells */
1045
  if (c->nodeID != engine_rank) return;
1046

1047
1048
1049
  if (c->ti_old_part != ti_drift)
    error("Cell in an incorrect time-zone! c->ti_old_part=%lld ti_drift=%lld",
          c->ti_old_part, ti_drift);
1050

1051
1052
  for (int i = 0; i < c->count; ++i)
    if (c->parts[i].ti_drift != ti_drift)
1053
      error("part in an incorrect time-zone! p->ti_drift=%lld ti_drift=%lld",
1054
            c->parts[i].ti_drift, ti_drift);
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

/**
 * @brief Checks that the #gpart and #spart in a cell are at the
 * current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_gpart_drift_point(struct cell *c, void *data) {

#ifdef SWIFT_DEBUG_CHECKS

  const integertime_t ti_drift = *(integertime_t *)data;

  /* Only check local cells */
  if (c->nodeID != engine_rank) return;

  if (c->ti_old_gpart != ti_drift)
    error("Cell in an incorrect time-zone! c->ti_old_gpart=%lld ti_drift=%lld",
          c->ti_old_gpart, ti_drift);
1081

1082
1083
  for (int i = 0; i < c->gcount; ++i)
    if (c->gparts[i].ti_drift != ti_drift)
1084
      error("g-part in an incorrect time-zone! gp->ti_drift=%lld ti_drift=%lld",
1085
            c->gparts[i].ti_drift, ti_drift);
1086

1087
1088
1089
1090
  for (int i = 0; i < c->scount; ++i)
    if (c->sparts[i].ti_drift != ti_drift)
      error("s-part in an incorrect time-zone! sp->ti_drift=%lld ti_drift=%lld",
            c->sparts[i].ti_drift, ti_drift);
1091
1092
1093
#else
  error("Calling debugging code without debugging flag activated.");
#endif
1094
1095
}

1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
/**
 * @brief Checks that the multipole of a cell is at the current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_multipole_drift_point(struct cell *c, void *data) {

#ifdef SWIFT_DEBUG_CHECKS

  const integertime_t ti_drift = *(integertime_t *)data;

  if (c->ti_old_multipole != ti_drift)
    error(
        "Cell multipole in an incorrect time-zone! c->ti_old_multipole=%lld "
1113
1114
        "ti_drift=%lld (depth=%d)",
        c->ti_old_multipole, ti_drift, c->depth);
1115
1116
1117
1118
1119
1120

#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
/**
 * @brief Resets all the individual cell task counters to 0.
 *
 * Should only be used for debugging purposes.
 *
 * @param c The #cell to reset.
 */
void cell_reset_task_counters(struct cell *c) {

#ifdef SWIFT_DEBUG_CHECKS
  for (int t = 0; t < task_type_count; ++t) c->tasks_executed[t] = 0;
  for (int t = 0; t < task_subtype_count; ++t) c->subtasks_executed[t] = 0;
#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

1138
1139
1140
1141
/**
 * @brief Recursively construct all the multipoles in a cell hierarchy.
 *
 * @param c The #cell.
Matthieu Schaller's avatar
Matthieu Schaller committed
1142
 * @param ti_current The current integer time.
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
 */
void cell_make_multipoles(struct cell *c, integertime_t ti_current) {

  /* Reset everything */
  gravity_reset(c->multipole);

  if (c->split) {

    /* Compute CoM of all progenies */
    double CoM[3] = {0., 0., 0.};
    double mass = 0.;

    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        const struct gravity_tensors *m = c->progeny[k]->multipole;
        CoM[0] += m->CoM[0] * m->m_pole.M_000;
        CoM[1] += m->CoM[1] * m->m_pole.M_000;
        CoM[2] += m->CoM[2] * m->m_pole.M_000;
        mass += m->m_pole.M_000;
      }
    }
    c->multipole->CoM[0] = CoM[0] / mass;
    c->multipole->CoM[1] = CoM[1] / mass;
    c->multipole->CoM[2] = CoM[2] / mass;

    /* Now shift progeny multipoles and add them up */
    struct multipole temp;
    double r_max = 0.;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        const struct cell *cp = c->progeny[k];
        const struct multipole *m = &cp->multipole->m_pole;

        /* Contribution to multipole */
        gravity_M2M(&temp, m, c->multipole->CoM, cp->multipole->CoM);
        gravity_multipole_add(&c->multipole->m_pole, &temp);

        /* Upper limit of max CoM<->gpart distance */
        const double dx = c->multipole->CoM[0] - cp->multipole->CoM[0];
        const double dy = c->multipole->CoM[1] - cp->multipole->CoM[1];
        const double dz = c->multipole->CoM[2] - cp->multipole->CoM[2];
        const double r2 = dx * dx + dy * dy + dz * dz;
        r_max = max(r_max, cp->multipole->r_max + sqrt(r2));
      }
    }
    /* Alternative upper limit of max CoM<->gpart distance */
    const double dx = c->multipole->CoM[0] > c->loc[0] + c->width[0] / 2.
                          ? c->multipole->CoM[0] - c->loc[0]
                          : c->loc[0] + c->width[0] - c->multipole->CoM[0];
    const double dy = c->multipole->CoM[1] > c->loc[1] + c->width[1] / 2.
                          ? c->multipole->CoM[1] - c->loc[1]
                          : c->loc[1] + c->width[1] - c->multipole->CoM[1];
    const double dz = c->multipole->CoM[2] > c->loc[2] + c->width[2] / 2.
                          ? c->multipole->CoM[2] - c->loc[2]
                          : c->loc[2] + c->width[2] - c->multipole->CoM[2];

    /* Take minimum of both limits */
    c->multipole->r_max = min(r_max, sqrt(dx * dx + dy * dy + dz * dz));

  } else {

    if (c->gcount > 0) {
      gravity_P2M(c->multipole, c->gparts, c->gcount);
      const double dx = c->multipole->CoM[0] > c->loc[0] + c->width[0] / 2.
                            ? c->multipole->CoM[0] - c->loc[0]
                            : c->loc[0] + c->width[0] - c->multipole->CoM[0];
      const double dy = c->multipole->CoM[1] > c->loc[1] + c->width[1] / 2.
                            ? c->multipole->CoM[1] - c->loc[1]
                            : c->loc[1] + c->width[1] - c->multipole->CoM[1];
      const double dz = c->multipole->CoM[2] > c->loc[2] + c->width[2] / 2.
                            ? c->multipole->CoM[2] - c->loc[2]
                            : c->loc[2] + c->width[2] - c->multipole->CoM[2];
      c->multipole->r_max = sqrt(dx * dx + dy * dy + dz * dz);
    } else {
      gravity_multipole_init(&c->multipole->m_pole);
      c->multipole->CoM[0] = c->loc[0] + c->width[0] / 2.;
      c->multipole->CoM[1] = c->loc[1] + c->width[1] / 2.;
      c->multipole->CoM[2] = c->loc[2] + c->width[2] / 2.;
      c->multipole->r_max = 0.;
    }
  }

  c->ti_old_multipole = ti_current;
}

1228
1229
1230
1231
1232
1233
1234
1235
1236
/**
 * @brief Computes the multi-pole brutally and compare to the
 * recursively computed one.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_check_multipole(struct cell *c, void *data) {

1237
#ifdef SWIFT_DEBUG_CHECKS
1238
  struct gravity_tensors ma;
1239
  const double tolerance = 1e-3; /* Relative */
1240

1241
1242
  return;

1243
1244
1245
1246
  /* First recurse */
  if (c->split)
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) cell_check_multipole(c->progeny[k], NULL);
1247
1248
1249
1250

  if (c->gcount > 0) {

    /* Brute-force calculation */
1251
    gravity_P2M(&ma, c->gparts, c->gcount);
1252
1253

    /* Now  compare the multipole expansion */
1254
    if (!gravity_multipole_equal(&ma, c->multipole, tolerance)) {
Matthieu Schaller's avatar
Matthieu Schaller committed
1255
1256
      message("Multipoles are not equal at depth=%d! tol=%f", c->depth,
              tolerance);
1257
      message("Correct answer:");
1258
      gravity_multipole_print(&ma.m_pole);
1259
      message("Recursive multipole:");
1260
      gravity_multipole_print(&c->multipole->m_pole);
1261
1262
      error("Aborting");
    }
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272

    /* Check that the upper limit of r_max is good enough */
    if (!(c->multipole->r_max >= ma.r_max)) {
      error("Upper-limit r_max=%e too small. Should be >=%e.",
            c->multipole->r_max, ma.r_max);
    } else if (c->multipole->r_max * c->multipole->r_max >
               3. * c->width[0] * c->width[0]) {
      error("r_max=%e larger than cell diagonal %e.", c->multipole->r_max,
            sqrt(3. * c->width[0] * c->width[0]));
    }
1273
  }
1274
1275
1276
#else
  error("Calling debugging code without debugging flag activated.");
#endif
1277
1278
}

1279
/**
1280
 * @brief Frees up the memory allocated for this #cell.
1281
 *
1282
 * @param c The #cell.
1283
 */
1284
1285
void cell_clean(struct cell *c) {

1286
1287
1288
1289
  for (int i = 0; i < 13; i++)
    if (c->sort[i] != NULL) {
      free(c->sort[i]);
      c->sort[i] = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1290
    }
1291
1292
1293
1294

  /* Recurse */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k]) cell_clean(c->progeny[k]);
1295
}
1296

1297
1298