plot_solution.py 4.88 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
###############################################################################
 # This file is part of SWIFT.
 # Copyright (c) 2019 Jacob Kegerreis (jacob.kegerreis@durham.ac.uk)
 # 
 # This program is free software: you can redistribute it and/or modify
 # it under the terms of the GNU Lesser General Public License as published
 # by the Free Software Foundation, either version 3 of the License, or
 # (at your option) any later version.
 # 
 # This program is distributed in the hope that it will be useful,
 # but WITHOUT ANY WARRANTY; without even the implied warranty of
 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 # GNU General Public License for more details.
 # 
 # You should have received a copy of the GNU Lesser General Public License
 # along with this program.  If not, see <http://www.gnu.org/licenses/>.
 # 
 ##############################################################################

# Plot the snapshots from the example giant impact on Uranus, showing the 
# particles in a thin slice near z=0, coloured by their material, similarish
# (but not identical) to Fig. 2 in Kegerreis et al. (2018).

import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import numpy as np
# import swiftsimio as sw
import h5py

font_size   = 20
params      = { 
    'axes.labelsize'    : font_size,
    'font.size'         : font_size,
    'xtick.labelsize'   : font_size,
    'ytick.labelsize'   : font_size,
    'text.usetex'       : True,
    'font.family'       : 'serif',
    }
matplotlib.rcParams.update(params)

# Snapshot output times
output_list = [4000, 9000, 14000, 20000, 30000, 40000]

# Material IDs ( = type_id * type_factor + unit_id )
type_factor = 100
type_HM80   = 2
id_body     = 10000
# Name and ID
Di_mat_id   = {
    'HM80_HHe'      : type_HM80 * type_factor,      # Hydrogen-helium atmosphere
    'HM80_ice'      : type_HM80 * type_factor + 1,  # H20-CH4-NH3 ice mix
    'HM80_ice_2'    : type_HM80 * type_factor + 1 + id_body,
    'HM80_rock'     : type_HM80 * type_factor + 2,  # SiO2-MgO-FeS-FeO rock mix
    'HM80_rock_2'   : type_HM80 * type_factor + 2 + id_body,
    }
# ID and colour
Di_id_colour    = {
    Di_mat_id['HM80_HHe']       : '#33DDFF',
    Di_mat_id['HM80_ice']       : 'lightsteelblue',
    Di_mat_id['HM80_ice_2']     : '#A080D0',
    Di_mat_id['HM80_rock']      : 'slategrey',
    Di_mat_id['HM80_rock_2']    : '#706050',
    }
   
def get_snapshot_slice(snapshot):
    """ Load and select the particles to plot. """
    # Load particle data
    # data    = load("uranus_1e6_%06d.hdf5" % snapshot)
    # id      = data.gas.particle_ids
    # pos     = data.gas.coordinates
    # mat_id  = data.gas.material
    with h5py.File("uranus_1e6_%06d.hdf5" % snapshot, 'r') as f:
        id      = f['PartType0/ParticleIDs'].value
        pos     = (f['PartType0/Coordinates'].value
                   - 0.5 * f['Header'].attrs['BoxSize'])
        mat_id  = f['PartType0/MaterialID'].value
                   
    # Edit the material ID of particles in the impactor
    num_in_target   = 869104
    sel_id          = np.where(num_in_target < id)[0]
    mat_id[sel_id]  += id_body
    
    # Select particles in a thin slice around z=0
    z_min   = -0.1
    z_max   = 0.1
    sel_z   = np.where((z_min < pos[:, 2]) & (pos[:, 2] < z_max))[0]
    pos     = pos[sel_z]
    mat_id  = mat_id[sel_z]
    
    return pos, mat_id

def plot_snapshot_slice(pos, mat_id):
    """ Plot the particles, coloured by their material. """
    colour  = np.empty(len(pos), dtype=object)
    for id, c in Di_id_colour.items():
        sel_c           = np.where(mat_id == id)[0]
        colour[sel_c]   = c

    ax.scatter(pos[:, 0], pos[:, 1], c=colour, edgecolors='none', marker='.', 
               s=10, alpha=0.5, zorder=0)

# Set up the figure
fig     = plt.figure(figsize=(12, 8))
gs      = matplotlib.gridspec.GridSpec(2, 3)
axes    = [plt.subplot(gs[i_y, i_x]) for i_y in range(2) for i_x in range(3)]

# Plot each snapshot
for i_ax, ax in enumerate(axes):
    plt.sca(ax)
    ax.set_rasterization_zorder(1)
    
    # Load and select the particles to plot
    pos, mat_id = get_snapshot_slice(output_list[i_ax])
    
    # Plot the particles, coloured by their material
    plot_snapshot_slice(pos, mat_id)
    
    # Axes etc.
    ax.set_aspect('equal')
    ax.set_facecolor('k')
    
    ax.set_xlim(-13, 13)
    ax.set_ylim(-13, 13)

    if i_ax in [0, 3]:
        ax.set_ylabel(r"y Postion $(R_\oplus)$")
    else: 
        ax.set_yticklabels([])
    if 2 < i_ax:
        ax.set_xlabel(r"x Postion $(R_\oplus)$")
    else: 
        ax.set_xticklabels([])
        
    # Corner time labels 
    x   = ax.get_xlim()[0] + 0.04 * (ax.get_xlim()[1] - ax.get_xlim()[0])
    y   = ax.get_ylim()[0] + 0.89 * (ax.get_ylim()[1] - ax.get_ylim()[0])
    ax.text(x, y, "%.1f h" % (output_list[i_ax] / 60**2), color='w')

plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()

# Save
plt.savefig("uranus_1e6.pdf", dpi=200)