cell.c 202 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "black_holes.h"
53
#include "chemistry.h"
54
#include "drift.h"
55
#include "engine.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
56
#include "entropy_floor.h"
57
#include "error.h"
58
#include "feedback.h"
59
#include "gravity.h"
60
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
61
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
62
#include "memswap.h"
63
#include "minmax.h"
64
#include "multipole.h"
65
#include "pressure_floor.h"
66
#include "scheduler.h"
67
#include "space.h"
68
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
69
#include "star_formation.h"
Loic Hausammann's avatar
Loic Hausammann committed
70
#include "stars.h"
71
#include "task_order.h"
72
#include "timers.h"
73
#include "tools.h"
74
#include "tracers.h"
75

76
77
extern int engine_star_resort_task_depth;

78
79
80
/* Global variables. */
int cell_next_tag = 0;

Pedro Gonnet's avatar
Pedro Gonnet committed
81
/** List of cell pairs for sub-cell recursion. For any sid, the entries in
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
 * this array contain the number of sub-cell pairs and the indices and sid
 * of the sub-cell pairs themselves. */
struct cell_split_pair cell_split_pairs[13] = {
    {1, /* (  1 ,  1 ,  1 ) */
     {{7, 0, 0}}},

    {4, /* (  1 ,  1 ,  0 ) */
     {{6, 0, 1}, {7, 1, 1}, {6, 1, 0}, {7, 0, 2}}},

    {1, /* (  1 ,  1 , -1 ) */
     {{6, 1, 2}}},

    {4, /* (  1 ,  0 ,  1 ) */
     {{5, 0, 3}, {7, 2, 3}, {5, 2, 0}, {7, 0, 6}}},

    {16, /* (  1 ,  0 ,  0 ) */
     {{4, 0, 4},
      {5, 0, 5},
      {6, 0, 7},
      {7, 0, 8},
      {4, 1, 3},
      {5, 1, 4},
      {6, 1, 6},
      {7, 1, 7},
      {4, 2, 1},
      {5, 2, 2},
      {6, 2, 4},
      {7, 2, 5},
      {4, 3, 0},
      {5, 3, 1},
      {6, 3, 3},
      {7, 3, 4}}},

    {4, /* (  1 ,  0 , -1 ) */
     {{4, 1, 5}, {6, 3, 5}, {4, 3, 2}, {6, 1, 8}}},

    {1, /* (  1 , -1 ,  1 ) */
     {{5, 2, 6}}},

    {4, /* (  1 , -1 ,  0 ) */
     {{4, 3, 6}, {5, 2, 8}, {4, 2, 7}, {5, 3, 7}}},

    {1, /* (  1 , -1 , -1 ) */
     {{4, 3, 8}}},

    {4, /* (  0 ,  1 ,  1 ) */
     {{3, 0, 9}, {7, 4, 9}, {3, 4, 0}, {7, 0, 8}}},

    {16, /* (  0 ,  1 ,  0 ) */
     {{2, 0, 10},
      {3, 0, 11},
      {6, 0, 7},
      {7, 0, 6},
      {2, 1, 9},
      {3, 1, 10},
      {6, 1, 8},
      {7, 1, 7},
      {2, 4, 1},
      {3, 4, 2},
      {6, 4, 10},
      {7, 4, 11},
      {2, 5, 0},
      {3, 5, 1},
      {6, 5, 9},
      {7, 5, 10}}},

    {4, /* (  0 ,  1 , -1 ) */
     {{2, 1, 11}, {6, 5, 11}, {2, 5, 2}, {6, 1, 6}}},

    {16, /* (  0 ,  0 ,  1 ) */
     {{1, 0, 12},
      {3, 0, 11},
      {5, 0, 5},
      {7, 0, 2},
      {1, 2, 9},
      {3, 2, 12},
      {5, 2, 8},
      {7, 2, 5},
      {1, 4, 3},
      {3, 4, 6},
      {5, 4, 12},
      {7, 4, 11},
      {1, 6, 0},
      {3, 6, 3},
      {5, 6, 9},
      {7, 6, 12}}}};

169
170
171
172
173
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
174
int cell_getsize(struct cell *c) {
Pedro Gonnet's avatar
Pedro Gonnet committed
175
176
  /* Number of cells in this subtree. */
  int count = 1;
177

178
179
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
180
    for (int k = 0; k < 8; k++)
181
182
183
184
185
186
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

187
/**
188
 * @brief Link the cells recursively to the given #part array.
189
190
191
192
193
194
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
195
int cell_link_parts(struct cell *c, struct part *parts) {
196
#ifdef SWIFT_DEBUG_CHECKS
197
198
199
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

200
  if (c->hydro.parts != NULL)
201
202
203
    error("Linking parts into a cell that was already linked");
#endif

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
  c->hydro.parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->hydro.count;
}

/**
220
 * @brief Link the cells recursively to the given #gpart array.
221
222
 *
 * @param c The #cell.
223
 * @param gparts The #gpart array.
224
225
226
 *
 * @return The number of particles linked.
 */
227
int cell_link_gparts(struct cell *c, struct gpart *gparts) {
228
229
230
231
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

232
  if (c->grav.parts != NULL)
233
    error("Linking gparts into a cell that was already linked");
234
#endif
235

236
  c->grav.parts = gparts;
237
238
239
240
241
242
243
244
245
246
247

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
248
  return c->grav.count;
249
250
}

251
252
253
254
255
256
257
258
259
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {
260
261
262
263
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

264
  if (c->stars.parts != NULL)
265
266
267
    error("Linking sparts into a cell that was already linked");
#endif

268
  c->stars.parts = sparts;
269
  c->stars.parts_rebuild = sparts;
270
271
272
273
274
275
276
277
278
279
280

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
281
  return c->stars.count;
282
283
}

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/**
 * @brief Link the cells recursively to the given #bpart array.
 *
 * @param c The #cell.
 * @param bparts The #bpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_bparts(struct cell *c, struct bpart *bparts) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

  if (c->black_holes.parts != NULL)
    error("Linking bparts into a cell that was already linked");
#endif

  c->black_holes.parts = bparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_bparts(c->progeny[k], &bparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->black_holes.count;
}

317
318
319
320
321
322
323
324
325
326
/**
 * @brief Recurse down foreign cells until reaching one with hydro
 * tasks; then trigger the linking of the #part array from that
 * level.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
327
int cell_link_foreign_parts(struct cell *c, struct part *parts) {
328
329
#ifdef WITH_MPI

330
331
332
333
334
335
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
336
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

    /* Recursively attach the parts */
    const int counts = cell_link_parts(c, parts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->hydro.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_parts(c->progeny[k], &parts[count]);
      }
    }
355
356
357
    return count;
  } else {
    return 0;
358
  }
359
360
361
362

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
363
364
}

365
366
367
368
369
370
371
372
373
374
/**
 * @brief Recurse down foreign cells until reaching one with gravity
 * tasks; then trigger the linking of the #gpart array from that
 * level.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
375
int cell_link_foreign_gparts(struct cell *c, struct gpart *gparts) {
376
377
#ifdef WITH_MPI

378
379
380
381
382
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

383
384
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
385

386
    /* Recursively attach the gparts */
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    const int counts = cell_link_gparts(c, gparts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->grav.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_gparts(c->progeny[k], &gparts[count]);
      }
    }
403
404
405
    return count;
  } else {
    return 0;
406
  }
407
408
409
410

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
411
412
}

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/**
 * @brief Recursively nullify all the particle pointers in a cell hierarchy.
 *
 * Should only be used on foreign cells!
 *
 * This will make any task or action running on these cells likely crash.
 * Recreating the foreign links will be necessary.
 *
 * @param c The #cell to act on.
 */
void cell_unlink_foreign_particles(struct cell *c) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Unlinking foreign particles in a local cell!");
#endif

  c->grav.parts = NULL;
  c->hydro.parts = NULL;
  c->stars.parts = NULL;
  c->black_holes.parts = NULL;

  if (c->split) {
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        cell_unlink_foreign_particles(c->progeny[k]);
      }
    }
  }
}

444
445
446
447
448
449
450
451
/**
 * @brief Recursively count the number of #part in foreign cells that
 * are in cells with hydro-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
452
int cell_count_parts_for_tasks(const struct cell *c) {
453
454
#ifdef WITH_MPI

455
456
457
458
459
460
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
461
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
462
463
464
465
466
467
468
469
470
471
    return c->hydro.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_parts_for_tasks(c->progeny[k]);
      }
    }
472
473
474
    return count;
  } else {
    return 0;
475
  }
476
477
478
479

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
480
481
}

482
483
484
485
486
487
488
489
/**
 * @brief Recursively count the number of #gpart in foreign cells that
 * are in cells with gravity-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
490
int cell_count_gparts_for_tasks(const struct cell *c) {
491
492
#ifdef WITH_MPI

493
494
495
496
497
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

498
499
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
500
501
502
503
504
505
506
507
508
509
    return c->grav.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_gparts_for_tasks(c->progeny[k]);
      }
    }
510
511
512
    return count;
  } else {
    return 0;
513
  }
514
515
516
517

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
518
519
}

520
521
522
523
524
525
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
526
527
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
528
529
530
 *
 * @return The number of packed cells.
 */
531
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
532
              const int with_gravity) {
533
534
#ifdef WITH_MPI

535
  /* Start by packing the data of the current cell. */
536
  pc->hydro.h_max = c->hydro.h_max;
537
  pc->stars.h_max = c->stars.h_max;
538
  pc->black_holes.h_max = c->black_holes.h_max;
539
540
541
542
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
543
  pc->stars.ti_end_min = c->stars.ti_end_min;
544
  pc->stars.ti_end_max = c->stars.ti_end_max;
545
546
  pc->black_holes.ti_end_min = c->black_holes.ti_end_min;
  pc->black_holes.ti_end_max = c->black_holes.ti_end_max;
547
548
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
549
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
550
  pc->stars.ti_old_part = c->stars.ti_old_part;
551
  pc->hydro.count = c->hydro.count;
552
553
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
554
  pc->black_holes.count = c->black_holes.count;
555
  pc->maxdepth = c->maxdepth;
556

557
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
558
  if (with_gravity) {
559
    const struct gravity_tensors *mp = c->grav.multipole;
560

561
562
563
564
565
566
567
568
569
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
570
571
  }

572
573
574
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
575
576

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
577
578
  int count = 1;
  for (int k = 0; k < 8; k++)
579
580
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
581
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
582
    } else {
583
      pc->progeny[k] = -1;
584
    }
585
586

  /* Return the number of packed cells used. */
587
  c->mpi.pcell_size = count;
588
  return count;
589
590
591
592
593

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
594
595
}

596
597
598
599
600
601
602
603
604
605
606
607
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {
#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
608
  tags[0] = c->mpi.tag;
609
610
611
612
613
614
615
616

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
617
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
618
619
620
621
622
623
624
625
626
627
628
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
void cell_pack_part_swallow(const struct cell *c,
                            struct black_holes_part_data *data) {

  const size_t count = c->hydro.count;
  const struct part *parts = c->hydro.parts;

  for (size_t i = 0; i < count; ++i) {
    data[i] = parts[i].black_holes_data;
  }
}

void cell_unpack_part_swallow(struct cell *c,
                              const struct black_holes_part_data *data) {

  const size_t count = c->hydro.count;
  struct part *parts = c->hydro.parts;

  for (size_t i = 0; i < count; ++i) {
    parts[i].black_holes_data = data[i];
  }
}

651
652
653
654
655
656
657
void cell_pack_bpart_swallow(const struct cell *c,
                             struct black_holes_bpart_data *data) {

  const size_t count = c->black_holes.count;
  const struct bpart *bparts = c->black_holes.parts;

  for (size_t i = 0; i < count; ++i) {
658
    data[i] = bparts[i].merger_data;
659
660
661
662
663
664
665
666
667
668
669
670
671
672
  }
}

void cell_unpack_bpart_swallow(struct cell *c,
                               const struct black_holes_bpart_data *data) {

  const size_t count = c->black_holes.count;
  struct bpart *bparts = c->black_holes.parts;

  for (size_t i = 0; i < count; ++i) {
    bparts[i].merger_data = data[i];
  }
}

673
674
675
676
677
678
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
679
680
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
681
682
683
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
684
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
685
                struct space *restrict s, const int with_gravity) {
686
687
688
#ifdef WITH_MPI

  /* Unpack the current pcell. */
689
  c->hydro.h_max = pc->hydro.h_max;
690
  c->stars.h_max = pc->stars.h_max;
691
  c->black_holes.h_max = pc->black_holes.h_max;
692
693
694
695
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
696
  c->stars.ti_end_min = pc->stars.ti_end_min;
697
  c->stars.ti_end_max = pc->stars.ti_end_max;
698
699
  c->black_holes.ti_end_min = pc->black_holes.ti_end_min;
  c->black_holes.ti_end_max = pc->black_holes.ti_end_max;
700
701
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
702
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
703
  c->stars.ti_old_part = pc->stars.ti_old_part;
704
  c->black_holes.ti_old_part = pc->black_holes.ti_old_part;
705
  c->hydro.count = pc->hydro.count;
706
707
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
708
  c->black_holes.count = pc->black_holes.count;
709
710
  c->maxdepth = pc->maxdepth;

711
712
713
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
714

715
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
716
  if (with_gravity) {
717
    struct gravity_tensors *mp = c->grav.multipole;
718

719
720
721
722
723
724
725
726
727
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
728
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
729

730
731
732
733
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
734
  c->split = 0;
735
736
737
738
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
739
      temp->hydro.count = 0;
740
741
      temp->grav.count = 0;
      temp->stars.count = 0;
742
743
744
745
746
747
748
749
750
751
752
753
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
754
      temp->hydro.dx_max_part = 0.f;
755
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
756
      temp->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
757
      temp->stars.dx_max_sort = 0.f;
758
      temp->black_holes.dx_max_part = 0.f;
759
760
761
762
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
763
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
764
765
766
    }

  /* Return the total number of unpacked cells. */
767
  c->mpi.pcell_size = count;
768
769
770
771
772
773
774
775
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

776
777
778
779
780
781
782
783
784
785
786
787
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {
#ifdef WITH_MPI

  /* Unpack the current pcell. */
788
  c->mpi.tag = tags[0];
789
790
791
792
793
794
795
796
797
798
799

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
800
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
801
802
803
804
805
806
807
808
809
810
811
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

812
813
814
815
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
816
 * @param pcells (output) The end-of-timestep information we pack into
817
818
819
 *
 * @return The number of packed cells.
 */
820
821
int cell_pack_end_step_hydro(struct cell *restrict c,
                             struct pcell_step_hydro *restrict pcells) {
822
823
#ifdef WITH_MPI

824
  /* Pack this cell's data. */
825
826
827
  pcells[0].ti_end_min = c->hydro.ti_end_min;
  pcells[0].ti_end_max = c->hydro.ti_end_max;
  pcells[0].dx_max_part = c->hydro.dx_max_part;
828

829
830
831
832
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
833
      count += cell_pack_end_step_hydro(c->progeny[k], &pcells[count]);
834
835
836
837
    }

  /* Return the number of packed values. */
  return count;
838
839
840
841
842

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
843
844
}

845
846
847
848
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
849
 * @param pcells The end-of-timestep information to unpack
850
851
852
 *
 * @return The number of cells created.
 */
853
854
int cell_unpack_end_step_hydro(struct cell *restrict c,
                               struct pcell_step_hydro *restrict pcells) {
855
856
#ifdef WITH_MPI

857
  /* Unpack this cell's data. */
858
859
860
  c->hydro.ti_end_min = pcells[0].ti_end_min;
  c->hydro.ti_end_max = pcells[0].ti_end_max;
  c->hydro.dx_max_part = pcells[0].dx_max_part;
861

862
863
864
865
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
      count += cell_unpack_end_step_hydro(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_grav(struct cell *restrict c,
                            struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->grav.ti_end_min;
  pcells[0].ti_end_max = c->grav.ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_grav(struct cell *restrict c,
                              struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->grav.ti_end_min = pcells[0].ti_end_min;
  c->grav.ti_end_max = pcells[0].ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_stars(struct cell *restrict c,
                             struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->stars.ti_end_min;
  pcells[0].ti_end_max = c->stars.ti_end_max;
  pcells[0].dx_max_part = c->stars.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_stars(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_stars(struct cell *restrict c,
                               struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->stars.ti_end_min = pcells[0].ti_end_min;
  c->stars.ti_end_max = pcells[0].ti_end_max;
  c->stars.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_stars(c->progeny[k], &pcells[count]);
997
998
999
    }

  /* Return the number of packed values. */
1000
  return count;
1001
1002
1003
1004
1005

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
1006
}
1007

1008
1009
1010
1011
1012
1013
1014
1015
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
1016
1017
int cell_pack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->black_holes.ti_end_min;
  pcells[0].ti_end_max = c->black_holes.ti_end_max;
  pcells[0].dx_max_part = c->black_holes.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
1050
1051
int cell_unpack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->black_holes.ti_end_min = pcells[0].ti_end_min;
  c->black_holes.ti_end_max = pcells[0].ti_end_max;
  c->black_holes.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1076
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
1077
1078
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
1079
1080
1081
1082
1083
1084
1085
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1086
                         struct gravity_tensors *restrict pcells) {
1087
1088
1089
#ifdef WITH_MPI

  /* Pack this cell's data. */
1090
  pcells[0] = *c->grav.multipole;
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1117
                           struct gravity_tensors *restrict pcells) {
1118
1119
1120
#ifdef WITH_MPI

  /* Unpack this cell's data. */
1121
  *c->grav.multipole = pcells[0];
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
/**
 * @brief Pack the counts for star formation of the given cell and all it's
 * sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_sf_counts(struct cell *restrict c,
                        struct pcell_sf *restrict pcells) {

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].stars.delta_from_rebuild = c->stars.parts - c->stars.parts_rebuild;
  pcells[0].stars.count = c->stars.count;
1156
  pcells[0].stars.dx_max_part = c->stars.dx_max_part;
1157

1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
#ifdef SWIFT_DEBUG_CHECKS
  if (c->stars.parts_rebuild == NULL)
    error("Star particles array at rebuild is NULL! c->depth=%d", c->depth);

  if (pcells[0].stars.delta_from_rebuild < 0)
    error("Stars part pointer moved in the wrong direction!");

  if (pcells[0].stars.delta_from_rebuild > 0 && c->depth == 0)
    error("Shifting the top-level pointer is not allowed!");
#endif

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_sf_counts(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the counts for star formation of a given cell and its
 * sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_sf_counts(struct cell *restrict c,
                          struct pcell_sf *restrict pcells) {

#ifdef WITH_MPI

#ifdef SWIFT_DEBUG_CHECKS
  if (c->stars.parts_rebuild == NULL)
    error("Star particles array at rebuild is NULL!");
#endif

  /* Unpack this cell's data. */
  c->stars.count = pcells[0].stars.count;
  c->stars.parts = c->stars.parts_rebuild + pcells[0].stars.delta_from_rebuild;
1207
  c->stars.dx_max_part = pcells[0].stars.dx_max_part;
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_sf_counts(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1225
/**
1226
 * @brief Lock a cell for access to its array of #part and hold its parents.
1227
1228
 *
 * @param c The #cell.
1229
 * @return 0 on success, 1 on failure
1230
 */
1231
int cell_locktree(struct cell *c) {
1232
  TIMER_TIC;
1233
1234

  /* First of all, try to lock this cell. */
1235
  if (c->hydro.hold || lock_trylock(&c->hydro.lock) != 0) {
1236
1237
1238
1239
1240
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1241
  if (c->hydro.hold) {
1242
    /* Unlock this cell. */
1243
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1244
1245
1246
1247
1248
1249
1250

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1251
  struct cell *finger;
1252
1253
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1254
    if (lock_trylock(&finger->hydro.lock) != 0) break;
1255
1256

    /* Increment the hold. */
1257
    atomic_inc(&finger->hydro.hold);
1258
1259

    /* Unlock the cell. */
1260
    if (lock_unlock(&finger->hydro.lock) != 0) error("Failed to unlock cell.");
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1272
1273
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1274
      atomic_dec(&finger2->hydro.hold);
1275
1276

    /* Unlock this cell. */
1277
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1278
1279
1280
1281
1282
1283
1284

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1285
1286
1287
1288
1289
1290
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
1291
int cell_glocktree(struct cell *c) {
1292
  TIMER_TIC;
1293
1294

  /* First of all, try to lock this cell. */
1295
  if (c->grav.phold || lock_trylock(&c->grav.plock) != 0) {
1296
1297
1298
1299
1300
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1301
  if (c->grav.phold) {
1302
    /* Unlock this cell. */
1303
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1304
1305
1306
1307
1308
1309
1310

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1311
  struct cell *finger;
1312
1313
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1314
    if (lock_trylock(&finger->grav.plock) != 0) break;
1315
1316

    /* Increment the hold. */
1317
    atomic_inc(&finger->grav.phold);
1318
1319

    /* Unlock the cell. */
1320
    if (lock_unlock(&finger->grav.plock) != 0) error("Failed to unlock cell.");
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1332
1333
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1334
      atomic_dec(&finger2->grav.phold);
1335
1336

    /* Unlock this cell. */
1337
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1338
1339
1340
1341
1342
1343

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
1344

1345
1346
1347
1348
1349
1350
1351
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {
1352
1353
  TIMER_TIC;

1354
  /* First of all, try to lock this cell. */
1355
  if (c->grav.mhold || lock_trylock(&c->grav.mlock) != 0) {
1356
1357
1358
1359
1360
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1361
  if (c->grav.mhold) {
1362
    /* Unlock this cell. */
1363
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1374
    if (lock_trylock(&finger->grav.mlock) != 0) break;
1375
1376

    /* Increment the hold. */
1377
    atomic_inc(&finger->grav.mhold);
1378
1379

    /* Unlock the cell. */
1380
    if (lock_unlock(&finger->grav.mlock) != 0) error("Failed to unlock cell.");