hydro_iact.h 42.5 KB
Newer Older
1
2
/*******************************************************************************
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
5
 *
6
7
8
9
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
10
 *
11
12
13
14
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
15
 *
16
17
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18
 *
19
 ******************************************************************************/
20
21
#ifndef SWIFT_GADGET2_HYDRO_IACT_H
#define SWIFT_GADGET2_HYDRO_IACT_H
22
23

/**
24
 * @file Gadget2/hydro_iact.h
25
26
 * @brief SPH interaction functions following the Gadget-2 version of SPH.
 *
27
 * The interactions computed here are the ones presented in the Gadget-2 paper
28
29
 * Springel, V., MNRAS, Volume 364, Issue 4, pp. 1105-1134.
 * We use the same numerical coefficients as the Gadget-2 code. When used with
30
31
32
 * the Spline-3 kernel, the results should be equivalent to the ones obtained
 * with Gadget-2 up to the rounding errors and interactions missed by the
 * Gadget-2 tree-code neighbours search.
33
34
 */

35
#include "cache.h"
James Willis's avatar
James Willis committed
36
#include "minmax.h"
37

38
39
40
/**
 * @brief Density loop
 */
41
42
43
__attribute__((always_inline)) INLINE static void runner_iact_density(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

44
45
  float wi, wi_dx;
  float wj, wj_dx;
46
  float dv[3], curlvr[3];
47

48
  /* Get the masses. */
49
  const float mi = pi->mass;
50
51
52
53
54
55
56
57
58
59
60
61
62
  const float mj = pj->mass;

  /* Get r and r inverse. */
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Compute the kernel function for pi */
  const float hi_inv = 1.f / hi;
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);

  /* Compute contribution to the density */
  pi->rho += mj * wi;
63
  pi->density.rho_dh -= mj * (hydro_dimension * wi + ui * wi_dx);
64

65
66
  /* Compute contribution to the number of neighbours */
  pi->density.wcount += wi;
67
  pi->density.wcount_dh -= (hydro_dimension * wi + ui * wi_dx);
68
69
70
71
72
73
74
75

  /* Compute the kernel function for pj */
  const float hj_inv = 1.f / hj;
  const float uj = r * hj_inv;
  kernel_deval(uj, &wj, &wj_dx);

  /* Compute contribution to the density */
  pj->rho += mi * wj;
76
  pj->density.rho_dh -= mi * (hydro_dimension * wj + uj * wj_dx);
77

78
79
  /* Compute contribution to the number of neighbours */
  pj->density.wcount += wj;
80
  pj->density.wcount_dh -= (hydro_dimension * wj + uj * wj_dx);
81

82
83
  const float faci = mj * wi_dx * r_inv;
  const float facj = mi * wj_dx * r_inv;
84

85
86
87
88
  /* Compute dv dot r */
  dv[0] = pi->v[0] - pj->v[0];
  dv[1] = pi->v[1] - pj->v[1];
  dv[2] = pi->v[2] - pj->v[2];
89
90
  const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];

91
92
  pi->density.div_v -= faci * dvdr;
  pj->density.div_v -= facj * dvdr;
93
94
95
96
97
98

  /* Compute dv cross r */
  curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
  curlvr[1] = dv[2] * dx[0] - dv[0] * dx[2];
  curlvr[2] = dv[0] * dx[1] - dv[1] * dx[0];

99
100
101
  pi->density.rot_v[0] += faci * curlvr[0];
  pi->density.rot_v[1] += faci * curlvr[1];
  pi->density.rot_v[2] += faci * curlvr[2];
102

103
104
105
  pj->density.rot_v[0] += facj * curlvr[0];
  pj->density.rot_v[1] += facj * curlvr[1];
  pj->density.rot_v[2] += facj * curlvr[2];
106
107
}

108
109
110
111
112
113
/**
 * @brief Density loop (Vectorized version)
 */
__attribute__((always_inline)) INLINE static void runner_iact_vec_density(
    float *R2, float *Dx, float *Hi, float *Hj, struct part **pi,
    struct part **pj) {
114

115
#ifdef WITH_OLD_VECTORIZATION
116

117
  vector r, ri, r2, ui, uj, hi, hj, hi_inv, hj_inv, wi, wj, wi_dx, wj_dx;
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
  vector rhoi, rhoj, rhoi_dh, rhoj_dh, wcounti, wcountj, wcounti_dh, wcountj_dh;
  vector mi, mj;
  vector dx[3], dv[3];
  vector vi[3], vj[3];
  vector dvdr, div_vi, div_vj;
  vector curlvr[3], curl_vi[3], curl_vj[3];
  int k, j;

#if VEC_SIZE == 8
  /* Get the masses. */
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass,
                 pi[4]->mass, pi[5]->mass, pi[6]->mass, pi[7]->mass);
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass,
                 pj[4]->mass, pj[5]->mass, pj[6]->mass, pj[7]->mass);
  /* Get each velocity component. */
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k],
                      pi[4]->v[k], pi[5]->v[k], pi[6]->v[k], pi[7]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k],
                      pj[4]->v[k], pj[5]->v[k], pj[6]->v[k], pj[7]->v[k]);
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
139
140
  /* Get each component of particle separation.
   * (Dx={dx1,dy1,dz1,dx2,dy2,dz2,...,dxn,dyn,dzn})*/
141
142
143
144
145
146
147
148
149
150
151
152
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k], Dx[12 + k],
                      Dx[15 + k], Dx[18 + k], Dx[21 + k]);
#elif VEC_SIZE == 4
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass);
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass);
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k]);
153
#else
154
  error("Unknown vector size.");
155
156
157
158
#endif

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
159
  ri = vec_reciprocal_sqrt(r2);
160
161
162
  r.v = r2.v * ri.v;

  hi.v = vec_load(Hi);
163
  hi_inv = vec_reciprocal(hi);
164
  ui.v = r.v * hi_inv.v;
165
166

  hj.v = vec_load(Hj);
167
  hj_inv = vec_reciprocal(hj);
168
  uj.v = r.v * hj_inv.v;
169
170

  /* Compute the kernel function. */
171
172
  kernel_deval_vec(&ui, &wi, &wi_dx);
  kernel_deval_vec(&uj, &wj, &wj_dx);
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

  /* Compute dv. */
  dv[0].v = vi[0].v - vj[0].v;
  dv[1].v = vi[1].v - vj[1].v;
  dv[2].v = vi[2].v - vj[2].v;

  /* Compute dv dot r */
  dvdr.v = (dv[0].v * dx[0].v) + (dv[1].v * dx[1].v) + (dv[2].v * dx[2].v);
  dvdr.v = dvdr.v * ri.v;

  /* Compute dv cross r */
  curlvr[0].v = dv[1].v * dx[2].v - dv[2].v * dx[1].v;
  curlvr[1].v = dv[2].v * dx[0].v - dv[0].v * dx[2].v;
  curlvr[2].v = dv[0].v * dx[1].v - dv[1].v * dx[0].v;
  for (k = 0; k < 3; k++) curlvr[k].v *= ri.v;

  /* Compute density of pi. */
  rhoi.v = mj.v * wi.v;
191
  rhoi_dh.v = mj.v * (vec_set1(hydro_dimension) * wi.v + ui.v * wi_dx.v);
192
  wcounti.v = wi.v;
193
  wcounti_dh.v = (vec_set1(hydro_dimension) * wi.v + ui.v * wi_dx.v);
194
195
196
197
198
  div_vi.v = mj.v * dvdr.v * wi_dx.v;
  for (k = 0; k < 3; k++) curl_vi[k].v = mj.v * curlvr[k].v * wi_dx.v;

  /* Compute density of pj. */
  rhoj.v = mi.v * wj.v;
199
  rhoj_dh.v = mi.v * (vec_set1(hydro_dimension) * wj.v + uj.v * wj_dx.v);
200
  wcountj.v = wj.v;
201
  wcountj_dh.v = (vec_set1(hydro_dimension) * wj.v + uj.v * wj_dx.v);
202
203
204
205
206
207
  div_vj.v = mi.v * dvdr.v * wj_dx.v;
  for (k = 0; k < 3; k++) curl_vj[k].v = mi.v * curlvr[k].v * wj_dx.v;

  /* Update particles. */
  for (k = 0; k < VEC_SIZE; k++) {
    pi[k]->rho += rhoi.f[k];
208
    pi[k]->density.rho_dh -= rhoi_dh.f[k];
209
210
    pi[k]->density.wcount += wcounti.f[k];
    pi[k]->density.wcount_dh -= wcounti_dh.f[k];
211
    pi[k]->density.div_v -= div_vi.f[k];
212
213
    for (j = 0; j < 3; j++) pi[k]->density.rot_v[j] += curl_vi[j].f[k];
    pj[k]->rho += rhoj.f[k];
214
    pj[k]->density.rho_dh -= rhoj_dh.f[k];
215
216
    pj[k]->density.wcount += wcountj.f[k];
    pj[k]->density.wcount_dh -= wcountj_dh.f[k];
217
    pj[k]->density.div_v -= div_vj.f[k];
218
219
220
221
222
    for (j = 0; j < 3; j++) pj[k]->density.rot_v[j] += curl_vj[j].f[k];
  }

#else

Matthieu Schaller's avatar
Matthieu Schaller committed
223
224
  error(
      "The Gadget2 serial version of runner_iact_density was called when the "
225
      "vectorised version should have been used.");
226
227

#endif
228
229
}

230
231
232
/**
 * @brief Density loop (non-symmetric version)
 */
233
234
235
236
237
238
239
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_density(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

  float wi, wi_dx;
  float dv[3], curlvr[3];

  /* Get the masses. */
240
  const float mj = pj->mass;
241
242

  /* Get r and r inverse. */
243
  const float r = sqrtf(r2);
244
  const float r_inv = 1.0f / r;
245

246
  /* Compute the kernel function */
247
248
249
  const float hi_inv = 1.0f / hi;
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
250
251
252

  /* Compute contribution to the density */
  pi->rho += mj * wi;
253
  pi->density.rho_dh -= mj * (hydro_dimension * wi + ui * wi_dx);
254
255
256

  /* Compute contribution to the number of neighbours */
  pi->density.wcount += wi;
257
  pi->density.wcount_dh -= (hydro_dimension * wi + ui * wi_dx);
258

259
  const float fac = mj * wi_dx * r_inv;
260

261
262
263
264
265
  /* Compute dv dot r */
  dv[0] = pi->v[0] - pj->v[0];
  dv[1] = pi->v[1] - pj->v[1];
  dv[2] = pi->v[2] - pj->v[2];
  const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];
266
  pi->density.div_v -= fac * dvdr;
267

268
269
270
271
272
  /* Compute dv cross r */
  curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
  curlvr[1] = dv[2] * dx[0] - dv[0] * dx[2];
  curlvr[2] = dv[0] * dx[1] - dv[1] * dx[0];

273
274
275
  pi->density.rot_v[0] += fac * curlvr[0];
  pi->density.rot_v[1] += fac * curlvr[1];
  pi->density.rot_v[2] += fac * curlvr[2];
276
277
}

278
279
280
281
282
283
/**
 * @brief Density loop (non-symmetric vectorized version)
 */
__attribute__((always_inline)) INLINE static void
runner_iact_nonsym_vec_density(float *R2, float *Dx, float *Hi, float *Hj,
                               struct part **pi, struct part **pj) {
284

285
#ifdef WITH_OLD_VECTORIZATION
286

287
  vector r, ri, r2, ui, hi, hi_inv, wi, wi_dx;
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
  vector rhoi, rhoi_dh, wcounti, wcounti_dh, div_vi;
  vector mj;
  vector dx[3], dv[3];
  vector vi[3], vj[3];
  vector dvdr;
  vector curlvr[3], curl_vi[3];
  int k, j;

#if VEC_SIZE == 8
  /* Get the masses. */
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass,
                 pj[4]->mass, pj[5]->mass, pj[6]->mass, pj[7]->mass);
  /* Get each velocity component. */
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k],
                      pi[4]->v[k], pi[5]->v[k], pi[6]->v[k], pi[7]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k],
                      pj[4]->v[k], pj[5]->v[k], pj[6]->v[k], pj[7]->v[k]);
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
307
308
  /* Get each component of particle separation.
   * (Dx={dx1,dy1,dz1,dx2,dy2,dz2,...,dxn,dyn,dzn})*/
309
310
311
312
313
314
315
316
317
318
319
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k], Dx[12 + k],
                      Dx[15 + k], Dx[18 + k], Dx[21 + k]);
#elif VEC_SIZE == 4
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass);
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k]);
320
#else
321
  error("Unknown vector size.");
322
323
324
325
#endif

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
326
  ri = vec_reciprocal_sqrt(r2);
327
328
329
  r.v = r2.v * ri.v;

  hi.v = vec_load(Hi);
330
  hi_inv = vec_reciprocal(hi);
331
  ui.v = r.v * hi_inv.v;
332

333
  kernel_deval_vec(&ui, &wi, &wi_dx);
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

  /* Compute dv. */
  dv[0].v = vi[0].v - vj[0].v;
  dv[1].v = vi[1].v - vj[1].v;
  dv[2].v = vi[2].v - vj[2].v;

  /* Compute dv dot r */
  dvdr.v = (dv[0].v * dx[0].v) + (dv[1].v * dx[1].v) + (dv[2].v * dx[2].v);
  dvdr.v = dvdr.v * ri.v;

  /* Compute dv cross r */
  curlvr[0].v = dv[1].v * dx[2].v - dv[2].v * dx[1].v;
  curlvr[1].v = dv[2].v * dx[0].v - dv[0].v * dx[2].v;
  curlvr[2].v = dv[0].v * dx[1].v - dv[1].v * dx[0].v;
  for (k = 0; k < 3; k++) curlvr[k].v *= ri.v;

  /* Compute density of pi. */
  rhoi.v = mj.v * wi.v;
352
  rhoi_dh.v = mj.v * (vec_set1(hydro_dimension) * wi.v + ui.v * wi_dx.v);
353
  wcounti.v = wi.v;
354
  wcounti_dh.v = (vec_set1(hydro_dimension) * wi.v + ui.v * wi_dx.v);
355
356
357
358
359
360
  div_vi.v = mj.v * dvdr.v * wi_dx.v;
  for (k = 0; k < 3; k++) curl_vi[k].v = mj.v * curlvr[k].v * wi_dx.v;

  /* Update particles. */
  for (k = 0; k < VEC_SIZE; k++) {
    pi[k]->rho += rhoi.f[k];
361
    pi[k]->density.rho_dh -= rhoi_dh.f[k];
362
363
    pi[k]->density.wcount += wcounti.f[k];
    pi[k]->density.wcount_dh -= wcounti_dh.f[k];
364
    pi[k]->density.div_v -= div_vi.f[k];
365
366
367
368
369
    for (j = 0; j < 3; j++) pi[k]->density.rot_v[j] += curl_vi[j].f[k];
  }

#else

Matthieu Schaller's avatar
Matthieu Schaller committed
370
371
  error(
      "The Gadget2 serial version of runner_iact_nonsym_density was called "
372
      "when the vectorised version should have been used.");
373
374

#endif
375
376
}

377
#ifdef WITH_VECTORIZATION
378
379
380
381
382

/**
 * @brief Density interaction computed using 1 vector
 * (non-symmetric vectorized version).
 */
383
__attribute__((always_inline)) INLINE static void
Matthieu Schaller's avatar
Matthieu Schaller committed
384
385
386
387
388
389
390
runner_iact_nonsym_1_vec_density(vector *r2, vector *dx, vector *dy, vector *dz,
                                 vector hi_inv, vector vix, vector viy,
                                 vector viz, float *Vjx, float *Vjy, float *Vjz,
                                 float *Mj, vector *rhoSum, vector *rho_dhSum,
                                 vector *wcountSum, vector *wcount_dhSum,
                                 vector *div_vSum, vector *curlvxSum,
                                 vector *curlvySum, vector *curlvzSum,
391
                                 mask_t mask) {
392

393
  vector r, ri, ui, wi, wi_dx;
394
395
396
397
398
  vector mj;
  vector dvx, dvy, dvz;
  vector vjx, vjy, vjz;
  vector dvdr;
  vector curlvrx, curlvry, curlvrz;
James Willis's avatar
James Willis committed
399

400
  /* Fill the vectors. */
401
402
403
404
  mj.v = vec_load(Mj);
  vjx.v = vec_load(Vjx);
  vjy.v = vec_load(Vjy);
  vjz.v = vec_load(Vjz);
405
406
407
408
409

  /* Get the radius and inverse radius. */
  ri = vec_reciprocal_sqrt(*r2);
  r.v = vec_mul(r2->v, ri.v);

410
  ui.v = vec_mul(r.v, hi_inv.v);
411
412

  /* Calculate the kernel for two particles. */
413
  kernel_deval_1_vec(&ui, &wi, &wi_dx);
414
415
416
417
418
419
420
421
422
423

  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvz.v = vec_sub(viz.v, vjz.v);

  /* Compute dv dot r */
  dvdr.v = vec_fma(dvx.v, dx->v, vec_fma(dvy.v, dy->v, vec_mul(dvz.v, dz->v)));
  dvdr.v = vec_mul(dvdr.v, ri.v);

424
425
426
427
428
429
430
431
432
433
434
435
  /* Compute dv cross r */
  curlvrx.v =
      vec_fma(dvy.v, dz->v, vec_mul(vec_set1(-1.0f), vec_mul(dvz.v, dy->v)));
  curlvry.v =
      vec_fma(dvz.v, dx->v, vec_mul(vec_set1(-1.0f), vec_mul(dvx.v, dz->v)));
  curlvrz.v =
      vec_fma(dvx.v, dy->v, vec_mul(vec_set1(-1.0f), vec_mul(dvy.v, dx->v)));
  curlvrx.v = vec_mul(curlvrx.v, ri.v);
  curlvry.v = vec_mul(curlvry.v, ri.v);
  curlvrz.v = vec_mul(curlvrz.v, ri.v);

/* Mask updates to intermediate vector sums for particle pi. */
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
  rhoSum->v = vec_mask_add(rhoSum->v, vec_mul(mj.v, wi.v), mask);
  rho_dhSum->v = vec_mask_sub(
      rho_dhSum->v, vec_mul(mj.v, vec_fma(vec_set1(hydro_dimension), wi.v,
                                          vec_mul(ui.v, wi_dx.v))),
      mask);
  wcountSum->v = vec_mask_add(wcountSum->v, wi.v, mask);
  wcount_dhSum->v = vec_mask_sub(wcount_dhSum->v, vec_mul(ui.v, wi_dx.v), mask);
  div_vSum->v =
      vec_mask_sub(div_vSum->v, vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)), mask);
  curlvxSum->v = vec_mask_add(curlvxSum->v,
                              vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)), mask);
  curlvySum->v = vec_mask_add(curlvySum->v,
                              vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)), mask);
  curlvzSum->v = vec_mask_add(curlvzSum->v,
                              vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)), mask);
451
452
}

453
/**
James Willis's avatar
James Willis committed
454
455
 * @brief Density interaction computed using 2 interleaved vectors
 * (non-symmetric vectorized version).
456
457
 */
__attribute__((always_inline)) INLINE static void
James Willis's avatar
James Willis committed
458
459
460
461
462
runner_iact_nonsym_2_vec_density(
    float *R2, float *Dx, float *Dy, float *Dz, vector hi_inv, vector vix,
    vector viy, vector viz, float *Vjx, float *Vjy, float *Vjz, float *Mj,
    vector *rhoSum, vector *rho_dhSum, vector *wcountSum, vector *wcount_dhSum,
    vector *div_vSum, vector *curlvxSum, vector *curlvySum, vector *curlvzSum,
463
                                 mask_t mask, mask_t mask2, short mask_cond) {
464

465
  vector r, ri, r2, ui, wi, wi_dx;
466
467
468
469
470
  vector mj;
  vector dx, dy, dz, dvx, dvy, dvz;
  vector vjx, vjy, vjz;
  vector dvdr;
  vector curlvrx, curlvry, curlvrz;
471
  vector r_2, ri2, r2_2, ui2, wi2, wi_dx2;
472
473
474
475
476
477
  vector mj2;
  vector dx2, dy2, dz2, dvx2, dvy2, dvz2;
  vector vjx2, vjy2, vjz2;
  vector dvdr2;
  vector curlvrx2, curlvry2, curlvrz2;

James Willis's avatar
James Willis committed
478
  /* Fill the vectors. */
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
  mj.v = vec_load(Mj);
  mj2.v = vec_load(&Mj[VEC_SIZE]);
  vjx.v = vec_load(Vjx);
  vjx2.v = vec_load(&Vjx[VEC_SIZE]);
  vjy.v = vec_load(Vjy);
  vjy2.v = vec_load(&Vjy[VEC_SIZE]);
  vjz.v = vec_load(Vjz);
  vjz2.v = vec_load(&Vjz[VEC_SIZE]);
  dx.v = vec_load(Dx);
  dx2.v = vec_load(&Dx[VEC_SIZE]);
  dy.v = vec_load(Dy);
  dy2.v = vec_load(&Dy[VEC_SIZE]);
  dz.v = vec_load(Dz);
  dz2.v = vec_load(&Dz[VEC_SIZE]);

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
  r2_2.v = vec_load(&R2[VEC_SIZE]);
497
498
  ri = vec_reciprocal_sqrt(r2);
  ri2 = vec_reciprocal_sqrt(r2_2);
499
500
501
  r.v = vec_mul(r2.v, ri.v);
  r_2.v = vec_mul(r2_2.v, ri2.v);

502
503
  ui.v = vec_mul(r.v, hi_inv.v);
  ui2.v = vec_mul(r_2.v, hi_inv.v);
504

James Willis's avatar
James Willis committed
505
  /* Calculate the kernel for two particles. */
506
  kernel_deval_2_vec(&ui, &wi, &wi_dx, &ui2, &wi2, &wi_dx2);
507
508
509
510
511
512
513
514
515
516
517

  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvx2.v = vec_sub(vix.v, vjx2.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvy2.v = vec_sub(viy.v, vjy2.v);
  dvz.v = vec_sub(viz.v, vjz.v);
  dvz2.v = vec_sub(viz.v, vjz2.v);

  /* Compute dv dot r */
  dvdr.v = vec_fma(dvx.v, dx.v, vec_fma(dvy.v, dy.v, vec_mul(dvz.v, dz.v)));
James Willis's avatar
James Willis committed
518
519
  dvdr2.v =
      vec_fma(dvx2.v, dx2.v, vec_fma(dvy2.v, dy2.v, vec_mul(dvz2.v, dz2.v)));
520
521
522
523
  dvdr.v = vec_mul(dvdr.v, ri.v);
  dvdr2.v = vec_mul(dvdr2.v, ri2.v);

  /* Compute dv cross r */
James Willis's avatar
James Willis committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
  curlvrx.v =
      vec_fma(dvy.v, dz.v, vec_mul(vec_set1(-1.0f), vec_mul(dvz.v, dy.v)));
  curlvrx2.v =
      vec_fma(dvy2.v, dz2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvz2.v, dy2.v)));
  curlvry.v =
      vec_fma(dvz.v, dx.v, vec_mul(vec_set1(-1.0f), vec_mul(dvx.v, dz.v)));
  curlvry2.v =
      vec_fma(dvz2.v, dx2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvx2.v, dz2.v)));
  curlvrz.v =
      vec_fma(dvx.v, dy.v, vec_mul(vec_set1(-1.0f), vec_mul(dvy.v, dx.v)));
  curlvrz2.v =
      vec_fma(dvx2.v, dy2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvy2.v, dx2.v)));
  curlvrx.v = vec_mul(curlvrx.v, ri.v);
  curlvrx2.v = vec_mul(curlvrx2.v, ri2.v);
  curlvry.v = vec_mul(curlvry.v, ri.v);
  curlvry2.v = vec_mul(curlvry2.v, ri2.v);
  curlvrz.v = vec_mul(curlvrz.v, ri.v);
  curlvrz2.v = vec_mul(curlvrz2.v, ri2.v);

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
  /* Mask updates to intermediate vector sums for particle pi. */
  /* Mask only when needed. */
  if (mask_cond) {
    rhoSum->v = vec_mask_add(rhoSum->v, vec_mul(mj.v, wi.v), mask);
    rhoSum->v = vec_mask_add(rhoSum->v, vec_mul(mj2.v, wi2.v), mask2);
    rho_dhSum->v = vec_mask_sub(
        rho_dhSum->v, vec_mul(mj.v, vec_fma(vec_set1(hydro_dimension), wi.v,
                                            vec_mul(ui.v, wi_dx.v))),
        mask);
    rho_dhSum->v = vec_mask_sub(
        rho_dhSum->v, vec_mul(mj2.v, vec_fma(vec_set1(hydro_dimension), wi2.v,
                                             vec_mul(ui2.v, wi_dx2.v))),
        mask2);
    wcountSum->v = vec_mask_add(wcountSum->v, wi.v, mask);
    wcountSum->v = vec_mask_add(wcountSum->v, wi2.v, mask2);
    wcount_dhSum->v =
        vec_mask_sub(wcount_dhSum->v, vec_mul(ui.v, wi_dx.v), mask);
    wcount_dhSum->v =
        vec_mask_sub(wcount_dhSum->v, vec_mul(ui2.v, wi_dx2.v), mask2);
    div_vSum->v = vec_mask_sub(div_vSum->v,
                               vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)), mask);
    div_vSum->v = vec_mask_sub(
        div_vSum->v, vec_mul(mj2.v, vec_mul(dvdr2.v, wi_dx2.v)), mask2);
    curlvxSum->v = vec_mask_add(
        curlvxSum->v, vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)), mask);
    curlvxSum->v = vec_mask_add(
        curlvxSum->v, vec_mul(mj2.v, vec_mul(curlvrx2.v, wi_dx2.v)), mask2);
    curlvySum->v = vec_mask_add(
        curlvySum->v, vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)), mask);
    curlvySum->v = vec_mask_add(
        curlvySum->v, vec_mul(mj2.v, vec_mul(curlvry2.v, wi_dx2.v)), mask2);
    curlvzSum->v = vec_mask_add(
        curlvzSum->v, vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)), mask);
    curlvzSum->v = vec_mask_add(
        curlvzSum->v, vec_mul(mj2.v, vec_mul(curlvrz2.v, wi_dx2.v)), mask2);
  } else {
    rhoSum->v = vec_add(rhoSum->v, vec_mul(mj.v, wi.v));
    rhoSum->v = vec_add(rhoSum->v, vec_mul(mj2.v, wi2.v));
    rho_dhSum->v = vec_sub(rho_dhSum->v, vec_mul(
        mj.v, vec_fma(vec_set1(hydro_dimension), wi.v, vec_mul(ui.v, wi_dx.v))));
    rho_dhSum->v = vec_sub(rho_dhSum->v, vec_mul(mj2.v, vec_fma(vec_set1(hydro_dimension), wi2.v,
                                           vec_mul(ui2.v, wi_dx2.v))));
    wcountSum->v = vec_add(wcountSum->v, wi.v);
    wcountSum->v = vec_add(wcountSum->v, wi2.v);
    wcount_dhSum->v = vec_sub(wcount_dhSum->v, vec_mul(ui.v, wi_dx.v));
    wcount_dhSum->v = vec_sub(wcount_dhSum->v, vec_mul(ui2.v, wi_dx2.v));
    div_vSum->v = vec_sub(div_vSum->v, vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)));
    div_vSum->v = vec_sub(div_vSum->v, vec_mul(mj2.v, vec_mul(dvdr2.v, wi_dx2.v)));
    curlvxSum->v = vec_add(curlvxSum->v, vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)));
    curlvxSum->v = vec_add(curlvxSum->v, vec_mul(mj2.v, vec_mul(curlvrx2.v, wi_dx2.v)));
    curlvySum->v = vec_add(curlvySum->v, vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)));
    curlvySum->v = vec_add(curlvySum->v, vec_mul(mj2.v, vec_mul(curlvry2.v, wi_dx2.v)));
    curlvzSum->v = vec_add(curlvzSum->v, vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)));
    curlvzSum->v = vec_add(curlvzSum->v, vec_mul(mj2.v, vec_mul(curlvrz2.v, wi_dx2.v)));
  }
598
}
James Willis's avatar
James Willis committed
599
#endif
600

601
602
603
/**
 * @brief Force loop
 */
604
605
606
__attribute__((always_inline)) INLINE static void runner_iact_force(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

607
608
609
  float wi, wj, wi_dx, wj_dx;

  const float fac_mu = 1.f; /* Will change with cosmological integration */
610

611
612
613
614
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Get some values in local variables. */
615
  const float mi = pi->mass;
616
617
618
619
620
621
  const float mj = pj->mass;
  const float rhoi = pi->rho;
  const float rhoj = pj->rho;

  /* Get the kernel for hi. */
  const float hi_inv = 1.0f / hi;
622
  const float hid_inv = pow_dimension_plus_one(hi_inv); /* 1/h^(d+1) */
623
624
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
625
  const float wi_dr = hid_inv * wi_dx;
626
627
628

  /* Get the kernel for hj. */
  const float hj_inv = 1.0f / hj;
629
  const float hjd_inv = pow_dimension_plus_one(hj_inv); /* 1/h^(d+1) */
630
631
  const float xj = r * hj_inv;
  kernel_deval(xj, &wj, &wj_dx);
632
  const float wj_dr = hjd_inv * wj_dx;
633

634
635
636
637
638
  /* Compute h-gradient terms */
  const float f_i = pi->force.f;
  const float f_j = pj->force.f;

  /* Compute pressure terms */
639
640
  const float P_over_rho2_i = pi->force.P_over_rho2;
  const float P_over_rho2_j = pj->force.P_over_rho2;
641
642

  /* Compute sound speeds */
643
644
  const float ci = pi->force.soundspeed;
  const float cj = pj->force.soundspeed;
645

646
  /* Compute dv dot r. */
647
648
649
  const float dvdr = (pi->v[0] - pj->v[0]) * dx[0] +
                     (pi->v[1] - pj->v[1]) * dx[1] +
                     (pi->v[2] - pj->v[2]) * dx[2];
650

651
  /* Balsara term */
652
653
  const float balsara_i = pi->force.balsara;
  const float balsara_j = pj->force.balsara;
Matthieu Schaller's avatar
Matthieu Schaller committed
654

655
  /* Are the particles moving towards each others ? */
656
  const float omega_ij = (dvdr < 0.f) ? dvdr : 0.f;
657
658
659
660
661
662
663
664
665
  const float mu_ij = fac_mu * r_inv * omega_ij; /* This is 0 or negative */

  /* Signal velocity */
  const float v_sig = ci + cj - 3.f * mu_ij;

  /* Now construct the full viscosity term */
  const float rho_ij = 0.5f * (rhoi + rhoj);
  const float visc = -0.25f * const_viscosity_alpha * v_sig * mu_ij *
                     (balsara_i + balsara_j) / rho_ij;
666
667

  /* Now, convolve with the kernel */
668
  const float visc_term = 0.5f * visc * (wi_dr + wj_dr) * r_inv;
669
  const float sph_term =
670
      (f_i * P_over_rho2_i * wi_dr + f_j * P_over_rho2_j * wj_dr) * r_inv;
671
672
673
674
675

  /* Eventually got the acceleration */
  const float acc = visc_term + sph_term;

  /* Use the force Luke ! */
676
677
678
  pi->a_hydro[0] -= mj * acc * dx[0];
  pi->a_hydro[1] -= mj * acc * dx[1];
  pi->a_hydro[2] -= mj * acc * dx[2];
679

680
681
682
  pj->a_hydro[0] += mi * acc * dx[0];
  pj->a_hydro[1] += mi * acc * dx[1];
  pj->a_hydro[2] += mi * acc * dx[2];
683

684
  /* Get the time derivative for h. */
685
686
  pi->force.h_dt -= mj * dvdr * r_inv / rhoj * wi_dr;
  pj->force.h_dt -= mi * dvdr * r_inv / rhoi * wj_dr;
687

688
  /* Update the signal velocity. */
689
690
  pi->force.v_sig = (pi->force.v_sig > v_sig) ? pi->force.v_sig : v_sig;
  pj->force.v_sig = (pj->force.v_sig > v_sig) ? pj->force.v_sig : v_sig;
691

692
  /* Change in entropy */
693
694
  pi->entropy_dt += mj * visc_term * dvdr;
  pj->entropy_dt += mi * visc_term * dvdr;
695
}
696

697
698
699
700
701
702
/**
 * @brief Force loop (Vectorized version)
 */
__attribute__((always_inline)) INLINE static void runner_iact_vec_force(
    float *R2, float *Dx, float *Hi, float *Hj, struct part **pi,
    struct part **pj) {
703

704
#ifdef WITH_OLD_VECTORIZATION
705
706
707
708

  vector r, r2, ri;
  vector xi, xj;
  vector hi, hj, hi_inv, hj_inv;
709
  vector hid_inv, hjd_inv;
710
  vector wi, wj, wi_dx, wj_dx, wi_dr, wj_dr, dvdr;
711
  vector piPOrho2, pjPOrho2, pirho, pjrho;
712
713
  vector mi, mj;
  vector f;
714
  vector grad_hi, grad_hj;
715
716
717
718
719
720
721
722
723
724
725
  vector dx[3];
  vector vi[3], vj[3];
  vector pia[3], pja[3];
  vector pih_dt, pjh_dt;
  vector ci, cj, v_sig;
  vector omega_ij, mu_ij, fac_mu, balsara;
  vector rho_ij, visc, visc_term, sph_term, acc, entropy_dt;
  int j, k;

  fac_mu.v = vec_set1(1.f); /* Will change with cosmological integration */

Matthieu Schaller's avatar
Matthieu Schaller committed
726
/* Load stuff. */
727
728
729
730
731
#if VEC_SIZE == 8
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass,
                 pi[4]->mass, pi[5]->mass, pi[6]->mass, pi[7]->mass);
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass,
                 pj[4]->mass, pj[5]->mass, pj[6]->mass, pj[7]->mass);
732
  piPOrho2.v = vec_set(pi[0]->force.P_over_rho2, pi[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
733
734
735
                       pi[2]->force.P_over_rho2, pi[3]->force.P_over_rho2,
                       pi[4]->force.P_over_rho2, pi[5]->force.P_over_rho2,
                       pi[6]->force.P_over_rho2, pi[7]->force.P_over_rho2);
736
  pjPOrho2.v = vec_set(pj[0]->force.P_over_rho2, pj[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
737
738
739
740
741
742
743
744
745
                       pj[2]->force.P_over_rho2, pj[3]->force.P_over_rho2,
                       pj[4]->force.P_over_rho2, pj[5]->force.P_over_rho2,
                       pj[6]->force.P_over_rho2, pj[7]->force.P_over_rho2);
  grad_hi.v =
      vec_set(pi[0]->force.f, pi[1]->force.f, pi[2]->force.f, pi[3]->force.f,
              pi[4]->force.f, pi[5]->force.f, pi[6]->force.f, pi[7]->force.f);
  grad_hj.v =
      vec_set(pj[0]->force.f, pj[1]->force.f, pj[2]->force.f, pj[3]->force.f,
              pj[4]->force.f, pj[5]->force.f, pj[6]->force.f, pj[7]->force.f);
746
747
748
749
  pirho.v = vec_set(pi[0]->rho, pi[1]->rho, pi[2]->rho, pi[3]->rho, pi[4]->rho,
                    pi[5]->rho, pi[6]->rho, pi[7]->rho);
  pjrho.v = vec_set(pj[0]->rho, pj[1]->rho, pj[2]->rho, pj[3]->rho, pj[4]->rho,
                    pj[5]->rho, pj[6]->rho, pj[7]->rho);
Matthieu Schaller's avatar
Matthieu Schaller committed
750
751
752
753
754
755
756
757
  ci.v = vec_set(pi[0]->force.soundspeed, pi[1]->force.soundspeed,
                 pi[2]->force.soundspeed, pi[3]->force.soundspeed,
                 pi[4]->force.soundspeed, pi[5]->force.soundspeed,
                 pi[6]->force.soundspeed, pi[7]->force.soundspeed);
  cj.v = vec_set(pj[0]->force.soundspeed, pj[1]->force.soundspeed,
                 pj[2]->force.soundspeed, pj[3]->force.soundspeed,
                 pj[4]->force.soundspeed, pj[5]->force.soundspeed,
                 pj[6]->force.soundspeed, pj[7]->force.soundspeed);
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k],
                      pi[4]->v[k], pi[5]->v[k], pi[6]->v[k], pi[7]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k],
                      pj[4]->v[k], pj[5]->v[k], pj[6]->v[k], pj[7]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k], Dx[12 + k],
                      Dx[15 + k], Dx[18 + k], Dx[21 + k]);
  balsara.v =
      vec_set(pi[0]->force.balsara, pi[1]->force.balsara, pi[2]->force.balsara,
              pi[3]->force.balsara, pi[4]->force.balsara, pi[5]->force.balsara,
              pi[6]->force.balsara, pi[7]->force.balsara) +
      vec_set(pj[0]->force.balsara, pj[1]->force.balsara, pj[2]->force.balsara,
              pj[3]->force.balsara, pj[4]->force.balsara, pj[5]->force.balsara,
              pj[6]->force.balsara, pj[7]->force.balsara);
#elif VEC_SIZE == 4
775
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass);
776
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass);
777
  piPOrho2.v = vec_set(pi[0]->force.P_over_rho2, pi[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
778
                       pi[2]->force.P_over_rho2, pi[3]->force.P_over_rho2);
779
  pjPOrho2.v = vec_set(pj[0]->force.P_over_rho2, pj[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
780
781
782
783
784
                       pj[2]->force.P_over_rho2, pj[3]->force.P_over_rho2);
  grad_hi.v =
      vec_set(pi[0]->force.f, pi[1]->force.f, pi[2]->force.f, pi[3]->force.f);
  grad_hj.v =
      vec_set(pj[0]->force.f, pj[1]->force.f, pj[2]->force.f, pj[3]->force.f);
785
786
  pirho.v = vec_set(pi[0]->rho, pi[1]->rho, pi[2]->rho, pi[3]->rho);
  pjrho.v = vec_set(pj[0]->rho, pj[1]->rho, pj[2]->rho, pj[3]->rho);
Matthieu Schaller's avatar
Matthieu Schaller committed
787
788
789
790
  ci.v = vec_set(pi[0]->force.soundspeed, pi[1]->force.soundspeed,
                 pi[2]->force.soundspeed, pi[3]->force.soundspeed);
  cj.v = vec_set(pj[0]->force.soundspeed, pj[1]->force.soundspeed,
                 pj[2]->force.soundspeed, pj[3]->force.soundspeed);
791
792
793
794
795
796
797
798
799
800
801
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k]);
  balsara.v = vec_set(pi[0]->force.balsara, pi[1]->force.balsara,
                      pi[2]->force.balsara, pi[3]->force.balsara) +
              vec_set(pj[0]->force.balsara, pj[1]->force.balsara,
                      pj[2]->force.balsara, pj[3]->force.balsara);
#else
802
  error("Unknown vector size.");
803
804
805
806
#endif

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
807
  ri = vec_reciprocal_sqrt(r2);
808
809
810
811
  r.v = r2.v * ri.v;

  /* Get the kernel for hi. */
  hi.v = vec_load(Hi);
812
  hi_inv = vec_reciprocal(hi);
813
  hid_inv = pow_dimension_plus_one_vec(hi_inv); /* 1/h^(d+1) */
814
815
  xi.v = r.v * hi_inv.v;
  kernel_deval_vec(&xi, &wi, &wi_dx);
816
  wi_dr.v = hid_inv.v * wi_dx.v;
817
818
819

  /* Get the kernel for hj. */
  hj.v = vec_load(Hj);
820
  hj_inv = vec_reciprocal(hj);
821
  hjd_inv = pow_dimension_plus_one_vec(hj_inv); /* 1/h^(d+1) */
822
823
  xj.v = r.v * hj_inv.v;
  kernel_deval_vec(&xj, &wj, &wj_dx);
824
  wj_dr.v = hjd_inv.v * wj_dx.v;
825
826
827
828

  /* Compute dv dot r. */
  dvdr.v = ((vi[0].v - vj[0].v) * dx[0].v) + ((vi[1].v - vj[1].v) * dx[1].v) +
           ((vi[2].v - vj[2].v) * dx[2].v);
Matthieu Schaller's avatar
Matthieu Schaller committed
829
  // dvdr.v = dvdr.v * ri.v;
830
831
832
833
834

  /* Compute the relative velocity. (This is 0 if the particles move away from
   * each other and negative otherwise) */
  omega_ij.v = vec_fmin(dvdr.v, vec_set1(0.0f));
  mu_ij.v = fac_mu.v * ri.v * omega_ij.v; /* This is 0 or negative */
Matthieu Schaller's avatar
Matthieu Schaller committed
835

836
837
  /* Compute signal velocity */
  v_sig.v = ci.v + cj.v - vec_set1(3.0f) * mu_ij.v;
Matthieu Schaller's avatar
Matthieu Schaller committed
838

839
840
  /* Now construct the full viscosity term */
  rho_ij.v = vec_set1(0.5f) * (pirho.v + pjrho.v);
Matthieu Schaller's avatar
Matthieu Schaller committed
841
842
  visc.v = vec_set1(-0.25f) * vec_set1(const_viscosity_alpha) * v_sig.v *
           mu_ij.v * balsara.v / rho_ij.v;
843
844
845

  /* Now, convolve with the kernel */
  visc_term.v = vec_set1(0.5f) * visc.v * (wi_dr.v + wj_dr.v) * ri.v;
James Willis's avatar
James Willis committed
846
847
848
  sph_term.v =
      (grad_hi.v * piPOrho2.v * wi_dr.v + grad_hj.v * pjPOrho2.v * wj_dr.v) *
      ri.v;
849
850
851

  /* Eventually get the acceleration */
  acc.v = visc_term.v + sph_term.v;
Matthieu Schaller's avatar
Matthieu Schaller committed
852

853
854
855
856
857
858
859
860
861
862
863
864
  /* Use the force, Luke! */
  for (k = 0; k < 3; k++) {
    f.v = dx[k].v * acc.v;
    pia[k].v = mj.v * f.v;
    pja[k].v = mi.v * f.v;
  }

  /* Get the time derivative for h. */
  pih_dt.v = mj.v * dvdr.v * ri.v / pjrho.v * wi_dr.v;
  pjh_dt.v = mi.v * dvdr.v * ri.v / pirho.v * wj_dr.v;

  /* Change in entropy */
865
  entropy_dt.v = visc_term.v * dvdr.v;
Matthieu Schaller's avatar
Matthieu Schaller committed
866

867
868
869
870
871
872
  /* Store the forces back on the particles. */
  for (k = 0; k < VEC_SIZE; k++) {
    for (j = 0; j < 3; j++) {
      pi[k]->a_hydro[j] -= pia[j].f[k];
      pj[k]->a_hydro[j] += pja[j].f[k];
    }
873
874
    pi[k]->force.h_dt -= pih_dt.f[k];
    pj[k]->force.h_dt -= pjh_dt.f[k];
875
876
    pi[k]->force.v_sig = max(pi[k]->force.v_sig, v_sig.f[k]);
    pj[k]->force.v_sig = max(pj[k]->force.v_sig, v_sig.f[k]);
877
    pi[k]->entropy_dt += entropy_dt.f[k] * mj.f[k];
878
    pj[k]->entropy_dt += entropy_dt.f[k] * mi.f[k];
879
880
  }

Matthieu Schaller's avatar
Matthieu Schaller committed
881
#else
882

Matthieu Schaller's avatar
Matthieu Schaller committed
883
884
  error(
      "The Gadget2 serial version of runner_iact_nonsym_force was called when "
885
      "the vectorised version should have been used.");
886
887

#endif
888
889
}

890
891
892
/**
 * @brief Force loop (non-symmetric version)
 */
893
894
895
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_force(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

896
897
898
  float wi, wj, wi_dx, wj_dx;

  const float fac_mu = 1.f; /* Will change with cosmological integration */
899

900
901
902
903
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Get some values in local variables. */
904
  // const float mi = pi->mass;
905
906
907
908
909
910
  const float mj = pj->mass;
  const float rhoi = pi->rho;
  const float rhoj = pj->rho;

  /* Get the kernel for hi. */
  const float hi_inv = 1.0f / hi;
911
  const float hid_inv = pow_dimension_plus_one(hi_inv); /* 1/h^(d+1) */
912
913
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
914
  const float wi_dr = hid_inv * wi_dx;
915
916
917

  /* Get the kernel for hj. */
  const float hj_inv = 1.0f / hj;
918
  const float hjd_inv = pow_dimension_plus_one(hj_inv); /* 1/h^(d+1) */
919
920
  const float xj = r * hj_inv;
  kernel_deval(xj, &wj, &wj_dx);
921
  const float wj_dr = hjd_inv * wj_dx;
922

923
924
925
926
927
  /* Compute h-gradient terms */
  const float f_i = pi->force.f;
  const float f_j = pj->force.f;

  /* Compute pressure terms */
928
929
  const float P_over_rho2_i = pi->force.P_over_rho2;
  const float P_over_rho2_j = pj->force.P_over_rho2;
930
931

  /* Compute sound speeds */
932
933
  const float ci = pi->force.soundspeed;
  const float cj = pj->force.soundspeed;
934

935
  /* Compute dv dot r. */
936
937
938
  const float dvdr = (pi->v[0] - pj->v[0]) * dx[0] +
                     (pi->v[1] - pj->v[1]) * dx[1] +
                     (pi->v[2] - pj->v[2]) * dx[2];
939

940
  /* Balsara term */
941
942
  const float balsara_i = pi->force.balsara;
  const float balsara_j = pj->force.balsara;
943
944

  /* Are the particles moving towards each others ? */
945
  const float omega_ij = (dvdr < 0.f) ? dvdr : 0.f;
946
947
948
949
950
951
952
953
954
  const float mu_ij = fac_mu * r_inv * omega_ij; /* This is 0 or negative */

  /* Signal velocity */
  const float v_sig = ci + cj - 3.f * mu_ij;

  /* Now construct the full viscosity term */
  const float rho_ij = 0.5f * (rhoi + rhoj);
  const float visc = -0.25f * const_viscosity_alpha * v_sig * mu_ij *
                     (balsara_i + balsara_j) / rho_ij;
955
956

  /* Now, convolve with the kernel */
957
  const float visc_term = 0.5f * visc * (wi_dr + wj_dr) * r_inv;
958
  const float sph_term =
959
      (f_i * P_over_rho2_i * wi_dr + f_j * P_over_rho2_j * wj_dr) * r_inv;
960
961
962

  /* Eventually got the acceleration */
  const float acc = visc_term + sph_term;