cell.c 172 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "chemistry.h"
53
#include "drift.h"
54
#include "engine.h"
55
#include "error.h"
56
#include "gravity.h"
57
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
58
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
59
#include "memswap.h"
60
#include "minmax.h"
61
#include "scheduler.h"
62
#include "space.h"
63
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
64
#include "stars.h"
65
#include "timers.h"
66
#include "tools.h"
67
#include "tracers.h"
68

69
70
71
/* Global variables. */
int cell_next_tag = 0;

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/** List of cell pairs for sub-cell recursion. For any sid, the entries in 
 * this array contain the number of sub-cell pairs and the indices and sid
 * of the sub-cell pairs themselves. */
struct cell_split_pair cell_split_pairs[13] = {
    {1, /* (  1 ,  1 ,  1 ) */
     {{7, 0, 0}}},

    {4, /* (  1 ,  1 ,  0 ) */
     {{6, 0, 1}, {7, 1, 1}, {6, 1, 0}, {7, 0, 2}}},

    {1, /* (  1 ,  1 , -1 ) */
     {{6, 1, 2}}},

    {4, /* (  1 ,  0 ,  1 ) */
     {{5, 0, 3}, {7, 2, 3}, {5, 2, 0}, {7, 0, 6}}},

    {16, /* (  1 ,  0 ,  0 ) */
     {{4, 0, 4},
      {5, 0, 5},
      {6, 0, 7},
      {7, 0, 8},
      {4, 1, 3},
      {5, 1, 4},
      {6, 1, 6},
      {7, 1, 7},
      {4, 2, 1},
      {5, 2, 2},
      {6, 2, 4},
      {7, 2, 5},
      {4, 3, 0},
      {5, 3, 1},
      {6, 3, 3},
      {7, 3, 4}}},

    {4, /* (  1 ,  0 , -1 ) */
     {{4, 1, 5}, {6, 3, 5}, {4, 3, 2}, {6, 1, 8}}},

    {1, /* (  1 , -1 ,  1 ) */
     {{5, 2, 6}}},

    {4, /* (  1 , -1 ,  0 ) */
     {{4, 3, 6}, {5, 2, 8}, {4, 2, 7}, {5, 3, 7}}},

    {1, /* (  1 , -1 , -1 ) */
     {{4, 3, 8}}},

    {4, /* (  0 ,  1 ,  1 ) */
     {{3, 0, 9}, {7, 4, 9}, {3, 4, 0}, {7, 0, 8}}},

    {16, /* (  0 ,  1 ,  0 ) */
     {{2, 0, 10},
      {3, 0, 11},
      {6, 0, 7},
      {7, 0, 6},
      {2, 1, 9},
      {3, 1, 10},
      {6, 1, 8},
      {7, 1, 7},
      {2, 4, 1},
      {3, 4, 2},
      {6, 4, 10},
      {7, 4, 11},
      {2, 5, 0},
      {3, 5, 1},
      {6, 5, 9},
      {7, 5, 10}}},

    {4, /* (  0 ,  1 , -1 ) */
     {{2, 1, 11}, {6, 5, 11}, {2, 5, 2}, {6, 1, 6}}},

    {16, /* (  0 ,  0 ,  1 ) */
     {{1, 0, 12},
      {3, 0, 11},
      {5, 0, 5},
      {7, 0, 2},
      {1, 2, 9},
      {3, 2, 12},
      {5, 2, 8},
      {7, 2, 5},
      {1, 4, 3},
      {3, 4, 6},
      {5, 4, 12},
      {7, 4, 11},
      {1, 6, 0},
      {3, 6, 3},
      {5, 6, 9},
      {7, 6, 12}}}};

160
161
162
163
164
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
165
int cell_getsize(struct cell *c) {
Pedro Gonnet's avatar
Pedro Gonnet committed
166
167
  /* Number of cells in this subtree. */
  int count = 1;
168

169
170
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
171
    for (int k = 0; k < 8; k++)
172
173
174
175
176
177
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

178
/**
179
 * @brief Link the cells recursively to the given #part array.
180
181
182
183
184
185
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
186
int cell_link_parts(struct cell *c, struct part *parts) {
187
#ifdef SWIFT_DEBUG_CHECKS
188
189
190
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

191
  if (c->hydro.parts != NULL)
192
193
194
    error("Linking parts into a cell that was already linked");
#endif

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
  c->hydro.parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->hydro.count;
}

/**
211
 * @brief Link the cells recursively to the given #gpart array.
212
213
 *
 * @param c The #cell.
214
 * @param gparts The #gpart array.
215
216
217
 *
 * @return The number of particles linked.
 */
218
int cell_link_gparts(struct cell *c, struct gpart *gparts) {
219
220
221
222
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

223
  if (c->grav.parts != NULL)
224
    error("Linking gparts into a cell that was already linked");
225
#endif
226

227
  c->grav.parts = gparts;
228
229
230
231
232
233
234
235
236
237
238

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
239
  return c->grav.count;
240
241
}

242
243
244
245
246
247
248
249
250
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {
251
252
253
254
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

255
  if (c->stars.parts != NULL)
256
257
258
    error("Linking sparts into a cell that was already linked");
#endif

259
  c->stars.parts = sparts;
260
261
262
263
264
265
266
267
268
269
270

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
271
  return c->stars.count;
272
273
}

274
275
276
277
278
279
280
281
282
283
/**
 * @brief Recurse down foreign cells until reaching one with hydro
 * tasks; then trigger the linking of the #part array from that
 * level.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
284
int cell_link_foreign_parts(struct cell *c, struct part *parts) {
285
286
#ifdef WITH_MPI

287
288
289
290
291
292
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
293
  if (c->mpi.hydro.recv_xv != NULL) {
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    /* Recursively attach the parts */
    const int counts = cell_link_parts(c, parts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->hydro.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_parts(c->progeny[k], &parts[count]);
      }
    }
311
312
313
    return count;
  } else {
    return 0;
314
  }
315
316
317
318

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
319
320
}

321
322
323
324
325
326
327
328
329
330
/**
 * @brief Recurse down foreign cells until reaching one with gravity
 * tasks; then trigger the linking of the #gpart array from that
 * level.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
331
int cell_link_foreign_gparts(struct cell *c, struct gpart *gparts) {
332
333
#ifdef WITH_MPI

334
335
336
337
338
339
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
340
  if (c->mpi.grav.recv != NULL) {
341
    /* Recursively attach the gparts */
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    const int counts = cell_link_gparts(c, gparts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->grav.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_gparts(c->progeny[k], &gparts[count]);
      }
    }
358
359
360
    return count;
  } else {
    return 0;
361
  }
362
363
364
365

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
366
367
}

368
369
370
371
372
373
374
375
/**
 * @brief Recursively count the number of #part in foreign cells that
 * are in cells with hydro-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
376
int cell_count_parts_for_tasks(const struct cell *c) {
377
378
#ifdef WITH_MPI

379
380
381
382
383
384
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
385
  if (c->mpi.hydro.recv_xv != NULL) {
386
387
388
389
390
391
392
393
394
395
    return c->hydro.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_parts_for_tasks(c->progeny[k]);
      }
    }
396
397
398
    return count;
  } else {
    return 0;
399
  }
400
401
402
403

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
404
405
}

406
407
408
409
410
411
412
413
/**
 * @brief Recursively count the number of #gpart in foreign cells that
 * are in cells with gravity-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
414
int cell_count_gparts_for_tasks(const struct cell *c) {
415
416
#ifdef WITH_MPI

417
418
419
420
421
422
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
423
  if (c->mpi.grav.recv != NULL) {
424
425
426
427
428
429
430
431
432
433
    return c->grav.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_gparts_for_tasks(c->progeny[k]);
      }
    }
434
435
436
    return count;
  } else {
    return 0;
437
  }
438
439
440
441

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
442
443
}

444
445
446
447
448
449
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
450
451
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
452
453
454
 *
 * @return The number of packed cells.
 */
455
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
456
              const int with_gravity) {
457
458
#ifdef WITH_MPI

459
  /* Start by packing the data of the current cell. */
460
  pc->hydro.h_max = c->hydro.h_max;
461
  pc->stars.h_max = c->stars.h_max;
462
463
464
465
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
466
  pc->stars.ti_end_min = c->stars.ti_end_min;
467
  pc->stars.ti_end_max = c->stars.ti_end_max;
468
469
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
470
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
471
  pc->stars.ti_old_part = c->stars.ti_old_part;
472
  pc->hydro.count = c->hydro.count;
473
474
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
475
  pc->maxdepth = c->maxdepth;
476

477
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
478
  if (with_gravity) {
479
    const struct gravity_tensors *mp = c->grav.multipole;
480

481
482
483
484
485
486
487
488
489
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
490
491
  }

492
493
494
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
495
496

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
497
498
  int count = 1;
  for (int k = 0; k < 8; k++)
499
500
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
501
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
502
    } else {
503
      pc->progeny[k] = -1;
504
    }
505
506

  /* Return the number of packed cells used. */
507
  c->mpi.pcell_size = count;
508
  return count;
509
510
511
512
513

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
514
515
}

516
517
518
519
520
521
522
523
524
525
526
527
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {
#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
528
  tags[0] = c->mpi.tag;
529
530
531
532
533
534
535
536

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
537
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
538
539
540
541
542
543
544
545
546
547
548
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

549
550
551
552
553
554
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
555
556
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
557
558
559
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
560
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
561
                struct space *restrict s, const int with_gravity) {
562
563
564
#ifdef WITH_MPI

  /* Unpack the current pcell. */
565
  c->hydro.h_max = pc->hydro.h_max;
566
  c->stars.h_max = pc->stars.h_max;
567
568
569
570
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
571
  c->stars.ti_end_min = pc->stars.ti_end_min;
572
  c->stars.ti_end_max = pc->stars.ti_end_max;
573
574
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
575
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
576
  c->stars.ti_old_part = pc->stars.ti_old_part;
577
  c->hydro.count = pc->hydro.count;
578
579
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
580
581
  c->maxdepth = pc->maxdepth;

582
583
584
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
585

586
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
587
  if (with_gravity) {
588
    struct gravity_tensors *mp = c->grav.multipole;
589

590
591
592
593
594
595
596
597
598
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
599
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
600

601
602
603
604
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
605
  c->split = 0;
606
607
608
609
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
610
      temp->hydro.count = 0;
611
612
      temp->grav.count = 0;
      temp->stars.count = 0;
613
614
615
616
617
618
619
620
621
622
623
624
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
625
      temp->hydro.dx_max_part = 0.f;
626
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
627
      temp->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
628
      temp->stars.dx_max_sort = 0.f;
629
630
631
632
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
633
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
634
635
636
    }

  /* Return the total number of unpacked cells. */
637
  c->mpi.pcell_size = count;
638
639
640
641
642
643
644
645
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

646
647
648
649
650
651
652
653
654
655
656
657
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {
#ifdef WITH_MPI

  /* Unpack the current pcell. */
658
  c->mpi.tag = tags[0];
659
660
661
662
663
664
665
666
667
668
669

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
670
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
671
672
673
674
675
676
677
678
679
680
681
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

682
683
684
685
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
686
 * @param pcells (output) The end-of-timestep information we pack into
687
688
689
 *
 * @return The number of packed cells.
 */
690
691
int cell_pack_end_step_hydro(struct cell *restrict c,
                             struct pcell_step_hydro *restrict pcells) {
692
693
#ifdef WITH_MPI

694
  /* Pack this cell's data. */
695
696
697
  pcells[0].ti_end_min = c->hydro.ti_end_min;
  pcells[0].ti_end_max = c->hydro.ti_end_max;
  pcells[0].dx_max_part = c->hydro.dx_max_part;
698

699
700
701
702
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
703
      count += cell_pack_end_step_hydro(c->progeny[k], &pcells[count]);
704
705
706
707
    }

  /* Return the number of packed values. */
  return count;
708
709
710
711
712

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
713
714
}

715
716
717
718
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
719
 * @param pcells The end-of-timestep information to unpack
720
721
722
 *
 * @return The number of cells created.
 */
723
724
int cell_unpack_end_step_hydro(struct cell *restrict c,
                               struct pcell_step_hydro *restrict pcells) {
725
726
#ifdef WITH_MPI

727
  /* Unpack this cell's data. */
728
729
730
  c->hydro.ti_end_min = pcells[0].ti_end_min;
  c->hydro.ti_end_max = pcells[0].ti_end_max;
  c->hydro.dx_max_part = pcells[0].dx_max_part;
731

732
733
734
735
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
      count += cell_unpack_end_step_hydro(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_grav(struct cell *restrict c,
                            struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->grav.ti_end_min;
  pcells[0].ti_end_max = c->grav.ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_grav(struct cell *restrict c,
                              struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->grav.ti_end_min = pcells[0].ti_end_min;
  c->grav.ti_end_max = pcells[0].ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_stars(struct cell *restrict c,
                             struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->stars.ti_end_min;
  pcells[0].ti_end_max = c->stars.ti_end_max;
  pcells[0].dx_max_part = c->stars.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_stars(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_stars(struct cell *restrict c,
                               struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->stars.ti_end_min = pcells[0].ti_end_min;
  c->stars.ti_end_max = pcells[0].ti_end_max;
  c->stars.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_stars(c->progeny[k], &pcells[count]);
867
868
869
    }

  /* Return the number of packed values. */
870
  return count;
871
872
873
874
875

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
876
}
877

878
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
879
880
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
881
882
883
884
885
886
887
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
888
                         struct gravity_tensors *restrict pcells) {
889
890
891
#ifdef WITH_MPI

  /* Pack this cell's data. */
892
  pcells[0] = *c->grav.multipole;
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
919
                           struct gravity_tensors *restrict pcells) {
920
921
922
#ifdef WITH_MPI

  /* Unpack this cell's data. */
923
  *c->grav.multipole = pcells[0];
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

941
/**
942
 * @brief Lock a cell for access to its array of #part and hold its parents.
943
944
 *
 * @param c The #cell.
945
 * @return 0 on success, 1 on failure
946
 */
947
948
949
950
int cell_locktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
951
  if (c->hydro.hold || lock_trylock(&c->hydro.lock) != 0) {
952
953
954
955
956
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
957
  if (c->hydro.hold) {
958
    /* Unlock this cell. */
959
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
960
961
962
963
964
965
966

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
967
  struct cell *finger;
968
969
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
970
    if (lock_trylock(&finger->hydro.lock) != 0) break;
971
972

    /* Increment the hold. */
973
    atomic_inc(&finger->hydro.hold);
974
975

    /* Unlock the cell. */
976
    if (lock_unlock(&finger->hydro.lock) != 0) error("Failed to unlock cell.");
977
978
979
980
981
982
983
984
985
986
987
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
988
989
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
990
      atomic_dec(&finger2->hydro.hold);
991
992

    /* Unlock this cell. */
993
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
994
995
996
997
998
999
1000

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1001
1002
1003
1004
1005
1006
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
1007
1008
1009
1010
int cell_glocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1011
  if (c->grav.phold || lock_trylock(&c->grav.plock) != 0) {
1012
1013
1014
1015
1016
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1017
  if (c->grav.phold) {
1018
    /* Unlock this cell. */
1019
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1020
1021
1022
1023
1024
1025
1026

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1027
  struct cell *finger;
1028
1029
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1030
    if (lock_trylock(&finger->grav.plock) != 0) break;
1031
1032

    /* Increment the hold. */
1033
    atomic_inc(&finger->grav.phold);
1034
1035

    /* Unlock the cell. */
1036
    if (lock_unlock(&finger->grav.plock) != 0) error("Failed to unlock cell.");
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1048
1049
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1050
      atomic_dec(&finger2->grav.phold);
1051
1052

    /* Unlock this cell. */
1053
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1054
1055
1056
1057
1058
1059

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
1060

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1071
  if (c->grav.mhold || lock_trylock(&c->grav.mlock) != 0) {
1072
1073
1074
1075
1076
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1077
  if (c->grav.mhold) {
1078
    /* Unlock this cell. */
1079
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1090
    if (lock_trylock(&finger->grav.mlock) != 0) break;
1091
1092

    /* Increment the hold. */
1093
    atomic_inc(&finger->grav.mhold);
1094
1095

    /* Unlock the cell. */
1096
    if (lock_unlock(&finger->grav.mlock) != 0) error("Failed to unlock cell.");
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1110
      atomic_dec(&finger2->grav.mhold);
1111
1112

    /* Unlock this cell. */
1113
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1114
1115
1116
1117
1118
1119
1120

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1131
  if (c->stars.hold || lock_trylock(&c->stars.lock) != 0) {
1132
1133
1134
1135
1136
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1137
  if (c->stars.hold) {
1138
    /* Unlock this cell. */
1139
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1150
    if (lock_trylock(&finger->stars.lock) != 0) break;
1151
1152

    /* Increment the hold. */
1153
    atomic_inc(&finger->stars.hold);
1154
1155

    /* Unlock the cell. */
1156
    if (lock_unlock(&finger->stars.lock) != 0) error("Failed to unlock cell.");
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1170
      atomic_dec(&finger2->stars.hold);
1171
1172

    /* Unlock this cell. */
1173
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1174
1175
1176
1177
1178
1179
1180

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1181
/**
1182
 * @brief Unlock a cell's parents for access to #part array.
1183
1184
1185
 *
 * @param c The #cell.
 */
1186
1187
1188
1189
void cell_unlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to unlock this cell. */
1190
  if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1191
1192

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1193
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1194
    atomic_dec(&finger->hydro.hold);
1195
1196
1197
1198

  TIMER_TOC(timer_locktree);
}

1199
1200
1201
1202
1203
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
1204
1205
1206
1207
void cell_gunlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to unlock this cell. */
1208
  if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1209
1210

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1211
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1212
    atomic_dec(&finger->grav.phold);
1213
1214
1215
1216

  TIMER_TOC(timer_locktree);
}

1217
1218
1219
1220
1221
1222
1223
1224
1225
/**
 * @brief Unlock a cell's parents for access to its #multipole.
 *
 * @param c The #cell.
 */
void cell_munlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to unlock this cell. */
1226
  if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1227
1228
1229

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1230
    atomic_dec(&finger->grav.mhold);
1231
1232
1233
1234

  TIMER_TOC(timer_locktree);
}

1235
1236
1237
1238
1239
1240
1241
1242
1243
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to unlock this cell. */
1244
  if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1245
1246
1247

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1248
    atomic_dec(&finger->stars.hold);
1249
1250
1251
1252

  TIMER_TOC(timer_locktree);
}

1253
1254
1255
1256
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
1257
 * @param parts_offset Offset of the cell parts array relative to the
1258
 *        space's parts array, i.e. c->hydro.parts - s->parts.
1259
 * @param sparts_offset Offset of the cell sparts array relative to the
1260
1261
 *        space's sparts array, i.e. c->stars.parts - s->stars.parts.
 * @param buff A buffer with at least max(c->hydro.count, c->grav.count)
1262
 * entries, used for sorting indices.
1263
1264
1265
 * @param sbuff A buffer with at least max(c->stars.count, c->grav.count)
 * entries, used for sorting indices for the sparts.
 * @param gbuff A buffer with at least max(c->hydro.count, c->grav.count)
1266
 * entries, used for sorting indices for the gparts.
1267
 */
1268
1269
void cell_split(struct cell *c, ptrdiff_t parts_offset, ptrdiff_t sparts_offset,
                struct cell_buff *buff, struct cell_buff *sbuff,
1270
                struct cell_buff *gbuff) {
1271
1272
  const int count = c->hydro.count, gcount = c->grav.count,
            scount = c->stars.count;
1273
1274
  struct part *parts = c->hydro.parts;
  struct xpart *xparts = c->hydro.xparts;
1275
1276
  struct gpart *gparts = c->grav.parts;
  struct spart *sparts = c->stars.parts;
1277
1278
1279
1280
1281
1282
  const double pivot[3] = {c->loc[0] + c->width[0] / 2,
                           c->loc[1] + c->width[1] / 2,
                           c->loc[2] + c->width[2] / 2};
  int bucket_count[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  int bucket_offset[9];

1283
1284
1285
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the buffs are OK. */
  for (int k = 0; k < count; k++) {
Pedro Gonnet's avatar