makeICbig.py 5.15 KB
Newer Older
Stefan Arridge's avatar
Stefan Arridge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
###############################################################################
 # This file is part of SWIFT.
 # Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 # 
 # This program is free software: you can redistribute it and/or modify
 # it under the terms of the GNU Lesser General Public License as published
 # by the Free Software Foundation, either version 3 of the License, or
 # (at your option) any later version.
 # 
 # This program is distributed in the hope that it will be useful,
 # but WITHOUT ANY WARRANTY; without even the implied warranty of
 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 # GNU General Public License for more details.
 # 
 # You should have received a copy of the GNU Lesser General Public License
 # along with this program.  If not, see <http://www.gnu.org/licenses/>.
 # 
 ##############################################################################

import h5py
import sys
from numpy import *

# Generates a swift IC file containing a cartesian distribution of particles
# at a constant density and pressure in a cubic box

# Parameters
periodic= 1           # 1 For periodic box
boxSize = 1.
L = int(sys.argv[1])  # Number of particles along one axis
N = int(sys.argv[2])  # Write N particles at a time to avoid requiring a lot of RAM
rho = 2.              # Density
P = 1.                # Pressure
gamma = 5./3.         # Gas adiabatic index
eta = 1.2349      # 48 ngbs with cubic spline kernel
fileName = "uniformBox_%d.hdf5"%L

#---------------------------------------------------
numPart = L**3
mass = boxSize**3 * rho / numPart
internalEnergy = P / ((gamma - 1.)*rho)

#---------------------------------------------------

n_iterations = numPart / N
remainder = numPart % N

print "Writing", numPart, "in", n_iterations, "iterations of size", N, "and a remainder of", remainder

#---------------------------------------------------

#File
file = h5py.File(fileName, 'w')

# Header
grp = file.create_group("/Header")
grp.attrs["BoxSize"] = boxSize
grp.attrs["NumPart_Total"] =  [numPart % (long(1)<<32), 0, 0, 0, 0, 0]
grp.attrs["NumPart_Total_HighWord"] = [numPart / (long(1)<<32), 0, 0, 0, 0, 0]
grp.attrs["NumPart_ThisFile"] = [numPart, 0, 0, 0, 0, 0]
grp.attrs["Time"] = 0.0
grp.attrs["NumFilesPerSnapshot"] = 1
grp.attrs["MassTable"] = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
grp.attrs["Flag_Entropy_ICs"] = 0

#Runtime parameters
grp = file.create_group("/RuntimePars")
grp.attrs["PeriodicBoundariesOn"] = periodic

#Units
grp = file.create_group("/Units")
grp.attrs["Unit length in cgs (U_L)"] = 1.
grp.attrs["Unit mass in cgs (U_M)"] = 1.
grp.attrs["Unit time in cgs (U_t)"] = 1.
grp.attrs["Unit current in cgs (U_I)"] = 1.
grp.attrs["Unit temperature in cgs (U_T)"] = 1.


#Particle group
grp = file.create_group("/PartType0")

# First create the arrays in the file
ds_v = grp.create_dataset('Velocities', (numPart, 3), 'f', chunks=True, compression="gzip")
ds_m = grp.create_dataset('Masses', (numPart,1), 'f', chunks=True, compression="gzip")
ds_h = grp.create_dataset('SmoothingLength', (numPart,1), 'f', chunks=True, compression="gzip")
ds_u = grp.create_dataset('InternalEnergy', (numPart,1), 'f', chunks=True, compression="gzip")
ds_id = grp.create_dataset('ParticleIDs', (numPart, 1), 'L', chunks=True, compression="gzip")
ds_x = grp.create_dataset('Coordinates', (numPart, 3), 'd', chunks=True, compression="gzip")

# Now loop and create parts of the dataset
offset = 0
for n in range(n_iterations):
    v  = zeros((N, 3))
    ds_v[offset:offset+N,:] = v
    v = zeros(1)

    m = full((N, 1), mass)
    ds_m[offset:offset+N] = m
    m = zeros(1)

    h = full((N, 1), eta * boxSize / L)
    ds_h[offset:offset+N] = h
    h = zeros(1)

    u = full((N, 1), internalEnergy)
    ds_u[offset:offset+N] = u
    u = zeros(1)

    ids = linspace(offset, offset+N, N, endpoint=False).reshape((N,1))
    ds_id[offset:offset+N] = ids + 1
    x      = ids % L;
    y      = ((ids - x) / L) % L;
    z      = (ids - x - L * y) / L**2;
    ids    = zeros(1)
    coords = zeros((N, 3))
    coords[:,0] = z[:,0] * boxSize / L + boxSize / (2*L)
    coords[:,1] = y[:,0] * boxSize / L + boxSize / (2*L)
    coords[:,2] = x[:,0] * boxSize / L + boxSize / (2*L)
    ds_x[offset:offset+N,:] = coords
    coords  = zeros((1,3))

    offset += N
    print "Done", offset,"/", numPart, "(%.1f %%)"%(100*(float)(offset)/numPart)

# And now, the remainder
v  = zeros((remainder, 3))
ds_v[offset:offset+remainder,:] = v
v = zeros(1)

m = full((remainder, 1), mass)
ds_m[offset:offset+remainder] = m
m = zeros(1)

h = full((remainder, 1), eta * boxSize / L)
ds_h[offset:offset+remainder] = h
h = zeros(1)

u = full((remainder, 1), internalEnergy)
ds_u[offset:offset+remainder] = u
u = zeros(1)

ids = linspace(offset, offset+remainder, remainder, endpoint=False).reshape((remainder,1))
ds_id[offset:offset+remainder] = ids + 1
x      = ids % L;
y      = ((ids - x) / L) % L;
z      = (ids - x - L * y) / L**2;
coords = zeros((remainder, 3))
coords[:,0] = z[:,0] * boxSize / L + boxSize / (2*L)
coords[:,1] = y[:,0] * boxSize / L + boxSize / (2*L)
coords[:,2] = x[:,0] * boxSize / L + boxSize / (2*L)
ods_x[offset:offset+remainder,:] = coords

print "Done", offset+remainder,"/", numPart




file.close()