cell.c 185 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "black_holes.h"
53
#include "chemistry.h"
54
#include "drift.h"
55
#include "engine.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
56
#include "entropy_floor.h"
57
#include "error.h"
58
#include "feedback.h"
59
#include "gravity.h"
60
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
61
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
62
#include "memswap.h"
63
#include "minmax.h"
64
#include "scheduler.h"
65
#include "space.h"
66
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
67
#include "star_formation.h"
Loic Hausammann's avatar
Loic Hausammann committed
68
#include "stars.h"
69
#include "timers.h"
70
#include "tools.h"
71
#include "tracers.h"
72

73
74
75
/* Global variables. */
int cell_next_tag = 0;

Pedro Gonnet's avatar
Pedro Gonnet committed
76
/** List of cell pairs for sub-cell recursion. For any sid, the entries in
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
 * this array contain the number of sub-cell pairs and the indices and sid
 * of the sub-cell pairs themselves. */
struct cell_split_pair cell_split_pairs[13] = {
    {1, /* (  1 ,  1 ,  1 ) */
     {{7, 0, 0}}},

    {4, /* (  1 ,  1 ,  0 ) */
     {{6, 0, 1}, {7, 1, 1}, {6, 1, 0}, {7, 0, 2}}},

    {1, /* (  1 ,  1 , -1 ) */
     {{6, 1, 2}}},

    {4, /* (  1 ,  0 ,  1 ) */
     {{5, 0, 3}, {7, 2, 3}, {5, 2, 0}, {7, 0, 6}}},

    {16, /* (  1 ,  0 ,  0 ) */
     {{4, 0, 4},
      {5, 0, 5},
      {6, 0, 7},
      {7, 0, 8},
      {4, 1, 3},
      {5, 1, 4},
      {6, 1, 6},
      {7, 1, 7},
      {4, 2, 1},
      {5, 2, 2},
      {6, 2, 4},
      {7, 2, 5},
      {4, 3, 0},
      {5, 3, 1},
      {6, 3, 3},
      {7, 3, 4}}},

    {4, /* (  1 ,  0 , -1 ) */
     {{4, 1, 5}, {6, 3, 5}, {4, 3, 2}, {6, 1, 8}}},

    {1, /* (  1 , -1 ,  1 ) */
     {{5, 2, 6}}},

    {4, /* (  1 , -1 ,  0 ) */
     {{4, 3, 6}, {5, 2, 8}, {4, 2, 7}, {5, 3, 7}}},

    {1, /* (  1 , -1 , -1 ) */
     {{4, 3, 8}}},

    {4, /* (  0 ,  1 ,  1 ) */
     {{3, 0, 9}, {7, 4, 9}, {3, 4, 0}, {7, 0, 8}}},

    {16, /* (  0 ,  1 ,  0 ) */
     {{2, 0, 10},
      {3, 0, 11},
      {6, 0, 7},
      {7, 0, 6},
      {2, 1, 9},
      {3, 1, 10},
      {6, 1, 8},
      {7, 1, 7},
      {2, 4, 1},
      {3, 4, 2},
      {6, 4, 10},
      {7, 4, 11},
      {2, 5, 0},
      {3, 5, 1},
      {6, 5, 9},
      {7, 5, 10}}},

    {4, /* (  0 ,  1 , -1 ) */
     {{2, 1, 11}, {6, 5, 11}, {2, 5, 2}, {6, 1, 6}}},

    {16, /* (  0 ,  0 ,  1 ) */
     {{1, 0, 12},
      {3, 0, 11},
      {5, 0, 5},
      {7, 0, 2},
      {1, 2, 9},
      {3, 2, 12},
      {5, 2, 8},
      {7, 2, 5},
      {1, 4, 3},
      {3, 4, 6},
      {5, 4, 12},
      {7, 4, 11},
      {1, 6, 0},
      {3, 6, 3},
      {5, 6, 9},
      {7, 6, 12}}}};

164
165
166
167
168
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
169
int cell_getsize(struct cell *c) {
Pedro Gonnet's avatar
Pedro Gonnet committed
170
171
  /* Number of cells in this subtree. */
  int count = 1;
172

173
174
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
175
    for (int k = 0; k < 8; k++)
176
177
178
179
180
181
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

182
/**
183
 * @brief Link the cells recursively to the given #part array.
184
185
186
187
188
189
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
190
int cell_link_parts(struct cell *c, struct part *parts) {
191
#ifdef SWIFT_DEBUG_CHECKS
192
193
194
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

195
  if (c->hydro.parts != NULL)
196
197
198
    error("Linking parts into a cell that was already linked");
#endif

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
  c->hydro.parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->hydro.count;
}

/**
215
 * @brief Link the cells recursively to the given #gpart array.
216
217
 *
 * @param c The #cell.
218
 * @param gparts The #gpart array.
219
220
221
 *
 * @return The number of particles linked.
 */
222
int cell_link_gparts(struct cell *c, struct gpart *gparts) {
223
224
225
226
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

227
  if (c->grav.parts != NULL)
228
    error("Linking gparts into a cell that was already linked");
229
#endif
230

231
  c->grav.parts = gparts;
232
233
234
235
236
237
238
239
240
241
242

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
243
  return c->grav.count;
244
245
}

246
247
248
249
250
251
252
253
254
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {
255
256
257
258
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

259
  if (c->stars.parts != NULL)
260
261
262
    error("Linking sparts into a cell that was already linked");
#endif

263
  c->stars.parts = sparts;
264
  c->stars.parts_rebuild = sparts;
265
266
267
268
269
270
271
272
273
274
275

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
276
  return c->stars.count;
277
278
}

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/**
 * @brief Link the cells recursively to the given #bpart array.
 *
 * @param c The #cell.
 * @param bparts The #bpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_bparts(struct cell *c, struct bpart *bparts) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

  if (c->black_holes.parts != NULL)
    error("Linking bparts into a cell that was already linked");
#endif

  c->black_holes.parts = bparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_bparts(c->progeny[k], &bparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->black_holes.count;
}

312
313
314
315
316
317
318
319
320
321
/**
 * @brief Recurse down foreign cells until reaching one with hydro
 * tasks; then trigger the linking of the #part array from that
 * level.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
322
int cell_link_foreign_parts(struct cell *c, struct part *parts) {
323
324
#ifdef WITH_MPI

325
326
327
328
329
330
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
331
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

    /* Recursively attach the parts */
    const int counts = cell_link_parts(c, parts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->hydro.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_parts(c->progeny[k], &parts[count]);
      }
    }
350
351
352
    return count;
  } else {
    return 0;
353
  }
354
355
356
357

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
358
359
}

360
361
362
363
364
365
366
367
368
369
/**
 * @brief Recurse down foreign cells until reaching one with gravity
 * tasks; then trigger the linking of the #gpart array from that
 * level.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
370
int cell_link_foreign_gparts(struct cell *c, struct gpart *gparts) {
371
372
#ifdef WITH_MPI

373
374
375
376
377
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

378
379
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
380

381
    /* Recursively attach the gparts */
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    const int counts = cell_link_gparts(c, gparts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->grav.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_gparts(c->progeny[k], &gparts[count]);
      }
    }
398
399
400
    return count;
  } else {
    return 0;
401
  }
402
403
404
405

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
406
407
}

408
409
410
411
412
413
414
415
/**
 * @brief Recursively count the number of #part in foreign cells that
 * are in cells with hydro-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
416
int cell_count_parts_for_tasks(const struct cell *c) {
417
418
#ifdef WITH_MPI

419
420
421
422
423
424
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
425
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
426
427
428
429
430
431
432
433
434
435
    return c->hydro.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_parts_for_tasks(c->progeny[k]);
      }
    }
436
437
438
    return count;
  } else {
    return 0;
439
  }
440
441
442
443

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
444
445
}

446
447
448
449
450
451
452
453
/**
 * @brief Recursively count the number of #gpart in foreign cells that
 * are in cells with gravity-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
454
int cell_count_gparts_for_tasks(const struct cell *c) {
455
456
#ifdef WITH_MPI

457
458
459
460
461
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

462
463
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
464
465
466
467
468
469
470
471
472
473
    return c->grav.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_gparts_for_tasks(c->progeny[k]);
      }
    }
474
475
476
    return count;
  } else {
    return 0;
477
  }
478
479
480
481

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
482
483
}

484
485
486
487
488
489
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
490
491
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
492
493
494
 *
 * @return The number of packed cells.
 */
495
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
496
              const int with_gravity) {
497
498
#ifdef WITH_MPI

499
  /* Start by packing the data of the current cell. */
500
  pc->hydro.h_max = c->hydro.h_max;
501
  pc->stars.h_max = c->stars.h_max;
502
  pc->black_holes.h_max = c->black_holes.h_max;
503
504
505
506
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
507
  pc->stars.ti_end_min = c->stars.ti_end_min;
508
  pc->stars.ti_end_max = c->stars.ti_end_max;
509
510
  pc->black_holes.ti_end_min = c->black_holes.ti_end_min;
  pc->black_holes.ti_end_max = c->black_holes.ti_end_max;
511
512
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
513
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
514
  pc->stars.ti_old_part = c->stars.ti_old_part;
515
  pc->hydro.count = c->hydro.count;
516
517
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
518
  pc->black_holes.count = c->black_holes.count;
519
  pc->maxdepth = c->maxdepth;
520

521
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
522
  if (with_gravity) {
523
    const struct gravity_tensors *mp = c->grav.multipole;
524

525
526
527
528
529
530
531
532
533
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
534
535
  }

536
537
538
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
539
540

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
541
542
  int count = 1;
  for (int k = 0; k < 8; k++)
543
544
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
545
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
546
    } else {
547
      pc->progeny[k] = -1;
548
    }
549
550

  /* Return the number of packed cells used. */
551
  c->mpi.pcell_size = count;
552
  return count;
553
554
555
556
557

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
558
559
}

560
561
562
563
564
565
566
567
568
569
570
571
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {
#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
572
  tags[0] = c->mpi.tag;
573
574
575
576
577
578
579
580

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
581
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
582
583
584
585
586
587
588
589
590
591
592
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
void cell_pack_part_swallow(const struct cell *c,
                            struct black_holes_part_data *data) {

  const size_t count = c->hydro.count;
  const struct part *parts = c->hydro.parts;

  for (size_t i = 0; i < count; ++i) {
    data[i] = parts[i].black_holes_data;
  }
}

void cell_unpack_part_swallow(struct cell *c,
                              const struct black_holes_part_data *data) {

  const size_t count = c->hydro.count;
  struct part *parts = c->hydro.parts;

  for (size_t i = 0; i < count; ++i) {
    parts[i].black_holes_data = data[i];
  }
}

615
616
617
618
619
620
621
void cell_pack_bpart_swallow(const struct cell *c,
                             struct black_holes_bpart_data *data) {

  const size_t count = c->black_holes.count;
  const struct bpart *bparts = c->black_holes.parts;

  for (size_t i = 0; i < count; ++i) {
622
    data[i] = bparts[i].merger_data;
623
624
625
626
627
628
629
630
631
632
633
634
635
636
  }
}

void cell_unpack_bpart_swallow(struct cell *c,
                               const struct black_holes_bpart_data *data) {

  const size_t count = c->black_holes.count;
  struct bpart *bparts = c->black_holes.parts;

  for (size_t i = 0; i < count; ++i) {
    bparts[i].merger_data = data[i];
  }
}

637
638
639
640
641
642
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
643
644
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
645
646
647
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
648
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
649
                struct space *restrict s, const int with_gravity) {
650
651
652
#ifdef WITH_MPI

  /* Unpack the current pcell. */
653
  c->hydro.h_max = pc->hydro.h_max;
654
  c->stars.h_max = pc->stars.h_max;
655
  c->black_holes.h_max = pc->black_holes.h_max;
656
657
658
659
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
660
  c->stars.ti_end_min = pc->stars.ti_end_min;
661
  c->stars.ti_end_max = pc->stars.ti_end_max;
662
663
  c->black_holes.ti_end_min = pc->black_holes.ti_end_min;
  c->black_holes.ti_end_max = pc->black_holes.ti_end_max;
664
665
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
666
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
667
  c->stars.ti_old_part = pc->stars.ti_old_part;
668
  c->black_holes.ti_old_part = pc->black_holes.ti_old_part;
669
  c->hydro.count = pc->hydro.count;
670
671
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
672
  c->black_holes.count = pc->black_holes.count;
673
674
  c->maxdepth = pc->maxdepth;

675
676
677
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
678

679
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
680
  if (with_gravity) {
681
    struct gravity_tensors *mp = c->grav.multipole;
682

683
684
685
686
687
688
689
690
691
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
692
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
693

694
695
696
697
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
698
  c->split = 0;
699
700
701
702
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
703
      temp->hydro.count = 0;
704
705
      temp->grav.count = 0;
      temp->stars.count = 0;
706
707
708
709
710
711
712
713
714
715
716
717
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
718
      temp->hydro.dx_max_part = 0.f;
719
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
720
      temp->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
721
      temp->stars.dx_max_sort = 0.f;
722
      temp->black_holes.dx_max_part = 0.f;
723
724
725
726
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
727
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
728
729
730
    }

  /* Return the total number of unpacked cells. */
731
  c->mpi.pcell_size = count;
732
733
734
735
736
737
738
739
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

740
741
742
743
744
745
746
747
748
749
750
751
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {
#ifdef WITH_MPI

  /* Unpack the current pcell. */
752
  c->mpi.tag = tags[0];
753
754
755
756
757
758
759
760
761
762
763

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
764
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
765
766
767
768
769
770
771
772
773
774
775
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

776
777
778
779
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
780
 * @param pcells (output) The end-of-timestep information we pack into
781
782
783
 *
 * @return The number of packed cells.
 */
784
785
int cell_pack_end_step_hydro(struct cell *restrict c,
                             struct pcell_step_hydro *restrict pcells) {
786
787
#ifdef WITH_MPI

788
  /* Pack this cell's data. */
789
790
791
  pcells[0].ti_end_min = c->hydro.ti_end_min;
  pcells[0].ti_end_max = c->hydro.ti_end_max;
  pcells[0].dx_max_part = c->hydro.dx_max_part;
792

793
794
795
796
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
797
      count += cell_pack_end_step_hydro(c->progeny[k], &pcells[count]);
798
799
800
801
    }

  /* Return the number of packed values. */
  return count;
802
803
804
805
806

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
807
808
}

809
810
811
812
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
813
 * @param pcells The end-of-timestep information to unpack
814
815
816
 *
 * @return The number of cells created.
 */
817
818
int cell_unpack_end_step_hydro(struct cell *restrict c,
                               struct pcell_step_hydro *restrict pcells) {
819
820
#ifdef WITH_MPI

821
  /* Unpack this cell's data. */
822
823
824
  c->hydro.ti_end_min = pcells[0].ti_end_min;
  c->hydro.ti_end_max = pcells[0].ti_end_max;
  c->hydro.dx_max_part = pcells[0].dx_max_part;
825

826
827
828
829
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
      count += cell_unpack_end_step_hydro(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_grav(struct cell *restrict c,
                            struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->grav.ti_end_min;
  pcells[0].ti_end_max = c->grav.ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_grav(struct cell *restrict c,
                              struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->grav.ti_end_min = pcells[0].ti_end_min;
  c->grav.ti_end_max = pcells[0].ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_stars(struct cell *restrict c,
                             struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->stars.ti_end_min;
  pcells[0].ti_end_max = c->stars.ti_end_max;
  pcells[0].dx_max_part = c->stars.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_stars(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_stars(struct cell *restrict c,
                               struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->stars.ti_end_min = pcells[0].ti_end_min;
  c->stars.ti_end_max = pcells[0].ti_end_max;
  c->stars.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_stars(c->progeny[k], &pcells[count]);
961
962
963
    }

  /* Return the number of packed values. */
964
  return count;
965
966
967
968
969

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
970
}
971

972
973
974
975
976
977
978
979
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
980
981
int cell_pack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->black_holes.ti_end_min;
  pcells[0].ti_end_max = c->black_holes.ti_end_max;
  pcells[0].dx_max_part = c->black_holes.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
1014
1015
int cell_unpack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->black_holes.ti_end_min = pcells[0].ti_end_min;
  c->black_holes.ti_end_max = pcells[0].ti_end_max;
  c->black_holes.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1040
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
1041
1042
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
1043
1044
1045
1046
1047
1048
1049
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1050
                         struct gravity_tensors *restrict pcells) {
1051
1052
1053
#ifdef WITH_MPI

  /* Pack this cell's data. */
1054
  pcells[0] = *c->grav.multipole;
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1081
                           struct gravity_tensors *restrict pcells) {
1082
1083
1084
#ifdef WITH_MPI

  /* Unpack this cell's data. */
1085
  *c->grav.multipole = pcells[0];
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
/**
 * @brief Pack the counts for star formation of the given cell and all it's
 * sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_sf_counts(struct cell *restrict c,
                        struct pcell_sf *restrict pcells) {

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].stars.delta_from_rebuild = c->stars.parts - c->stars.parts_rebuild;
  pcells[0].stars.count = c->stars.count;
1120
  pcells[0].stars.dx_max_part = c->stars.dx_max_part;
1121

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
#ifdef SWIFT_DEBUG_CHECKS
  if (c->stars.parts_rebuild == NULL)
    error("Star particles array at rebuild is NULL! c->depth=%d", c->depth);

  if (pcells[0].stars.delta_from_rebuild < 0)
    error("Stars part pointer moved in the wrong direction!");

  if (pcells[0].stars.delta_from_rebuild > 0 && c->depth == 0)
    error("Shifting the top-level pointer is not allowed!");
#endif

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_sf_counts(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the counts for star formation of a given cell and its
 * sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_sf_counts(struct cell *restrict c,
                          struct pcell_sf *restrict pcells) {

#ifdef WITH_MPI

#ifdef SWIFT_DEBUG_CHECKS
  if (c->stars.parts_rebuild == NULL)
    error("Star particles array at rebuild is NULL!");
#endif

  /* Unpack this cell's data. */
  c->stars.count = pcells[0].stars.count;
  c->stars.parts = c->stars.parts_rebuild + pcells[0].stars.delta_from_rebuild;
1171
  c->stars.dx_max_part = pcells[0].stars.dx_max_part;
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_sf_counts(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1189
/**
1190
 * @brief Lock a cell for access to its array of #part and hold its parents.
1191
1192
 *
 * @param c The #cell.
1193
 * @return 0 on success, 1 on failure
1194
 */
1195
1196
1197
1198
int cell_locktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1199
  if (c->hydro.hold || lock_trylock(&c->hydro.lock) != 0) {
1200
1201
1202
1203
1204
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1205
  if (c->hydro.hold) {
1206
    /* Unlock this cell. */
1207
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1208
1209
1210
1211
1212
1213
1214

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1215
  struct cell *finger;
1216
1217
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1218
    if (lock_trylock(&finger->hydro.lock) != 0) break;
1219
1220

    /* Increment the hold. */
1221
    atomic_inc(&finger->hydro.hold);
1222
1223

    /* Unlock the cell. */
1224
    if (lock_unlock(&finger->hydro.lock) != 0) error("Failed to unlock cell.");
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1236
1237
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1238
      atomic_dec(&finger2->hydro.hold);
1239
1240

    /* Unlock this cell. */
1241
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1242
1243
1244
1245
1246
1247
1248

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1249
1250
1251
1252
1253
1254
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
1255
1256
1257
1258
int cell_glocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1259
  if (c->grav.phold || lock_trylock(&c->grav.plock) != 0) {
1260
1261
1262
1263
1264
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1265
  if (c->grav.phold) {
1266
    /* Unlock this cell. */
1267
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1268
1269
1270
1271
1272
1273
1274

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1275
  struct cell *finger;
1276
1277
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1278
    if (lock_trylock(&finger->grav.plock) != 0) break;
1279
1280

    /* Increment the hold. */
1281
    atomic_inc(&finger->grav.phold);
1282
1283

    /* Unlock the cell. */
1284
    if (lock_unlock(&finger->grav.plock) != 0) error("Failed to unlock cell.");
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1296
1297
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1298
      atomic_dec(&finger2->grav.phold);
1299
1300

    /* Unlock this cell. */
1301
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1302
1303
1304
1305
1306
1307

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
1308

1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1319
  if (c->grav.mhold || lock_trylock(&c->grav.mlock) != 0) {
1320
1321
1322
1323
1324
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1325
  if (c->grav.mhold) {
1326
    /* Unlock this cell. */
1327
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1338
    if (lock_trylock(&finger->grav.mlock) != 0) break;
1339
1340

    /* Increment the hold. */
1341
    atomic_inc(&finger->grav.mhold);
1342
1343

    /* Unlock the cell. */
1344
    if (lock_unlock(&finger->grav.mlock) != 0) error("Failed to unlock cell.");
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1358
      atomic_dec(&finger2->grav.mhold);
1359
1360

    /* Unlock this cell. */
1361
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1362
1363
1364
1365
1366
1367
1368

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1379
  if (c->stars.hold || lock_trylock(&c->stars.lock) != 0) {
1380
1381
1382
1383
1384
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1385
  if (c->stars.hold) {
1386
    /* Unlock this cell. */
Loic Hausammann's avatar