cell.c 81.8 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "drift.h"
53
#include "engine.h"
54
#include "error.h"
55
#include "gravity.h"
56
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
57
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
58
#include "memswap.h"
59
#include "minmax.h"
60
#include "scheduler.h"
61
62
#include "space.h"
#include "timers.h"
63

64
65
66
/* Global variables. */
int cell_next_tag = 0;

67
68
69
70
71
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
72
int cell_getsize(struct cell *c) {
73

Pedro Gonnet's avatar
Pedro Gonnet committed
74
75
  /* Number of cells in this subtree. */
  int count = 1;
76

77
78
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
79
    for (int k = 0; k < 8; k++)
80
81
82
83
84
85
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

86
/**
87
 * @brief Link the cells recursively to the given #part array.
88
89
90
91
92
93
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
94
int cell_link_parts(struct cell *c, struct part *parts) {
95

96
97
98
  c->parts = parts;

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
99
100
101
102
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
103
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
Pedro Gonnet's avatar
Pedro Gonnet committed
104
105
    }
  }
106

107
  /* Return the total number of linked particles. */
108
109
  return c->count;
}
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/**
 * @brief Link the cells recursively to the given #gpart array.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_gparts(struct cell *c, struct gpart *gparts) {

  c->gparts = gparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->gcount;
}

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {

  c->sparts = sparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->scount;
}

161
162
163
164
165
166
167
168
169
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
170
int cell_pack(struct cell *restrict c, struct pcell *restrict pc) {
171

172
173
#ifdef WITH_MPI

174
175
  /* Start by packing the data of the current cell. */
  pc->h_max = c->h_max;
176
177
178
179
  pc->ti_hydro_end_min = c->ti_hydro_end_min;
  pc->ti_hydro_end_max = c->ti_hydro_end_max;
  pc->ti_gravity_end_min = c->ti_gravity_end_min;
  pc->ti_gravity_end_max = c->ti_gravity_end_max;
180
181
  pc->ti_old_part = c->ti_old_part;
  pc->ti_old_gpart = c->ti_old_gpart;
182
  pc->ti_old_multipole = c->ti_old_multipole;
183
  pc->count = c->count;
184
  pc->gcount = c->gcount;
185
  pc->scount = c->scount;
186
  c->tag = pc->tag = atomic_inc(&cell_next_tag) % cell_max_tag;
187
188
189
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
190
191

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
192
193
  int count = 1;
  for (int k = 0; k < 8; k++)
194
195
196
197
198
199
200
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
      count += cell_pack(c->progeny[k], &pc[count]);
    } else
      pc->progeny[k] = -1;

  /* Return the number of packed cells used. */
201
202
  c->pcell_size = count;
  return count;
203
204
205
206
207

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
208
209
}

210
211
212
213
214
215
216
217
218
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
219
220
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
                struct space *restrict s) {
221
222
223
224
225

#ifdef WITH_MPI

  /* Unpack the current pcell. */
  c->h_max = pc->h_max;
226
227
228
229
  c->ti_hydro_end_min = pc->ti_hydro_end_min;
  c->ti_hydro_end_max = pc->ti_hydro_end_max;
  c->ti_gravity_end_min = pc->ti_gravity_end_min;
  c->ti_gravity_end_max = pc->ti_gravity_end_max;
230
231
  c->ti_old_part = pc->ti_old_part;
  c->ti_old_gpart = pc->ti_old_gpart;
232
  c->ti_old_multipole = pc->ti_old_multipole;
233
234
235
236
  c->count = pc->count;
  c->gcount = pc->gcount;
  c->scount = pc->scount;
  c->tag = pc->tag;
237
238
239
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
      temp->count = 0;
      temp->gcount = 0;
      temp->scount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->dx_max_part = 0.f;
      temp->dx_max_gpart = 0.f;
      temp->dx_max_sort = 0.f;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
      count += cell_unpack(&pc[pc->progeny[k]], temp, s);
    }

  /* Return the total number of unpacked cells. */
  c->pcell_size = count;
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

284
285
286
287
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
288
 * @param pcells (output) The end-of-timestep information we pack into
289
290
291
 *
 * @return The number of packed cells.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
292
293
int cell_pack_end_step(struct cell *restrict c,
                       struct pcell_step *restrict pcells) {
294

295
296
#ifdef WITH_MPI

297
  /* Pack this cell's data. */
298
299
  pcells[0].ti_hydro_end_min = c->ti_hydro_end_min;
  pcells[0].ti_gravity_end_min = c->ti_gravity_end_min;
300
301
  pcells[0].dx_max_part = c->dx_max_part;
  pcells[0].dx_max_gpart = c->dx_max_gpart;
302

303
304
305
306
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
307
      count += cell_pack_end_step(c->progeny[k], &pcells[count]);
308
309
310
311
    }

  /* Return the number of packed values. */
  return count;
312
313
314
315
316

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
317
318
}

319
320
321
322
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
323
 * @param pcells The end-of-timestep information to unpack
324
325
326
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
327
328
int cell_unpack_end_step(struct cell *restrict c,
                         struct pcell_step *restrict pcells) {
329

330
331
#ifdef WITH_MPI

332
  /* Unpack this cell's data. */
333
334
  c->ti_hydro_end_min = pcells[0].ti_hydro_end_min;
  c->ti_gravity_end_min = pcells[0].ti_gravity_end_min;
335
336
  c->dx_max_part = pcells[0].dx_max_part;
  c->dx_max_gpart = pcells[0].dx_max_gpart;
337

338
339
340
341
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
342
      count += cell_unpack_end_step(c->progeny[k], &pcells[count]);
343
344
345
    }

  /* Return the number of packed values. */
346
  return count;
347
348
349
350
351

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
352
}
353

354
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
355
356
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
357
358
359
360
361
362
363
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
364
                         struct gravity_tensors *restrict pcells) {
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0] = *c->multipole;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
396
                           struct gravity_tensors *restrict pcells) {
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  *c->multipole = pcells[0];

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

419
/**
420
 * @brief Lock a cell for access to its array of #part and hold its parents.
421
422
 *
 * @param c The #cell.
423
 * @return 0 on success, 1 on failure
424
 */
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->hold || lock_trylock(&c->lock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->hold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
447
  struct cell *finger;
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->lock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->hold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->lock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
470
471
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
472
      atomic_dec(&finger2->hold);
473
474
475
476
477
478
479
480
481
482

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

483
484
485
486
487
488
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->ghold || lock_trylock(&c->glock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->ghold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
511
  struct cell *finger;
512
513
514
515
516
517
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->glock) != 0) break;

    /* Increment the hold. */
518
    atomic_inc(&finger->ghold);
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

    /* Unlock the cell. */
    if (lock_unlock(&finger->glock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
534
535
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
536
      atomic_dec(&finger2->ghold);
537
538
539
540
541
542
543
544
545

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
546

547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->mhold || lock_trylock(&c->mlock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->mhold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->mlock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->mhold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->mlock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->mhold);

    /* Unlock this cell. */
    if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->shold || lock_trylock(&c->slock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->shold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->slock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->shold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->slock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->shold);

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

675
/**
676
 * @brief Unlock a cell's parents for access to #part array.
677
678
679
 *
 * @param c The #cell.
 */
680
681
682
683
684
685
686
687
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
688
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
689
    atomic_dec(&finger->hold);
690
691
692
693

  TIMER_TOC(timer_locktree);
}

694
695
696
697
698
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
699
700
701
702
703
704
705
706
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
707
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
708
    atomic_dec(&finger->ghold);
709
710
711
712

  TIMER_TOC(timer_locktree);
}

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
/**
 * @brief Unlock a cell's parents for access to its #multipole.
 *
 * @param c The #cell.
 */
void cell_munlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->mhold);

  TIMER_TOC(timer_locktree);
}

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->shold);

  TIMER_TOC(timer_locktree);
}

751
752
753
754
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
755
756
 * @param parts_offset Offset of the cell parts array relative to the
 *        space's parts array, i.e. c->parts - s->parts.
757
758
 * @param sparts_offset Offset of the cell sparts array relative to the
 *        space's sparts array, i.e. c->sparts - s->sparts.
759
760
 * @param buff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices.
761
762
 * @param sbuff A buffer with at least max(c->scount, c->gcount) entries,
 *        used for sorting indices for the sparts.
Peter W. Draper's avatar
Peter W. Draper committed
763
764
 * @param gbuff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices for the gparts.
765
 */
766
767
void cell_split(struct cell *c, ptrdiff_t parts_offset, ptrdiff_t sparts_offset,
                struct cell_buff *buff, struct cell_buff *sbuff,
768
                struct cell_buff *gbuff) {
769

770
  const int count = c->count, gcount = c->gcount, scount = c->scount;
771
772
773
  struct part *parts = c->parts;
  struct xpart *xparts = c->xparts;
  struct gpart *gparts = c->gparts;
Matthieu Schaller's avatar
Matthieu Schaller committed
774
  struct spart *sparts = c->sparts;
775
776
777
778
779
780
  const double pivot[3] = {c->loc[0] + c->width[0] / 2,
                           c->loc[1] + c->width[1] / 2,
                           c->loc[2] + c->width[2] / 2};
  int bucket_count[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  int bucket_offset[9];

781
782
783
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the buffs are OK. */
  for (int k = 0; k < count; k++) {
784
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
785
        buff[k].x[2] != parts[k].x[2])
786
787
      error("Inconsistent buff contents.");
  }
788
789
790
791
792
793
794
795
796
797
  for (int k = 0; k < gcount; k++) {
    if (gbuff[k].x[0] != gparts[k].x[0] || gbuff[k].x[1] != gparts[k].x[1] ||
        gbuff[k].x[2] != gparts[k].x[2])
      error("Inconsistent gbuff contents.");
  }
  for (int k = 0; k < scount; k++) {
    if (sbuff[k].x[0] != sparts[k].x[0] || sbuff[k].x[1] != sparts[k].x[1] ||
        sbuff[k].x[2] != sparts[k].x[2])
      error("Inconsistent sbuff contents.");
  }
798
#endif /* SWIFT_DEBUG_CHECKS */
799
800
801

  /* Fill the buffer with the indices. */
  for (int k = 0; k < count; k++) {
802
803
    const int bid = (buff[k].x[0] > pivot[0]) * 4 +
                    (buff[k].x[1] > pivot[1]) * 2 + (buff[k].x[2] > pivot[2]);
804
    bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
805
    buff[k].ind = bid;
806
  }
807

808
809
810
811
812
  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
813
814
  }

815
816
817
818
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
819
      int bid = buff[k].ind;
820
821
822
      if (bid != bucket) {
        struct part part = parts[k];
        struct xpart xpart = xparts[k];
823
        struct cell_buff temp_buff = buff[k];
824
825
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
826
          while (buff[j].ind == bid) {
827
828
829
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
830
831
          memswap(&parts[j], &part, sizeof(struct part));
          memswap(&xparts[j], &xpart, sizeof(struct xpart));
832
833
          memswap(&buff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
834
835
836
        }
        parts[k] = part;
        xparts[k] = xpart;
837
        buff[k] = temp_buff;
838
      }
839
      bucket_count[bid]++;
840
841
842
843
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
844
  for (int k = 0; k < 8; k++) {
845
846
847
    c->progeny[k]->count = bucket_count[k];
    c->progeny[k]->parts = &c->parts[bucket_offset[k]];
    c->progeny[k]->xparts = &c->xparts[bucket_offset[k]];
848
849
850
  }

  /* Re-link the gparts. */
851
852
  if (count > 0 && gcount > 0)
    part_relink_gparts_to_parts(parts, count, parts_offset);
853

854
#ifdef SWIFT_DEBUG_CHECKS
855
856
857
858
859
860
861
862
  /* Check that the buffs are OK. */
  for (int k = 1; k < count; k++) {
    if (buff[k].ind < buff[k - 1].ind) error("Buff not sorted.");
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
        buff[k].x[2] != parts[k].x[2])
      error("Inconsistent buff contents (k=%i).", k);
  }

863
  /* Verify that _all_ the parts have been assigned to a cell. */
864
865
866
867
868
869
870
871
  for (int k = 1; k < 8; k++)
    if (&c->progeny[k - 1]->parts[c->progeny[k - 1]->count] !=
        c->progeny[k]->parts)
      error("Particle sorting failed (internal consistency).");
  if (c->progeny[0]->parts != c->parts)
    error("Particle sorting failed (left edge).");
  if (&c->progeny[7]->parts[c->progeny[7]->count] != &c->parts[count])
    error("Particle sorting failed (right edge).");
872
873

  /* Verify a few sub-cells. */
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
  for (int k = 0; k < c->progeny[0]->count; k++)
    if (c->progeny[0]->parts[k].x[0] > pivot[0] ||
        c->progeny[0]->parts[k].x[1] > pivot[1] ||
        c->progeny[0]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=0).");
  for (int k = 0; k < c->progeny[1]->count; k++)
    if (c->progeny[1]->parts[k].x[0] > pivot[0] ||
        c->progeny[1]->parts[k].x[1] > pivot[1] ||
        c->progeny[1]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=1).");
  for (int k = 0; k < c->progeny[2]->count; k++)
    if (c->progeny[2]->parts[k].x[0] > pivot[0] ||
        c->progeny[2]->parts[k].x[1] <= pivot[1] ||
        c->progeny[2]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=2).");
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
  for (int k = 0; k < c->progeny[3]->count; k++)
    if (c->progeny[3]->parts[k].x[0] > pivot[0] ||
        c->progeny[3]->parts[k].x[1] <= pivot[1] ||
        c->progeny[3]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=3).");
  for (int k = 0; k < c->progeny[4]->count; k++)
    if (c->progeny[4]->parts[k].x[0] <= pivot[0] ||
        c->progeny[4]->parts[k].x[1] > pivot[1] ||
        c->progeny[4]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=4).");
  for (int k = 0; k < c->progeny[5]->count; k++)
    if (c->progeny[5]->parts[k].x[0] <= pivot[0] ||
        c->progeny[5]->parts[k].x[1] > pivot[1] ||
        c->progeny[5]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=5).");
  for (int k = 0; k < c->progeny[6]->count; k++)
    if (c->progeny[6]->parts[k].x[0] <= pivot[0] ||
        c->progeny[6]->parts[k].x[1] <= pivot[1] ||
        c->progeny[6]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=6).");
  for (int k = 0; k < c->progeny[7]->count; k++)
    if (c->progeny[7]->parts[k].x[0] <= pivot[0] ||
        c->progeny[7]->parts[k].x[1] <= pivot[1] ||
        c->progeny[7]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=7).");
914
#endif
915

916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
  /* Now do the same song and dance for the sparts. */
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < scount; k++) {
    const int bid = (sbuff[k].x[0] > pivot[0]) * 4 +
                    (sbuff[k].x[1] > pivot[1]) * 2 + (sbuff[k].x[2] > pivot[2]);
    bucket_count[bid]++;
    sbuff[k].ind = bid;
  }

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
  }

  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
      int bid = sbuff[k].ind;
      if (bid != bucket) {
        struct spart spart = sparts[k];
        struct cell_buff temp_buff = sbuff[k];
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
          while (sbuff[j].ind == bid) {
            j++;
            bucket_count[bid]++;
          }
          memswap(&sparts[j], &spart, sizeof(struct spart));
          memswap(&sbuff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
        }
        sparts[k] = spart;
        sbuff[k] = temp_buff;
      }
      bucket_count[bid]++;
    }
  }

  /* Store the counts and offsets. */
  for (int k = 0; k < 8; k++) {
    c->progeny[k]->scount = bucket_count[k];
    c->progeny[k]->sparts = &c->sparts[bucket_offset[k]];
  }

  /* Re-link the gparts. */
  if (scount > 0 && gcount > 0)
967
    part_relink_gparts_to_sparts(sparts, scount, sparts_offset);
968
969

  /* Finally, do the same song and dance for the gparts. */
970
971
972
973
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < gcount; k++) {
974
975
    const int bid = (gbuff[k].x[0] > pivot[0]) * 4 +
                    (gbuff[k].x[1] > pivot[1]) * 2 + (gbuff[k].x[2] > pivot[2]);
976
    bucket_count[bid]++;
977
    gbuff[k].ind = bid;
978
  }
979
980
981
982
983
984

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
985
986
  }

987
988
989
990
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
991
      int bid = gbuff[k].ind;
992
993
      if (bid != bucket) {
        struct gpart gpart = gparts[k];
994
        struct cell_buff temp_buff = gbuff[k];
995
996
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
997
          while (gbuff[j].ind == bid) {
998
999
1000
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
1001
          memswap(&gparts[j], &gpart, sizeof(struct gpart));
1002
1003
          memswap(&gbuff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
1004
1005
        }
        gparts[k] = gpart;
1006
        gbuff[k] = temp_buff;
1007
      }
1008
      bucket_count[bid]++;
1009
1010
1011
1012
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1013
  for (int k = 0; k < 8; k++) {
1014
1015
    c->progeny[k]->gcount = bucket_count[k];
    c->progeny[k]->gparts = &c->gparts[bucket_offset[k]];
1016
1017
1018
  }

  /* Re-link the parts. */
1019
  if (count > 0 && gcount > 0)
1020
    part_relink_parts_to_gparts(gparts, gcount, parts - parts_offset);
1021
1022
1023
1024

  /* Re-link the sparts. */
  if (scount > 0 && gcount > 0)
    part_relink_sparts_to_gparts(gparts, gcount, sparts - sparts_offset);
1025
}
1026

1027
1028
1029
1030
/**
 * @brief Sanitizes the smoothing length values of cells by setting large
 * outliers to more sensible values.
 *
1031
1032
 * Each cell with <1000 part will be processed. We limit h to be the size of
 * the cell and replace 0s with a good estimate.
1033
1034
 *
 * @param c The cell.
1035
 * @param treated Has the cell already been sanitized at this level ?
1036
 */
1037
void cell_sanitize(struct cell *c, int treated) {
1038
1039
1040

  const int count = c->count;
  struct part *parts = c->parts;
1041
  float h_max = 0.f;
1042

1043
1044
  /* Treat cells will <1000 particles */
  if (count < 1000 && !treated) {
1045

1046
1047
    /* Get an upper bound on h */
    const float upper_h_max = c->dmin / (1.2f * kernel_gamma);
1048

1049
1050
1051
1052
1053
1054
    /* Apply it */
    for (int i = 0; i < count; ++i) {
      if (parts[i].h == 0.f || parts[i].h > upper_h_max)
        parts[i].h = upper_h_max;
    }
  }
1055

1056
1057
  /* Recurse and gather the new h_max values */
  if (c->split) {
1058

1059
1060
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
1061

1062
1063
        /* Recurse */
        cell_sanitize(c->progeny[k], (count < 1000));
1064

1065
1066
1067
1068
        /* And collect */
        h_max = max(h_max, c->progeny[k]->h_max);
      }
    }
1069
1070
  } else {

1071
1072
    /* Get the new value of h_max */
    for (int i = 0; i < count; ++i) h_max = max(h_max, parts[i].h);
1073
  }
1074
1075
1076

  /* Record the change */
  c->h_max = h_max;
1077
1078
}

1079
/**
1080
 * @brief Converts hydro quantities to a valid state after the initial density
1081
 * calculation
1082
1083
1084
1085
1086
1087
1088
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_convert_hydro(struct cell *c, void *data) {

  struct part *p = c->parts;
1089
  struct xpart *xp = c->xparts;
1090
1091

  for (int i = 0; i < c->count; ++i) {
1092
    hydro_convert_quantities(&p[i], &xp[i]);
1093
1094
1095
  }
}

Matthieu Schaller's avatar
Matthieu Schaller committed
1096
1097
1098
1099
1100
1101
/**
 * @brief Cleans the links in a given cell.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
1102
void cell_clean_links(struct cell *c, void *data) {
Matthieu Schaller's avatar
Matthieu Schaller committed
1103
  c->density = NULL;
1104
  c->gradient = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1105
  c->force = NULL;
1106
  c->grav = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1107
}
1108

1109
/**
1110
 * @brief Checks that the #part in a cell are at the
1111
 * current point in time
1112
1113
1114
1115
1116
1117
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
1118
void cell_check_part_drift_point(struct cell *c, void *data) {
1119

1120
1121
#ifdef SWIFT_DEBUG_CHECKS

1122
  const integertime_t ti_drift = *(integertime_t *)data;
1123

1124
  /* Only check local cells */
1125
  if (c->nodeID != engine_rank) return;
1126

1127
1128
1129
  if (c->ti_old_part != ti_drift)
    error("Cell in an incorrect time-zone! c->ti_old_part=%lld ti_drift=%lld",
          c->ti_old_part, ti_drift);
1130

1131
1132
  for (int i = 0; i < c->count; ++i)
    if (c->parts[i].ti_drift != ti_drift)
1133
      error("part in an incorrect time-zone! p->ti_drift=%lld ti_drift=%lld",
1134
            c->parts[i].ti_drift, ti_drift);
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

/**
 * @brief Checks that the #gpart and #spart in a cell are at the
 * current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_gpart_drift_point(struct cell *c, void *data) {

#ifdef SWIFT_DEBUG_CHECKS

  const integertime_t ti_drift = *(integertime_t *)data;

  /* Only check local cells */
  if (c->nodeID != engine_rank) return;

  if (c->ti_old_gpart != ti_drift)
    error("Cell in an incorrect time-zone! c->ti_old_gpart=%lld ti_drift=%lld",
          c->ti_old_gpart, ti_drift);
1161

1162
1163
  for (int i = 0; i < c->gcount; ++i)
    if (c->gparts[i].ti_drift != ti_drift)
1164
      error("g-part in an incorrect time-zone! gp->ti_drift=%lld ti_drift=%lld",
1165
            c->gparts[i].ti_drift, ti_drift);
1166

1167
1168
1169
1170
  for (int i = 0; i < c->scount; ++i)
    if (c->sparts[i].ti_drift != ti_drift)
      error("s-part in an incorrect time-zone! sp->ti_drift=%lld ti_drift=%lld",
            c->sparts[i].ti_drift, ti_drift);
1171
1172
1173
#else
  error("Calling debugging code without debugging flag activated.");
#endif
1174
1175
}

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
/**
 * @brief Checks that the multipole of a cell is at the current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_multipole_drift_point(struct cell *c, void *data) {

#ifdef SWIFT_DEBUG_CHECKS

  const integertime_t ti_drift = *(integertime_t *)data;

  if (c->ti_old_multipole != ti_drift)
    error(
        "Cell multipole in an incorrect time-zone! c->ti_old_multipole=%lld "
1193
1194
        "ti_drift=%lld (depth=%d)",
        c->ti_old_multipole, ti_drift, c->depth);
1195
1196
1197
1198
1199
1200

#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
/**
 * @brief Resets all the individual cell task counters to 0.
 *
 * Should only be used for debugging purposes.
 *
 * @param c The #cell to reset.
 */
void cell_reset_task_counters(struct cell *c) {

#ifdef SWIFT_DEBUG_CHECKS
  for (int t = 0; t < task_type_count; ++t) c->tasks_executed[t] = 0;
  for (int t = 0; t < task_subtype_count; ++t) c->subtasks_executed[t] = 0;
#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

1218
1219
1220
1221
/**
 * @brief Recursively construct all the multipoles in a cell hierarchy.
 *
 * @param c The #cell.
Matthieu Schaller's avatar
Matthieu Schaller committed
1222
 * @param ti_current The current integer time.
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
 */
void cell_make_multipoles(struct cell *c, integertime_t ti_current) {

  /* Reset everything */
  gravity_reset(c->multipole);

  if (c->split) {

    /* Compute CoM of all progenies */
    double CoM[3] = {0., 0., 0.};
    double mass = 0.;

    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        const struct gravity_tensors *m = c->progeny[k]->multipole;
        CoM[0] += m->CoM[0] * m->m_pole.M_000;
        CoM[1] += m->CoM[1] * m->m_pole.M_000;
        CoM[2] += m->CoM[2] * m->m_pole.M_000;
        mass += m->m_pole.M_000;
      }
    }
    c->multipole->CoM[0] = CoM[0] / mass;
    c->multipole->CoM[1] = CoM[1] / mass;
    c->multipole->CoM[2] = CoM[2] / mass;

    /* Now shift progeny multipoles and add them up */
    struct multipole temp;
    double r_max = 0.;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        const struct cell *cp = c->progeny[k];
        const struct multipole *m = &cp->multipole->m_pole;

        /* Contribution to multipole */
        gravity_M2M(&temp, m, c->multipole->CoM, cp->multipole->CoM);
        gravity_multipole_add(&c->multipole->m_pole, &temp);

        /* Upper limit of max CoM<->gpart distance */
        const double dx = c->multipole->CoM[0] - cp->multipole->CoM[0];
        const double dy = c->multipole->CoM[1] - cp->multipole->CoM[1];
        const double dz = c->multipole->CoM[2] - cp->multipole->CoM[2];
        const double r2 = dx * dx + dy * dy + dz * dz;
        r_max = max(r_max, cp->multipole->r_max + sqrt(r2));
      }
    }
    /* Alternative upper limit of max CoM<->gpart distance */
    const double dx = c->multipole->CoM[0] > c->loc[0] + c->width[0] / 2.
                          ? c->multipole->CoM[0] - c->loc[0]
                          : c->loc[0] + c->width[0] - c->multipole->CoM[0];
    const double dy = c->multipole->CoM[1] > c->loc[1] + c->width[1] / 2.
                          ? c->multipole->CoM[1] - c->loc[1]
                          : c->loc[1] + c->width[1] - c->multipole->CoM[1];
    const double dz = c->multipole->CoM[2] > c->loc[2] + c->width[2] / 2.
                          ? c->multipole->CoM[2] - c->loc[2]
                          : c->loc[2] + c->width[2] - c->multipole->CoM[2];

    /* Take minimum of both limits */
    c->multipole->r_max = min(r_max, sqrt(dx * dx + dy * dy + dz * dz));

  } else {

    if (c->gcount > 0) {
      gravity_P2M(c->multipole, c->gparts, c->gcount);
      const double dx = c->multipole->CoM[0] > c->loc[0] + c->width[0] / 2.
                            ? c->multipole->CoM[0] - c->loc[0]
                            : c->loc[0] + c->width[0] - c->multipole->CoM[0];
      const double dy = c->multipole->CoM[1] > c->loc[1] + c->width[1] / 2.
                            ? c->multipole->CoM[1] - c->loc[1]
                            : c->loc[1] + c->width[1] - c->multipole->CoM[1];
      const double dz = c->multipole->CoM[2] > c->loc[2] + c->width[2] / 2.
                            ? c->multipole->CoM[2] - c->loc[2]
                            : c->loc[2] + c->width[2] - c->multipole->CoM[2];
      c->multipole->r_max = sqrt(dx * dx + dy * dy + dz * dz);
    } else {
      gravity_multipole_init(&c->multipole->m_pole);
      c->multipole->CoM[0] = c->loc[0] + c->width[0] / 2.;
      c->multipole->CoM[1] = c->loc[1] + c->width[1] / 2.;
      c->multipole->CoM[2] = c->loc[2] + c->width[2] / 2.;
      c->multipole->r_max = 0.;
    }
  }

  c->ti_old_multipole = ti_current;
}

1308
1309
1310
1311
1312
1313
1314
1315
1316
/**
 * @brief Computes the multi-pole brutally and compare to the
 * recursively computed one.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_check_multipole(struct cell *c, void *data) {

1317
#ifdef SWIFT_DEBUG_CHECKS
1318
  struct gravity_tensors ma;
1319
  const double tolerance = 1e-3; /* Relative */
1320

1321
1322
  return;

1323
1324
1325
1326
  /* First recurse */
  if (c->split)
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) cell_check_multipole(c->progeny[k], NULL);
1327
1328
1329
1330

  if (c->gcount > 0) {

    /* Brute-force calculation */