testPeriodicBC.c 19.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (C) 2015 Matthieu Schaller (matthieu.schaller@durham.ac.uk).
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <fenv.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

/* Local headers. */
#include "swift.h"

#define ACC_THRESHOLD 1e-5

#if defined(WITH_VECTORIZATION)
#define DOSELF1 runner_doself1_density_vec
37
#define DOPAIR1 runner_dopair1_branch_density
38
39
40
41
42
43
44
45
46
47
#define DOSELF1_NAME "runner_doself1_density_vec"
#define DOPAIR1_NAME "runner_dopair1_density_vec"
#endif

#ifndef DOSELF1
#define DOSELF1 runner_doself1_density
#define DOSELF1_NAME "runner_doself1_density"
#endif

#ifndef DOPAIR1
48
#define DOPAIR1 runner_dopair1_branch_density
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#define DOPAIR1_NAME "runner_dopair1_density"
#endif

enum velocity_types {
  velocity_zero,
  velocity_random,
  velocity_divergent,
  velocity_rotating
};

/**
 * @brief Constructs a cell and all of its particle in a valid state prior to
 * a DOPAIR or DOSELF calcuation.
 *
 * @param n The cube root of the number of particles.
 * @param offset The position of the cell offset from (0,0,0).
 * @param size The cell size.
 * @param h The smoothing length of the particles in units of the inter-particle
 *separation.
 * @param density The density of the fluid.
 * @param partId The running counter of IDs.
 * @param pert The perturbation to apply to the particles in the cell in units
 *of the inter-particle separation.
 * @param vel The type of velocity field (0, random, divergent, rotating)
 */
struct cell *make_cell(size_t n, double *offset, double size, double h,
75
76
                       double density, long long *partId, double pert,
                       enum velocity_types vel) {
77
78
79
80
81
82
  const size_t count = n * n * n;
  const double volume = size * size * size;
  struct cell *cell = malloc(sizeof(struct cell));
  bzero(cell, sizeof(struct cell));

  if (posix_memalign((void **)&cell->parts, part_align,
83
                     count * sizeof(struct part)) != 0) {
84
85
86
87
88
89
90
91
92
93
94
95
    error("couldn't allocate particles, no. of particles: %d", (int)count);
  }
  bzero(cell->parts, count * sizeof(struct part));

  float h_max = 0.f;

  /* Construct the parts */
  struct part *part = cell->parts;
  for (size_t x = 0; x < n; ++x) {
    for (size_t y = 0; y < n; ++y) {
      for (size_t z = 0; z < n; ++z) {
        part->x[0] =
96
97
            offset[0] +
            size * (x + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
98
        part->x[1] =
99
100
            offset[1] +
            size * (y + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
101
        part->x[2] =
102
103
            offset[2] +
            size * (z + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        switch (vel) {
          case velocity_zero:
            part->v[0] = 0.f;
            part->v[1] = 0.f;
            part->v[2] = 0.f;
            break;
          case velocity_random:
            part->v[0] = random_uniform(-0.05, 0.05);
            part->v[1] = random_uniform(-0.05, 0.05);
            part->v[2] = random_uniform(-0.05, 0.05);
            break;
          case velocity_divergent:
            part->v[0] = part->x[0] - 1.5 * size;
            part->v[1] = part->x[1] - 1.5 * size;
            part->v[2] = part->x[2] - 1.5 * size;
            break;
          case velocity_rotating:
            part->v[0] = part->x[1];
            part->v[1] = -part->x[0];
            part->v[2] = 0.f;
            break;
        }
        part->h = size * h / (float)n;
        h_max = fmax(h_max, part->h);
        part->id = ++(*partId);

#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
        part->conserved.mass = density * volume / count;

#ifdef SHADOWFAX_SPH
        double anchor[3] = {0., 0., 0.};
        double side[3] = {1., 1., 1.};
        voronoi_cell_init(&part->cell, part->x, anchor, side);
#endif

#else
        part->mass = density * volume / count;
#endif

#if defined(HOPKINS_PE_SPH)
        part->entropy = 1.f;
        part->entropy_one_over_gamma = 1.f;
#endif

        part->time_bin = 1;

#ifdef SWIFT_DEBUG_CHECKS
        part->ti_drift = 8;
        part->ti_kick = 8;
#endif

        ++part;
      }
    }
  }

  /* Cell properties */
  cell->split = 0;
  cell->h_max = h_max;
  cell->count = count;
  cell->dx_max_part = 0.;
  cell->dx_max_sort = 0.;
  cell->width[0] = size;
  cell->width[1] = size;
  cell->width[2] = size;
  cell->loc[0] = offset[0];
  cell->loc[1] = offset[1];
  cell->loc[2] = offset[2];

  cell->ti_old_part = 8;
  cell->ti_end_min = 8;
  cell->ti_end_max = 8;

  shuffle_particles(cell->parts, cell->count);

  cell->sorted = 0;
180
181
  for (int k = 0; k < 13; k++)
    cell->sort[k] = NULL;
182
183
184
185
186
187

  return cell;
}

void clean_up(struct cell *ci) {
  free(ci->parts);
188
189
190
  for (int k = 0; k < 13; k++)
    if (ci->sort[k] != NULL)
      free(ci->sort[k]);
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
  free(ci);
}

/**
 * @brief Initializes all particles field to be ready for a density calculation
 */
void zero_particle_fields(struct cell *c) {
  for (int pid = 0; pid < c->count; pid++) {
    hydro_init_part(&c->parts[pid], NULL);
  }
}

/**
 * @brief Ends the loop by adding the appropriate coefficients
 */
void end_calculation(struct cell *c) {
  for (int pid = 0; pid < c->count; pid++) {
    hydro_end_density(&c->parts[pid]);
  }
}

/**
 * @brief Dump all the particles to a file
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
215
216
void dump_particle_fields(char *fileName, struct cell *main_cell, int i, int j,
                          int k) {
217
  FILE *file = fopen(fileName, "a");
218
219
220

  /* Write header */
  fprintf(file,
221
222
223
224
          "# %4s %10s %10s %10s %10s %10s %10s %13s %13s %13s %13s %13s "
          "%13s %13s %13s\n",
          "ID", "pos_x", "pos_y", "pos_z", "v_x", "v_y", "v_z", "rho", "rho_dh",
          "wcount", "wcount_dh", "div_v", "curl_vx", "curl_vy", "curl_vz");
225

Matthieu Schaller's avatar
Matthieu Schaller committed
226
227
  fprintf(file, "# Centre cell at (i,j,k)=(%d, %d, %d) ---------------------\n",
          i, j, k);
228
229
230
231

  /* Write main cell */
  for (int pid = 0; pid < main_cell->count; pid++) {
    fprintf(file,
232
233
234
235
236
237
238
            "%6llu %10f %10f %10f %10f %10f %10f %13e %13e %13e %13e %13e "
            "%13e %13e %13e\n",
            main_cell->parts[pid].id, main_cell->parts[pid].x[0],
            main_cell->parts[pid].x[1], main_cell->parts[pid].x[2],
            main_cell->parts[pid].v[0], main_cell->parts[pid].v[1],
            main_cell->parts[pid].v[2],
            hydro_get_density(&main_cell->parts[pid]),
239
#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
240
            0.f,
241
#else
242
            main_cell->parts[pid].density.rho_dh,
243
#endif
244
245
            main_cell->parts[pid].density.wcount,
            main_cell->parts[pid].density.wcount_dh,
246
#if defined(GADGET2_SPH) || defined(DEFAULT_SPH) || defined(HOPKINS_PE_SPH)
247
248
249
250
            main_cell->parts[pid].density.div_v,
            main_cell->parts[pid].density.rot_v[0],
            main_cell->parts[pid].density.rot_v[1],
            main_cell->parts[pid].density.rot_v[2]
251
#else
252
            0., 0., 0., 0.
253
#endif
254
            );
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
  }
  fclose(file);
}

/**
 * @brief Compares the vectorised result against
 * the serial result of the interaction.
 *
 * @param serial_parts Particle array that has been interacted serially
 * @param vec_parts Particle array to be interacted using vectors
 * @param count No. of particles that have been interacted
 * @param threshold Level of accuracy needed
 *
 * @return Non-zero value if difference found, 0 otherwise
 */
int check_results(struct part *serial_parts, struct part *vec_parts, int count,
271
                  double threshold) {
272
273
274
275
276
277
278
279
280
281
282
  int result = 0;

  for (int i = 0; i < count; i++)
    result += compare_particles(serial_parts[i], vec_parts[i], threshold);

  return result;
}

/* Just a forward declaration... */
void runner_doself1_density(struct runner *r, struct cell *ci);
void runner_doself1_density_vec(struct runner *r, struct cell *ci);
283
284
void runner_dopair1_branch_density(struct runner *r, struct cell *ci,
                                   struct cell *cj);
285

286
287
288
289
void test_boundary_conditions(struct cell **cells, struct runner runner,
                              const int loc_i, const int loc_j, const int loc_k,
                              const int dim, char *swiftOutputFileName,
                              char *bruteForceOutputFileName) {
290
291

  /* Store the main cell for future use */
292
  struct cell *main_cell = cells[loc_i * (dim * dim) + loc_j * dim + loc_k];
293
294
295
296

  /* Zero the fields */
  for (int j = 0; j < 512; ++j) zero_particle_fields(cells[j]);

297
/* Run all the pairs */
298
299
300
301
302
303
304
305
306
#if !(defined(MINIMAL_SPH) && defined(WITH_VECTORIZATION))

#ifdef WITH_VECTORIZATION
  runner.ci_cache.count = 0;
  cache_init(&runner.ci_cache, 512);
  runner.cj_cache.count = 0;
  cache_init(&runner.cj_cache, 512);
#endif

307
  /* Now loop over all the neighbours of this cell
308
309
310
311
312
313
314
315
316
317
318
319
   * and perform the pair interactions. */
  for (int ii = -1; ii < 2; ii++) {
    int iii = loc_i + ii;
    iii = (iii + dim) % dim;
    for (int jj = -1; jj < 2; jj++) {
      int jjj = loc_j + jj;
      jjj = (jjj + dim) % dim;
      for (int kk = -1; kk < 2; kk++) {
        int kkk = loc_k + kk;
        kkk = (kkk + dim) % dim;

        /* Get the neighbouring cell */
320
        struct cell *cj = cells[iii * (dim * dim) + jjj * dim + kkk];
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

        if (cj != main_cell) DOPAIR1(&runner, main_cell, cj);
      }
    }
  }

  /* And now the self-interaction */

  DOSELF1(&runner, main_cell);

#endif

  /* Let's get physical ! */
  end_calculation(main_cell);

  /* Dump particles from the main cell. */
337
  dump_particle_fields(swiftOutputFileName, main_cell, loc_i, loc_j, loc_k);
338
339
340
341
342
343
344
345

  /* Now perform a brute-force version for accuracy tests */

  /* Zero the fields */
  for (int i = 0; i < 512; ++i) zero_particle_fields(cells[i]);

#if !(defined(MINIMAL_SPH) && defined(WITH_VECTORIZATION))

346
  /* Now loop over all the neighbours of this cell
347
348
349
350
351
352
353
354
355
356
357
358
   * and perform the pair interactions. */
  for (int ii = -1; ii < 2; ii++) {
    int iii = loc_i + ii;
    iii = (iii + dim) % dim;
    for (int jj = -1; jj < 2; jj++) {
      int jjj = loc_j + jj;
      jjj = (jjj + dim) % dim;
      for (int kk = -1; kk < 2; kk++) {
        int kkk = loc_k + kk;
        kkk = (kkk + dim) % dim;

        /* Get the neighbouring cell */
359
        struct cell *cj = cells[iii * (dim * dim) + jjj * dim + kkk];
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

        if (cj != main_cell) pairs_all_density(&runner, main_cell, cj);
      }
    }
  }

  /* And now the self-interaction */
  self_all_density(&runner, main_cell);

#endif

  /* Let's get physical ! */
  end_calculation(main_cell);

  /* Dump */
Matthieu Schaller's avatar
Matthieu Schaller committed
375
376
  dump_particle_fields(bruteForceOutputFileName, main_cell, loc_i, loc_j,
                       loc_k);
377
378
}

379
380
381
382
383
384
385
386
387
/* And go... */
int main(int argc, char *argv[]) {

  engine_pin();
  size_t runs = 0, particles = 0;
  double h = 1.23485, size = 1., rho = 1.;
  double perturbation = 0.;
  double threshold = ACC_THRESHOLD;
  char outputFileNameExtension[200] = "";
388
389
  char swiftOutputFileName[200] = "";
  char bruteForceOutputFileName[200] = "";
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
  enum velocity_types vel = velocity_zero;

  /* Initialize CPU frequency, this also starts time. */
  unsigned long long cpufreq = 0;
  clocks_set_cpufreq(cpufreq);

  /* Choke on FP-exceptions */
  feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);

  /* Get some randomness going */
  srand(0);

  char c;
  while ((c = getopt(argc, argv, "m:s:h:n:r:t:d:f:v:a:")) != -1) {
    switch (c) {
      case 'h':
        sscanf(optarg, "%lf", &h);
        break;
      case 's':
        sscanf(optarg, "%lf", &size);
        break;
      case 'n':
        sscanf(optarg, "%zu", &particles);
        break;
      case 'r':
        sscanf(optarg, "%zu", &runs);
        break;
      case 'd':
        sscanf(optarg, "%lf", &perturbation);
        break;
      case 'm':
        sscanf(optarg, "%lf", &rho);
        break;
      case 'f':
        strcpy(outputFileNameExtension, optarg);
        break;
      case 'v':
        sscanf(optarg, "%d", (int *)&vel);
        break;
      case 'a':
        sscanf(optarg, "%lf", &threshold);
        break;
      case '?':
        error("Unknown option.");
        break;
    }
  }

  if (h < 0 || particles == 0 || runs == 0) {
    printf(
        "\nUsage: %s -n PARTICLES_PER_AXIS -r NUMBER_OF_RUNS [OPTIONS...]\n"
        "\nGenerates 27 cells, filled with particles on a Cartesian grid."
        "\nThese are then interacted using runner_dopair1_density() and "
        "runner_doself1_density()."
        "\n\nOptions:"
        "\n-h DISTANCE=1.2348 - Smoothing length in units of <x>"
        "\n-m rho             - Physical density in the cell"
        "\n-s size            - Physical size of the cell"
        "\n-d pert            - Perturbation to apply to the particles [0,1["
        "\n-v type (0,1,2,3)  - Velocity field: (zero, random, divergent, "
        "rotating)"
        "\n-f fileName        - Part of the file name used to save the dumps\n",
        argv[0]);
    exit(1);
  }

  /* Help users... */
  message("DOSELF1 function called: %s", DOSELF1_NAME);
  message("DOPAIR1 function called: %s", DOPAIR1_NAME);
  message("Vector size: %d", VEC_SIZE);
  message("Adiabatic index: ga = %f", hydro_gamma);
  message("Hydro implementation: %s", SPH_IMPLEMENTATION);
  message("Smoothing length: h = %f", h * size);
  message("Kernel:               %s", kernel_name);
  message("Neighbour target: N = %f", pow_dimension(h) * kernel_norm);
  message("Density target: rho = %f", rho);
  message("div_v target:   div = %f", vel == 2 ? 3.f : 0.f);
  message("curl_v target: curl = [0., 0., %f]", vel == 3 ? -2.f : 0.f);

  printf("\n");

  /* Build the infrastructure */
  struct space space;
  space.periodic = 1;
  space.dim[0] = 8.;
  space.dim[1] = 8.;
  space.dim[2] = 8.;

  struct hydro_props hp;
  hp.h_max = FLT_MAX;

  struct engine engine;
  engine.s = &space;
  engine.time = 0.1f;
  engine.ti_current = 8;
  engine.max_active_bin = num_time_bins;
  engine.hydro_properties = &hp;

  struct runner runner;
  runner.e = &engine;

  /* Construct some cells */
  struct cell *cells[512];
  const int dim = 8;
  static long long partId = 0;
  for (int i = 0; i < dim; ++i) {
    for (int j = 0; j < dim; ++j) {
      for (int k = 0; k < dim; ++k) {
        double offset[3] = {i * size, j * size, k * size};
499
500
        cells[i * (dim * dim) + j * dim + k] = make_cell(
            particles, offset, size, h, rho, &partId, perturbation, vel);
501

502
        runner_do_drift_part(&runner, cells[i * (dim * dim) + j * dim + k], 0);
503

504
        runner_do_sort(&runner, cells[i * (dim * dim) + j * dim + k], 0x1FFF, 0,
505
                       0);
506
507
508
509
      }
    }
  }

510
511
  /* Create output file names. */
  sprintf(swiftOutputFileName, "swift_periodic_BC_%s.dat",
512
          outputFileNameExtension);
513
  sprintf(bruteForceOutputFileName, "brute_force_periodic_BC_%s.dat",
514
          outputFileNameExtension);
515

516
517
518
  /* Delete files if they already exist. */
  remove(swiftOutputFileName);
  remove(bruteForceOutputFileName);
519

520
521
  const int half_dim = (dim - 1) / 2;

522
  /* Test the periodic boundary conditions for each of the 8 corners. */
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
  test_boundary_conditions(cells, runner, 0, 0, 0, dim, swiftOutputFileName,
                           bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, 0, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, 0, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, 0, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, dim - 1, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, dim - 1, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, dim - 1, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, dim - 1, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);

  /* Test the boundary conditions for cells at the centre of each face of the
   * box. */
  test_boundary_conditions(cells, runner, half_dim, half_dim, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, half_dim, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, half_dim, half_dim, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, half_dim, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, half_dim, 0, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, half_dim, dim - 1, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);

  /* Test the boundary conditions for cells at the centre of each edge of the
   * box. */
  test_boundary_conditions(cells, runner, half_dim, dim - 1, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, dim - 1, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, half_dim, dim - 1, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, dim - 1, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);

  test_boundary_conditions(cells, runner, 0, half_dim, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, half_dim, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, half_dim, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, half_dim, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);

  test_boundary_conditions(cells, runner, half_dim, 0, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, 0, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, half_dim, 0, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, 0, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
583
584
585
586
587
588

  /* Clean things to make the sanitizer happy ... */
  for (int i = 0; i < 512; ++i) clean_up(cells[i]);

  return 0;
}