space.c 38.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program.  If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
19
20
21
22
23
24
25
26

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
27
#include <string.h>
28
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
29

30
31
/* MPI headers. */
#ifdef WITH_MPI
32
#include <mpi.h>
33
34
#endif

35
36
37
/* This object's header. */
#include "space.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
38
/* Local headers. */
39
#include "atomic.h"
40
#include "engine.h"
41
#include "error.h"
42
43
#include "kernel.h"
#include "lock.h"
44
#include "minmax.h"
45
#include "runner.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
46

47
48
49
/* Shared sort structure. */
struct parallel_sort space_sort_struct;

Pedro Gonnet's avatar
Pedro Gonnet committed
50
51
/* Split size. */
int space_splitsize = space_splitsize_default;
52
int space_subsize = space_subsize_default;
53
int space_maxsize = space_maxsize_default;
Pedro Gonnet's avatar
Pedro Gonnet committed
54
55
56

/* Map shift vector to sortlist. */
const int sortlistID[27] = {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    /* ( -1 , -1 , -1 ) */ 0,
    /* ( -1 , -1 ,  0 ) */ 1,
    /* ( -1 , -1 ,  1 ) */ 2,
    /* ( -1 ,  0 , -1 ) */ 3,
    /* ( -1 ,  0 ,  0 ) */ 4,
    /* ( -1 ,  0 ,  1 ) */ 5,
    /* ( -1 ,  1 , -1 ) */ 6,
    /* ( -1 ,  1 ,  0 ) */ 7,
    /* ( -1 ,  1 ,  1 ) */ 8,
    /* (  0 , -1 , -1 ) */ 9,
    /* (  0 , -1 ,  0 ) */ 10,
    /* (  0 , -1 ,  1 ) */ 11,
    /* (  0 ,  0 , -1 ) */ 12,
    /* (  0 ,  0 ,  0 ) */ 0,
    /* (  0 ,  0 ,  1 ) */ 12,
    /* (  0 ,  1 , -1 ) */ 11,
    /* (  0 ,  1 ,  0 ) */ 10,
    /* (  0 ,  1 ,  1 ) */ 9,
    /* (  1 , -1 , -1 ) */ 8,
    /* (  1 , -1 ,  0 ) */ 7,
    /* (  1 , -1 ,  1 ) */ 6,
    /* (  1 ,  0 , -1 ) */ 5,
    /* (  1 ,  0 ,  0 ) */ 4,
    /* (  1 ,  0 ,  1 ) */ 3,
    /* (  1 ,  1 , -1 ) */ 2,
    /* (  1 ,  1 ,  0 ) */ 1,
    /* (  1 ,  1 ,  1 ) */ 0};

85
86
87
88
89
90
91
92
93
94
95
96
/**
 * @brief Get the shift-id of the given pair of cells, swapping them
 *      if need be.
 *
 * @param s The space
 * @param ci Pointer to first #cell.
 * @param cj Pointer second #cell.
 * @param shift Vector from ci to cj.
 *
 * @return The shift ID and set shift, may or may not swap ci and cj.
 */

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
int space_getsid(struct space *s, struct cell **ci, struct cell **cj,
                 double *shift) {

  int k, sid = 0, periodic = s->periodic;
  struct cell *temp;
  double dx[3];

  /* Get the relative distance between the pairs, wrapping. */
  for (k = 0; k < 3; k++) {
    dx[k] = (*cj)->loc[k] - (*ci)->loc[k];
    if (periodic && dx[k] < -s->dim[k] / 2)
      shift[k] = s->dim[k];
    else if (periodic && dx[k] > s->dim[k] / 2)
      shift[k] = -s->dim[k];
    else
      shift[k] = 0.0;
    dx[k] += shift[k];
  }

  /* Get the sorting index. */
  for (k = 0; k < 3; k++)
    sid = 3 * sid + ((dx[k] < 0.0) ? 0 : ((dx[k] > 0.0) ? 2 : 1));

  /* Switch the cells around? */
  if (runner_flip[sid]) {
    temp = *ci;
    *ci = *cj;
    *cj = temp;
    for (k = 0; k < 3; k++) shift[k] = -shift[k];
  }
  sid = sortlistID[sid];

  /* Return the sort ID. */
  return sid;
}
132

133
/**
134
 * @brief Recursively dismantle a cell tree.
135
136
 *
 */
137
138
139
140
141
142
143
144
145
146
147
148
149
150

void space_rebuild_recycle(struct space *s, struct cell *c) {

  int k;

  if (c->split)
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) {
        space_rebuild_recycle(s, c->progeny[k]);
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      }
}

151
/**
152
 * @brief Re-build the cell grid.
153
 *
154
155
 * @param s The #space.
 * @param cell_max Maximum cell edge length.
156
 * @param verbose Print messages to stdout or not.
157
 */
158

159
void space_regrid(struct space *s, double cell_max, int verbose) {
160
161
162
163

  float h_max = s->cell_min / kernel_gamma / space_stretch, dmin;
  int i, j, k, cdim[3], nr_parts = s->nr_parts;
  struct cell *restrict c;
164
  ticks tic = getticks();
165
166
167
168
169
170

  /* Run through the parts and get the current h_max. */
  // tic = getticks();
  if (s->cells != NULL) {
    for (k = 0; k < s->nr_cells; k++) {
      if (s->cells[k].h_max > h_max) h_max = s->cells[k].h_max;
171
    }
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  } else {
    for (k = 0; k < nr_parts; k++) {
      if (s->parts[k].h > h_max) h_max = s->parts[k].h;
    }
    s->h_max = h_max;
  }

/* If we are running in parallel, make sure everybody agrees on
   how large the largest cell should be. */
#ifdef WITH_MPI
  {
    float buff;
    if (MPI_Allreduce(&h_max, &buff, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD) !=
        MPI_SUCCESS)
186
      error("Failed to aggregate the rebuild flag across nodes.");
187
188
189
    h_max = buff;
  }
#endif
190
  if (verbose) message("h_max is %.3e (cell_max=%.3e).", h_max, cell_max);
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

  /* Get the new putative cell dimensions. */
  for (k = 0; k < 3; k++)
    cdim[k] =
        floor(s->dim[k] / fmax(h_max * kernel_gamma * space_stretch, cell_max));

  /* Check if we have enough cells for periodicity. */
  if (s->periodic && (cdim[0] < 3 || cdim[1] < 3 || cdim[2] < 3))
    error(
        "Must have at least 3 cells in each spatial dimension when periodicity "
        "is switched on.");

/* In MPI-Land, we're not allowed to change the top-level cell size. */
#ifdef WITH_MPI
  if (cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2])
    error("Root-level change of cell size not allowed.");
#endif

  /* Do we need to re-build the upper-level cells? */
  // tic = getticks();
  if (s->cells == NULL || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] ||
      cdim[2] < s->cdim[2]) {

    /* Free the old cells, if they were allocated. */
    if (s->cells != NULL) {
      for (k = 0; k < s->nr_cells; k++) {
        space_rebuild_recycle(s, &s->cells[k]);
        if (s->cells[k].sort != NULL) free(s->cells[k].sort);
      }
      free(s->cells);
      s->maxdepth = 0;
    }

    /* Set the new cell dimensions only if smaller. */
    for (k = 0; k < 3; k++) {
      s->cdim[k] = cdim[k];
      s->h[k] = s->dim[k] / cdim[k];
      s->ih[k] = 1.0 / s->h[k];
    }
    dmin = fminf(s->h[0], fminf(s->h[1], s->h[2]));

    /* Allocate the highest level of cells. */
    s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2];
    if (posix_memalign((void *)&s->cells, 64,
                       s->nr_cells * sizeof(struct cell)) != 0)
      error("Failed to allocate cells.");
    bzero(s->cells, s->nr_cells * sizeof(struct cell));
    for (k = 0; k < s->nr_cells; k++)
      if (lock_init(&s->cells[k].lock) != 0) error("Failed to init spinlock.");

    /* Set the cell location and sizes. */
    for (i = 0; i < cdim[0]; i++)
      for (j = 0; j < cdim[1]; j++)
        for (k = 0; k < cdim[2]; k++) {
          c = &s->cells[cell_getid(cdim, i, j, k)];
          c->loc[0] = i * s->h[0];
          c->loc[1] = j * s->h[1];
          c->loc[2] = k * s->h[2];
          c->h[0] = s->h[0];
          c->h[1] = s->h[1];
          c->h[2] = s->h[2];
          c->dmin = dmin;
          c->depth = 0;
          c->count = 0;
          c->gcount = 0;
          c->super = c;
          lock_init(&c->lock);
Pedro Gonnet's avatar
Pedro Gonnet committed
258
        }
259
260

    /* Be verbose about the change. */
261
262
263
    if (verbose)
      message("set cell dimensions to [ %i %i %i ].", cdim[0], cdim[1],
              cdim[2]);
264
265
266
    fflush(stdout);

  } /* re-build upper-level cells? */
267
268
  // message( "rebuilding upper-level cells took %.3f %s." ,
  // clocks_from_ticks(double)(getticks() - tic), clocks_getunit());
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

  /* Otherwise, just clean up the cells. */
  else {

    /* Free the old cells, if they were allocated. */
    for (k = 0; k < s->nr_cells; k++) {
      space_rebuild_recycle(s, &s->cells[k]);
      s->cells[k].sorts = NULL;
      s->cells[k].nr_tasks = 0;
      s->cells[k].nr_density = 0;
      s->cells[k].nr_force = 0;
      s->cells[k].density = NULL;
      s->cells[k].force = NULL;
      s->cells[k].dx_max = 0.0f;
      s->cells[k].sorted = 0;
      s->cells[k].count = 0;
      s->cells[k].gcount = 0;
Matthieu Schaller's avatar
Matthieu Schaller committed
286
      s->cells[k].init = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
287
      s->cells[k].ghost = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
288
289
      s->cells[k].drift = NULL;
      s->cells[k].kick = NULL;
290
      s->cells[k].super = &s->cells[k];
291
    }
292
293
    s->maxdepth = 0;
  }
294
295
296
297

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
298
}
299
300
301
302
303
304

/**
 * @brief Re-build the cells as well as the tasks.
 *
 * @param s The #space in which to update the cells.
 * @param cell_max Maximal cell size.
305
 * @param verbose Print messages to stdout or not
306
307
 *
 */
308

309
void space_rebuild(struct space *s, double cell_max, int verbose) {
310

311
  ticks tic = getticks();
312
313
314
315
316

  /* Be verbose about this. */
  // message( "re)building space..." ); fflush(stdout);

  /* Re-grid if necessary, or just re-set the cell data. */
317
  space_regrid(s, cell_max, verbose);
318

319
320
321
322
323
324
  int nr_parts = s->nr_parts;
  int nr_gparts = s->nr_gparts;
  struct cell *restrict cells = s->cells;

  double ih[3], dim[3];
  int cdim[3];
325
326
327
328
329
330
331
332
333
  ih[0] = s->ih[0];
  ih[1] = s->ih[1];
  ih[2] = s->ih[2];
  dim[0] = s->dim[0];
  dim[1] = s->dim[1];
  dim[2] = s->dim[2];
  cdim[0] = s->cdim[0];
  cdim[1] = s->cdim[1];
  cdim[2] = s->cdim[2];
334
335
336
337

  /* Run through the particles and get their cell index. */
  // tic = getticks();
  const size_t ind_size = s->size_parts;
338
339
  int *ind;
  if ((ind = (int *)malloc(sizeof(int) * ind_size)) == NULL)
340
341
342
343
    error("Failed to allocate temporary particle indices.");
  for (int k = 0; k < nr_parts; k++) {
    struct part *restrict p = &s->parts[k];
    for (int j = 0; j < 3; j++)
344
345
346
347
      if (p->x[j] < 0.0)
        p->x[j] += dim[j];
      else if (p->x[j] >= dim[j])
        p->x[j] -= dim[j];
348
    ind[k] =
349
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
350
    cells[ind[k]].count++;
351
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
352
353
// message( "getting particle indices took %.3f %s." ,
// clocks_from_ticks(getticks() - tic), clocks_getunit()):
354

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
  /* Run through the gravity particles and get their cell index. */
  // tic = getticks();
  const size_t gind_size = s->size_gparts;
  int *gind;
  if ((gind = (int *)malloc(sizeof(int) * gind_size)) == NULL)
    error("Failed to allocate temporary g-particle indices.");
  for (int k = 0; k < nr_gparts; k++) {
    struct gpart *gp = &s->gparts[k];
    for (int j = 0; j < 3; j++)
      if (gp->x[j] < 0.0)
        gp->x[j] += dim[j];
      else if (gp->x[j] >= dim[j])
        gp->x[j] -= dim[j];
    gind[k] =
        cell_getid(cdim, gp->x[0] * ih[0], gp->x[1] * ih[1], gp->x[2] * ih[2]);
    cells[gind[k]].gcount++;
  }
// message( "getting particle indices took %.3f %s." ,
// clocks_from_ticks(getticks() - tic), clocks_getunit());

375
376
#ifdef WITH_MPI
  /* Move non-local parts to the end of the list. */
377
  const int local_nodeID = s->e->nodeID;
378
  for (int k = 0; k < nr_parts; k++)
379
    if (cells[ind[k]].nodeID != local_nodeID) {
380
381
      cells[ind[k]].count -= 1;
      nr_parts -= 1;
382
383
384
385
386
387
      struct part tp = s->parts[k];
      s->parts[k] = s->parts[nr_parts];
      s->parts[nr_parts] = tp;
      struct xpart txp = s->xparts[k];
      s->xparts[k] = s->xparts[nr_parts];
      s->xparts[nr_parts] = txp;
388
389
390
      int t = ind[k];
      ind[k] = ind[nr_parts];
      ind[nr_parts] = t;
391
392
    }

393
394
395
396
397
398
399
400
401
402
403
404
405
  /* Move non-local gparts to the end of the list. */
  for (int k = 0; k < nr_gparts; k++)
    if (cells[ind[k]].nodeID != local_nodeID) {
      cells[ind[k]].gcount -= 1;
      nr_gparts -= 1;
      struct gpart tp = s->gparts[k];
      s->gparts[k] = s->gparts[nr_gparts];
      s->gparts[nr_gparts] = tp;
      int t = ind[k];
      ind[k] = ind[nr_gparts];
      ind[nr_gparts] = t;
    }

406
407
  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
408
409
410
  /* TODO: This function also exchanges gparts, but this is shorted-out
     until they are fully implemented. */
  size_t nr_parts_exchanged = s->nr_parts - nr_parts;
411
412
413
414
415
416
417
  size_t nr_gparts_exchanged = s->nr_gparts - nr_gparts;
  engine_exchange_strays(s->e, nr_parts, &ind[nr_parts], &nr_parts_exchanged, nr_gparts,
                         &gind[nr_gparts], &nr_gparts_exchanged);
                         
  /* Add post-processing, i.e. re-linking/creating of gparts here. */
  
  /* Set the new particle counts. */     
418
  s->nr_parts = nr_parts + nr_parts_exchanged;
419
  s->nr_gparts = nr_gparts + nr_gparts_exchanged;
420
421

  /* Re-allocate the index array if needed.. */
422
  if (s->nr_parts > ind_size) {
423
424
    int *ind_new;
    if ((ind_new = (int *)malloc(sizeof(int) * s->nr_parts)) == NULL)
425
      error("Failed to allocate temporary particle indices.");
426
    memcpy(ind_new, ind, sizeof(size_t) * nr_parts);
427
428
    free(ind);
    ind = ind_new;
429
430
431
  }

  /* Assign each particle to its cell. */
432
433
  for (int k = nr_parts; k < s->nr_parts; k++) {
    struct part *p = &s->parts[k];
434
    ind[k] =
435
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
436
437
438
439
    cells[ind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
440
  }
441
  nr_parts = s->nr_parts;
442
443
444
#endif

  /* Sort the parts according to their cells. */
445
  space_parts_sort(s, ind, nr_parts, 0, s->nr_cells - 1, verbose);
446
447

  /* Re-link the gparts. */
448
  for (int k = 0; k < nr_parts; k++)
449
    if (s->parts[k].gpart != NULL) s->parts[k].gpart->part = &s->parts[k];
450

451
  /* Verify space_sort_struct. */
452
  /* for ( k = 1 ; k < nr_parts ; k++ ) {
453
      if ( ind[k-1] > ind[k] ) {
454
455
          error( "Sort failed!" );
          }
456
      else if ( ind[k] != cell_getid( cdim , parts[k].x[0]*ih[0] ,
457
458
459
460
461
     parts[k].x[1]*ih[1] , parts[k].x[2]*ih[2] ) )
          error( "Incorrect indices!" );
      } */

  /* We no longer need the indices as of here. */
462
  free(ind);
463

464
465
466
467
#ifdef WITH_MPI

  /* Re-allocate the index array if needed.. */
  if (s->nr_gparts > gind_size) {
468
469
    int *gind_new;
    if ((gind_new = (int *)malloc(sizeof(int) * s->nr_gparts)) == NULL)
470
      error("Failed to allocate temporary g-particle indices.");
471
    memcpy(gind_new, gind, sizeof(int) * nr_gparts);
472
473
474
475
476
    free(gind);
    gind = gind_new;
  }

  /* Assign each particle to its cell. */
477
  for (int k = nr_gparts; k < s->nr_gparts; k++) {
478
479
480
481
482
483
484
485
486
    struct gpart *p = &s->gparts[k];
    gind[k] =
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
    cells[gind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
  }
  nr_gparts = s->nr_gparts;
487

488
#endif
489
490

  /* Sort the parts according to their cells. */
491
  space_gparts_sort(s->gparts, gind, nr_gparts, 0, s->nr_cells - 1);
492
493

  /* Re-link the parts. */
494
  for (int k = 0; k < nr_gparts; k++)
495
    if (s->gparts[k].id > 0) s->gparts[k].part->gpart = &s->gparts[k];
496
497

  /* We no longer need the indices as of here. */
498
  free(gind);
499
500
501

  /* Hook the cells up to the parts. */
  // tic = getticks();
502
503
504
  struct part *finger = s->parts;
  struct xpart *xfinger = s->xparts;
  struct gpart *gfinger = s->gparts;
505
506
  for (int k = 0; k < s->nr_cells; k++) {
    struct cell *restrict c = &cells[k];
507
508
509
510
511
512
513
    c->parts = finger;
    c->xparts = xfinger;
    c->gparts = gfinger;
    finger = &finger[c->count];
    xfinger = &xfinger[c->count];
    gfinger = &gfinger[c->gcount];
  }
514
  // message( "hooking up cells took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
515
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
516
517
518

  /* At this point, we have the upper-level cells, old or new. Now make
     sure that the parts in each cell are ok. */
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
  space_split(s, cells, verbose);

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
}

/**
 * @brief Split particles between cells of a hierarchy
 *
 * @param s The #space.
 * @param cells The cell hierarchy
 * @param verbose Are we talkative ?
 */
void space_split(struct space *s, struct cell *cells, int verbose) {

  ticks tic = getticks();

  for (int k = 0; k < s->nr_cells; k++)
538
539
    scheduler_addtask(&s->e->sched, task_type_split_cell, task_subtype_none, k,
                      0, &cells[k], NULL, 0);
540
  engine_launch(s->e, s->e->nr_threads, 1 << task_type_split_cell, 0);
541

542
543
544
  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
545
}
546

547
/**
548
549
 * @brief Sort the particles and condensed particles according to the given
 *indices.
550
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
551
 * @param s The #space.
552
553
554
555
 * @param ind The indices with respect to which the parts are sorted.
 * @param N The number of parts
 * @param min Lowest index.
 * @param max highest index.
556
 * @param verbose Are we talkative ?
557
 */
558

559
void space_parts_sort(struct space *s, int *ind, size_t N, int min, int max,
560
561
562
563
564
                      int verbose) {

  ticks tic = getticks();

  /*Populate the global parallel_sort structure with the input data */
565
566
567
  space_sort_struct.parts = s->parts;
  space_sort_struct.xparts = s->xparts;
  space_sort_struct.ind = ind;
568
  space_sort_struct.stack_size = 2 * (max - min + 1) + 10 + s->e->nr_threads;
569
570
571
572
573
574
  if ((space_sort_struct.stack = malloc(sizeof(struct qstack) *
                                        space_sort_struct.stack_size)) == NULL)
    error("Failed to allocate sorting stack.");
  for (int i = 0; i < space_sort_struct.stack_size; i++)
    space_sort_struct.stack[i].ready = 0;

575
  /* Add the first interval. */
576
577
578
579
580
581
582
583
584
  space_sort_struct.stack[0].i = 0;
  space_sort_struct.stack[0].j = N - 1;
  space_sort_struct.stack[0].min = min;
  space_sort_struct.stack[0].max = max;
  space_sort_struct.stack[0].ready = 1;
  space_sort_struct.first = 0;
  space_sort_struct.last = 1;
  space_sort_struct.waiting = 1;

585
  /* Launch the sorting tasks. */
586
  engine_launch(s->e, s->e->nr_threads, (1 << task_type_psort), 0);
587
588

  /* Verify space_sort_struct. */
589
  /* for (int i = 1; i < N; i++)
590
    if (ind[i - 1] > ind[i])
591
592
      error("Sorting failed (ind[%i]=%i,ind[%i]=%i), min=%i, max=%i.", i - 1,
  ind[i - 1], i,
593
594
            ind[i], min, max);
  message("Sorting succeeded."); */
595

596
  /* Clean up. */
597
  free(space_sort_struct.stack);
598
599
600
601

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
602
}
603

604
void space_do_parts_sort() {
605

606
  /* Pointers to the sorting data. */
607
  int *ind = space_sort_struct.ind;
608
609
  struct part *parts = space_sort_struct.parts;
  struct xpart *xparts = space_sort_struct.xparts;
610

611
  /* Main loop. */
612
  while (space_sort_struct.waiting) {
613

614
    /* Grab an interval off the queue. */
615
616
    int qid =
        atomic_inc(&space_sort_struct.first) % space_sort_struct.stack_size;
617

618
    /* Wait for the entry to be ready, or for the sorting do be done. */
619
620
    while (!space_sort_struct.stack[qid].ready)
      if (!space_sort_struct.waiting) return;
621

622
    /* Get the stack entry. */
623
624
    ptrdiff_t i = space_sort_struct.stack[qid].i;
    ptrdiff_t j = space_sort_struct.stack[qid].j;
625
626
    int min = space_sort_struct.stack[qid].min;
    int max = space_sort_struct.stack[qid].max;
627
    space_sort_struct.stack[qid].ready = 0;
628

629
630
    /* Loop over sub-intervals. */
    while (1) {
631

632
      /* Bring beer. */
633
      const int pivot = (min + max) / 2;
634
635
      /* message("Working on interval [%i,%i] with min=%i, max=%i, pivot=%i.",
              i, j, min, max, pivot); */
636
637

      /* One pass of QuickSort's partitioning. */
638
639
      ptrdiff_t ii = i;
      ptrdiff_t jj = j;
640
641
642
643
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
644
          size_t temp_i = ind[ii];
645
646
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
647
          struct part temp_p = parts[ii];
648
649
          parts[ii] = parts[jj];
          parts[jj] = temp_p;
650
          struct xpart temp_xp = xparts[ii];
651
652
653
654
          xparts[ii] = xparts[jj];
          xparts[jj] = temp_xp;
        }
      }
655

656
      /* Verify space_sort_struct. */
657
658
659
660
661
662
663
664
665
666
667
668
      /* for (int k = i; k <= jj; k++)
        if (ind[k] > pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (<=pivot).");
        }
      for (int k = jj + 1; k <= j; k++)
        if (ind[k] <= pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (>pivot).");
        } */
669
670
671
672
673
674

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
675
676
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
677
678
          while (space_sort_struct.stack[qid].ready)
            ;
679
680
681
682
683
684
685
          space_sort_struct.stack[qid].i = i;
          space_sort_struct.stack[qid].j = jj;
          space_sort_struct.stack[qid].min = min;
          space_sort_struct.stack[qid].max = pivot;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
686
          space_sort_struct.stack[qid].ready = 1;
687
        }
688

689
690
691
692
693
694
695
696
697
698
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;

      } else {

        /* Recurse on the right? */
699
        if (pivot + 1 < max) {
700
701
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
702
703
          while (space_sort_struct.stack[qid].ready)
            ;
704
705
706
707
708
709
710
          space_sort_struct.stack[qid].i = jj + 1;
          space_sort_struct.stack[qid].j = j;
          space_sort_struct.stack[qid].min = pivot + 1;
          space_sort_struct.stack[qid].max = max;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
711
          space_sort_struct.stack[qid].ready = 1;
712
        }
713

714
715
716
717
718
719
720
        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }
721

722
723
    } /* loop over sub-intervals. */

724
    atomic_dec(&space_sort_struct.waiting);
725
726

  } /* main loop. */
727
728
}

729
void space_gparts_sort(struct gpart *gparts, int *ind, size_t N, int min,
730
                       int max) {
731
732

  struct qstack {
733
734
    volatile size_t i, j;
    volatile int min, max;
735
736
737
738
739
740
741
    volatile int ready;
  };
  struct qstack *qstack;
  int qstack_size = 2 * (max - min) + 10;
  volatile unsigned int first, last, waiting;

  int pivot;
742
  ptrdiff_t i, ii, j, jj, temp_i;
743
  int qid;
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
  struct gpart temp_p;

  /* for ( int k = 0 ; k < N ; k++ )
      if ( ind[k] > max || ind[k] < min )
          error( "ind[%i]=%i is not in [%i,%i]." , k , ind[k] , min , max ); */

  /* Allocate the stack. */
  if ((qstack = malloc(sizeof(struct qstack) * qstack_size)) == NULL)
    error("Failed to allocate qstack.");

  /* Init the interval stack. */
  qstack[0].i = 0;
  qstack[0].j = N - 1;
  qstack[0].min = min;
  qstack[0].max = max;
  qstack[0].ready = 1;
  for (i = 1; i < qstack_size; i++) qstack[i].ready = 0;
  first = 0;
  last = 1;
  waiting = 1;

765
766
  /* Main loop. */
  while (waiting > 0) {
767

768
769
    /* Grab an interval off the queue. */
    qid = (first++) % qstack_size;
770

771
772
773
774
775
776
777
778
779
    /* Get the stack entry. */
    i = qstack[qid].i;
    j = qstack[qid].j;
    min = qstack[qid].min;
    max = qstack[qid].max;
    qstack[qid].ready = 0;

    /* Loop over sub-intervals. */
    while (1) {
780

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
      /* Bring beer. */
      pivot = (min + max) / 2;

      /* One pass of QuickSort's partitioning. */
      ii = i;
      jj = j;
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
          temp_i = ind[ii];
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
          temp_p = gparts[ii];
          gparts[ii] = gparts[jj];
          gparts[jj] = temp_p;
        }
      }
799

800
      /* Verify space_sort_struct. */
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
      /* for ( int k = i ; k <= jj ; k++ )
         if ( ind[k] > pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (<=pivot)." );
         }
         for ( int k = jj+1 ; k <= j ; k++ )
         if ( ind[k] <= pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (>pivot)." );
         } */

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          qid = (last++) % qstack_size;
          qstack[qid].i = i;
          qstack[qid].j = jj;
          qstack[qid].min = min;
          qstack[qid].max = pivot;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }
827

828
829
830
831
832
833
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;
834

835
836
837
      } else {

        /* Recurse on the right? */
838
        if (pivot + 1 < max) {
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
          qid = (last++) % qstack_size;
          qstack[qid].i = jj + 1;
          qstack[qid].j = j;
          qstack[qid].min = pivot + 1;
          qstack[qid].max = max;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }

    } /* loop over sub-intervals. */

    waiting--;

  } /* main loop. */
861

862
  /* Verify space_sort_struct. */
863
864
865
866
867
868
869
870
  /* for ( i = 1 ; i < N ; i++ )
      if ( ind[i-1] > ind[i] )
          error( "Sorting failed (ind[%i]=%i,ind[%i]=%i)." , i-1 , ind[i-1] , i
     , ind[i] ); */

  /* Clean up. */
  free(qstack);
}
871

Pedro Gonnet's avatar
Pedro Gonnet committed
872
/**
873
 * @brief Mapping function to free the sorted indices buffers.
Pedro Gonnet's avatar
Pedro Gonnet committed
874
875
 */

876
void space_map_clearsort(struct cell *c, void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
877

878
879
880
881
882
  if (c->sort != NULL) {
    free(c->sort);
    c->sort = NULL;
  }
}
Pedro Gonnet's avatar
Pedro Gonnet committed
883

884
885
886
/**
 * @brief Map a function to all particles in a cell recursively.
 *
887
 * @param c The #cell we are working in.
888
889
890
891
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */

Pedro Gonnet's avatar
Pedro Gonnet committed
892
893
894
895
static void rec_map_parts(struct cell *c,
                          void (*fun)(struct part *p, struct cell *c,
                                      void *data),
                          void *data) {
896
897
898
899
900
901

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
902

903
904
905
906
907
908
  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts(c->progeny[k], fun, data);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
909
/**
910
 * @brief Map a function to all particles in a space.
Pedro Gonnet's avatar
Pedro Gonnet committed
911
912
 *
 * @param s The #space we are working in.
913
914
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
915
916
 */

917
918
919
void space_map_parts(struct space *s,
                     void (*fun)(struct part *p, struct cell *c, void *data),
                     void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
920

921
922
  int cid = 0;

923
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
924
925
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts(&s->cells[cid], fun, data);
926
}
927

928
929
930
931
932
933
934
935
/**
 * @brief Map a function to all particles in a cell recursively.
 *
 * @param c The #cell we are working in.
 * @param fun Function pointer to apply on the cells.
 */

static void rec_map_parts_xparts(struct cell *c,
936
937
                                 void (*fun)(struct part *p, struct xpart *xp,
                                             struct cell *c)) {
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], &c->xparts[k], c);

  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts_xparts(c->progeny[k], fun);
}

/**
 * @brief Map a function to all particles (#part and #xpart) in a space.
 *
 * @param s The #space we are working in.
 * @param fun Function pointer to apply on the particles in the cells.
 */

void space_map_parts_xparts(struct space *s,
959
960
                            void (*fun)(struct part *p, struct xpart *xp,
                                        struct cell *c)) {
961
962
963
964
965
966
967
968

  int cid = 0;

  /* Call the recursive function on all higher-level cells. */
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts_xparts(&s->cells[cid], fun);
}

969
970
971
/**
 * @brief Map a function to all particles in a cell recursively.
 *
972
 * @param c The #cell we are working in.
973
974
975
976
 * @param full Map to all cells, including cells with sub-cells.
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */
977

Pedro Gonnet's avatar
Pedro Gonnet committed
978
979
980
static void rec_map_cells_post(struct cell *c, int full,
                               void (*fun)(struct cell *c, void *data),
                               void *data) {
981

982
983
984
985
986
  int k;

  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
987
988
989
      if (c->progeny[k] != NULL)
        rec_map_cells_post(c->progeny[k], full, fun, data);

990
991
  /* No progeny? */
  if (full || !c->split) fun(c, data);
992
}
Pedro Gonnet's avatar
Pedro Gonnet committed
993
994

/**
995
 * @brief Map a function to all particles in a aspace.
Pedro Gonnet's avatar
Pedro Gonnet committed
996
997
 *
 * @param s The #space we are working in.
998
 * @param full Map to all cells, including cells with sub-cells.
999
1000
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
1001
 */
1002

1003
void space_map_cells_post(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
1004
                          void (*fun)(struct cell *c, void *data), void *data) {
1005

1006
  int cid = 0;
1007

1008
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1009
1010
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_post(&s->cells[cid], full, fun, data);
1011
}
1012

Pedro Gonnet's avatar
Pedro Gonnet committed
1013
1014
1015
static void rec_map_cells_pre(struct cell *c, int full,
                              void (*fun)(struct cell *c, void *data),
                              void *data) {
1016

1017
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
1018

1019
1020
  /* No progeny? */
  if (full || !c->split) fun(c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
1021

1022
1023
1024
  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
1025
1026
      if (c->progeny[k] != NULL)
        rec_map_cells_pre(c->progeny[k], full, fun, data);
1027
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1028

1029
1030
1031
1032
1033
1034
1035
1036
/**
 * @brief Calls function fun on the cells in the space s
 *
 * @param s The #space
 * @param full If true calls the function on all cells and not just on leaves
 * @param fun The function to call.
 * @param data Additional data passed to fun() when called
 */
1037
void space_map_cells_pre(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
1038
                         void (*fun)(struct cell *c, void *data), void *data) {
1039

1040
  int cid = 0;
1041
1042

  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1043
1044
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_pre(&s->cells[cid], full, fun, data);
1045
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1046
1047
1048
1049
1050
1051
1052

/**
 * @brief Split cells that contain too many particles.
 *
 * @param s The #space we are working in.
 * @param c The #cell under consideration.
 */
1053

1054
void space_do_split(struct space *s, struct cell *c) {
1055

1056
1057
1058
  const int count = c->count;
  const int gcount = c->gcount;
  int maxdepth = 0;
1059
1060
  float h_max = 0.0f;
  int ti_end_min = max_nr_timesteps, ti_end_max = 0;
1061
  struct cell *temp;
1062
1063
  struct part *parts = c->parts;
  struct gpart *gparts = c->gparts;
1064
  struct xpart *xparts = c->xparts;
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

  /* Check the depth. */
  if (c->depth > s->maxdepth) s->maxdepth = c->depth;

  /* Split or let it be? */
  if (count > space_splitsize || gcount > space_splitsize) {

    /* No longer just a leaf. */
    c->split = 1;

    /* Create the cell's progeny. */
1076
    for (int k = 0; k < 8; k++) {
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
      temp = space_getcell(s);
      temp->count = 0;
      temp->gcount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->h[0] = c->h[0] / 2;
      temp->h[1] = c->h[1] / 2;
      temp->h[2] = c->h[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->h[0];
      if (k & 2) temp->loc[1] += temp->h[1];
      if (k & 1) temp->loc[2] += temp->h[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->h_max = 0.0;
      temp->dx_max = 0.0;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
    }

    /* Split the cell data. */
    cell_split(c);

    /* Remove any progeny with zero parts. */
1103
    for (int k = 0; k < 8; k++)
1104
1105
1106
1107
      if (c->progeny[k]->count == 0 && c->progeny[k]->gcount == 0) {
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      } else {
1108
        space_do_split(s, c->progeny[k]);
1109
        h_max = fmaxf(h_max, c->progeny[k]->h_max);
1110
1111
        ti_end_min = min(ti_end_min, c->progeny[k]->ti_end_min);
        ti_end_max = max(ti_end_max, c->progeny[k]->ti_end_max);
1112
1113
1114
1115
1116
1117
        if (c->progeny[k]->maxdepth > maxdepth)
          maxdepth = c->progeny[k]->maxdepth;
      }

    /* Set the values for this cell. */
    c->h_max = h_max;
1118
1119
    c->ti_end_min = ti_end_min;
    c->ti_end_max = ti_end_max;
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
    c->maxdepth = maxdepth;

  }

  /* Otherwise, collect the data for this cell. */
  else {

    /* Clear the progeny. */
    bzero(c->progeny, sizeof(struct cell *) * 8);
    c->split = 0;
    c->maxdepth = c->depth;

    /* Get dt_min/dt_max. */
1133
    for (int k = 0; k < count; k++) {
1134
      struct part *p = &parts[k];
1135
      struct xpart *xp = &xparts[k];
1136
1137
      const float h = p->h;
      const int ti_end = p->ti_end;
1138
1139
1140
1141
      xp->x_old[0] = p->x[0];
      xp->x_old[1] = p->x[1];
      xp->x_old[2] = p->x[2];
      if (h > h_max) h_max = h;
1142
1143
      if (ti_end < ti_end_min) ti_end_min = ti_end;
      if (ti_end > ti_end_max) ti_end_max = ti_end;
1144
    }
1145
1146
1147
1148
1149
1150
    for (int k = 0; k < gcount; k++) {
      struct gpart *p = &gparts[k];
      const int ti_end = p->ti_end;
      if (ti_end < ti_end_min) ti_end_min = ti_end;
      if (ti_end > ti_end_max) ti_end_max = ti_end;
    }
1151
    c->h_max = h_max;
1152
1153
    c->ti_end_min = ti_end_min;
    c->ti_end_max = ti_end_max;
1154
  }
1155

1156
  /* Set ownership according to the start of the parts array. */
Matthieu Schaller's avatar
Matthieu Schaller committed
1157
  if (s->nr_parts > 0)
1158
1159
    c->owner =
        ((c->parts - s->parts) % s->nr_parts) * s->nr_queues / s->nr_parts;