cooling.h 7.35 KB
Newer Older
Stefan Arridge's avatar
Stefan Arridge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2016 Tom Theuns (tom.theuns@durham.ac.uk)
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *                    Richard Bower (r.g.bower@durham.ac.uk)
 *                    Stefan Arridge  (stefan.arridge@durham.ac.uk)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

23
24
#ifndef SWIFT_COOLING_CONST_LAMBDA_H
#define SWIFT_COOLING_CONST_LAMBDA_H
Stefan Arridge's avatar
Stefan Arridge committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

/* Some standard headers. */
#include <math.h>

/* Local includes. */
#include "const.h"
#include "error.h"
#include "hydro.h"
#include "parser.h"
#include "part.h"
#include "physical_constants.h"
#include "units.h"

/* Cooling Properties */
struct cooling_data {
40

Stefan Arridge's avatar
Stefan Arridge committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
  /*! Cooling rate in cgs units. Defined by 'rho * du/dt = -lambda * n_H^2'*/
  float lambda;

  /*! Minimum temperature (in Kelvin) for all gas particles*/
  float min_temperature;

  /*! Fraction of gas mass that is Hydrogen. Used to calculate n_H*/
  float hydrogen_mass_abundance;

  /* 'mu', used to convert min_temperature to min_internal energy*/
  float mean_molecular_weight;

  /*! Minimally allowed internal energy of the particles */
  float min_energy;
  float min_energy_cgs;

  /*! Constant multiplication factor for time-step criterion */
  float cooling_tstep_mult;
};

/**
 * @brief Calculates du/dt in code units for a particle.
 *
 * @param phys_const The physical constants in internal units.
 * @param us The internal system of units.
 * @param cooling The #cooling_data used in the run.
 * @param p Pointer to the particle data..
 */
__attribute__((always_inline)) INLINE static float cooling_rate(
    const struct phys_const* const phys_const, const struct UnitSystem* us,
    const struct cooling_data* cooling, const struct part* p) {

  /* Get particle properties */
  /* Density */
  const float rho = p->rho;
  /* Get cooling function properties */
  const float X_H = cooling->hydrogen_mass_abundance;
  /* lambda should always be set in cgs units */
  const float lambda_cgs = cooling->lambda;

  /*convert from internal code units to cgs*/
82
83
  const float rho_cgs =
      rho * units_cgs_conversion_factor(us, UNIT_CONV_DENSITY);
Stefan Arridge's avatar
Stefan Arridge committed
84
  const float m_p_cgs = phys_const->const_proton_mass *
85
                        units_cgs_conversion_factor(us, UNIT_CONV_MASS);
Stefan Arridge's avatar
Stefan Arridge committed
86
87
88
89
90
91
  const float n_H_cgs = X_H * rho_cgs / m_p_cgs;

  /* Calculate du_dt */
  const float du_dt_cgs = -lambda_cgs * n_H_cgs * n_H_cgs / rho_cgs;

  /* Convert du/dt back to internal code units */
92
93
94
  const float du_dt =
      du_dt_cgs * units_cgs_conversion_factor(us, UNIT_CONV_TIME) /
      units_cgs_conversion_factor(us, UNIT_CONV_ENERGY_PER_UNIT_MASS);
Stefan Arridge's avatar
Stefan Arridge committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

  return du_dt;
}

/**
 * @brief Apply the cooling function to a particle.
 *
 * @param phys_const The physical constants in internal units.
 * @param us The internal system of units.
 * @param cooling The #cooling_data used in the run.
 * @param p Pointer to the particle data.
 * @param dt The time-step of this particle.
 */
__attribute__((always_inline)) INLINE static void cooling_cool_part(
    const struct phys_const* const phys_const, const struct UnitSystem* us,
    const struct cooling_data* cooling, struct part* p, float dt) {

  /* Get current internal energy (dt=0) */
  const float u_old = hydro_get_internal_energy(p, 0.f);

  /* Internal energy floor */
  const float u_floor = cooling->min_energy;

  /* Calculate du_dt */
119
  const float du_dt = cooling_rate(phys_const, us, cooling, p);
Stefan Arridge's avatar
Stefan Arridge committed
120
121
122
123
124
125
126
  /* Intergrate cooling equation, but enforce energy floor */
  float u_new;
  if (u_old + du_dt * dt > u_floor) {
    u_new = u_old + du_dt * dt;
  } else {
    u_new = u_floor;
  }
127

Stefan Arridge's avatar
Stefan Arridge committed
128
129
  /* Update the internal energy */
  hydro_set_internal_energy(p, u_new);
130
  // const float u_new_test = hydro_get_internal_energy(p, 0.f);
Stefan Arridge's avatar
Stefan Arridge committed
131
  /* if (-(u_new_test - u_old)/u_old > 1.0e-6){ */
132
133
134
  /* printf("Particle has successfully cooled: u_old = %g , du_dt = %g , dt = %g
   * ,  du_dt*dt = %g, u_old + du_dt*dt = %g, u_new =
   * %g\n",u_old,du_dt,dt,du_dt*dt,u_new,u_new_test); */
Stefan Arridge's avatar
Stefan Arridge committed
135
136
137
138
139
140
141
142
143
144
  /*   exit(-1); */
  /* } */
}

/**
 * @brief Computes the time-step due to cooling
 *
 * @param cooling The #cooling_data used in the run.
 * @param phys_const The physical constants in internal units.
 * @param us The internal system of units.
Matthieu Schaller's avatar
Matthieu Schaller committed
145
 * @param p Pointer to the particle data.
Stefan Arridge's avatar
Stefan Arridge committed
146
147
 */
__attribute__((always_inline)) INLINE static float cooling_timestep(
148
149
150
    const struct cooling_data* cooling,
    const struct phys_const* const phys_const, const struct UnitSystem* us,
    const struct part* const p) {
Stefan Arridge's avatar
Stefan Arridge committed
151
152

  /* Get du_dt */
153
154
  const float du_dt = cooling_rate(phys_const, us, cooling, p);

Stefan Arridge's avatar
Stefan Arridge committed
155
156
157
  /* Get current internal energy (dt=0) */
  const float u = hydro_get_internal_energy(p, 0.f);

158
  return u / du_dt;
Stefan Arridge's avatar
Stefan Arridge committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
}

/**
 * @brief Initialises the cooling properties.
 *
 * @param parameter_file The parsed parameter file.
 * @param us The current internal system of units.
 * @param phys_const The physical constants in internal units.
 * @param cooling The cooling properties to initialize
 */
INLINE void cooling_init(const struct swift_params* parameter_file,
                         const struct UnitSystem* us,
                         const struct phys_const* phys_const,
                         struct cooling_data* cooling) {

  cooling->lambda = parser_get_param_double(parameter_file, "Cooling:lambda");
175
176
177
178
179
180
181
182
  cooling->min_temperature =
      parser_get_param_double(parameter_file, "Cooling:minimum_temperature");
  cooling->hydrogen_mass_abundance = parser_get_param_double(
      parameter_file, "Cooling:hydrogen_mass_abundance");
  cooling->mean_molecular_weight =
      parser_get_param_double(parameter_file, "Cooling:mean_molecular_weight");
  cooling->cooling_tstep_mult =
      parser_get_param_double(parameter_file, "Cooling:cooling_tstep_mult");
Stefan Arridge's avatar
Stefan Arridge committed
183
184
185

  /*convert minimum temperature into minimum internal energy*/
  const float u_floor =
186
187
188
      phys_const->const_boltzmann_k * cooling->min_temperature /
      (hydro_gamma_minus_one * cooling->mean_molecular_weight *
       phys_const->const_proton_mass);
Stefan Arridge's avatar
Stefan Arridge committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
  const float u_floor_cgs =
      u_floor * units_cgs_conversion_factor(us, UNIT_CONV_ENERGY_PER_UNIT_MASS);

  cooling->min_energy = u_floor;
  cooling->min_energy_cgs = u_floor_cgs;
}

/**
 * @brief Prints the properties of the cooling model to stdout.
 *
 * @param cooling The properties of the cooling function.
 */
INLINE void cooling_print(const struct cooling_data* cooling) {

203
204
205
206
207
208
  message(
      "Cooling function is 'Constant lambda' with "
      "(lambda,min_temperature,hydrogen_mass_abundance,mean_molecular_weight) "
      "=  (%g,%g,%g,%g)",
      cooling->lambda, cooling->min_temperature,
      cooling->hydrogen_mass_abundance, cooling->mean_molecular_weight);
Stefan Arridge's avatar
Stefan Arridge committed
209
210
}

211
#endif /* SWIFT_COOLING_CONST_LAMBDA_H */