cell.c 180 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "black_holes.h"
53
#include "chemistry.h"
54
#include "drift.h"
55
#include "engine.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
56
#include "entropy_floor.h"
57
#include "error.h"
58
#include "feedback.h"
59
#include "gravity.h"
60
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
61
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
62
#include "memswap.h"
63
#include "minmax.h"
64
#include "scheduler.h"
65
#include "space.h"
66
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
67
#include "stars.h"
68
#include "timers.h"
69
#include "tools.h"
70
#include "tracers.h"
71

72
73
74
/* Global variables. */
int cell_next_tag = 0;

Pedro Gonnet's avatar
Pedro Gonnet committed
75
/** List of cell pairs for sub-cell recursion. For any sid, the entries in
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
 * this array contain the number of sub-cell pairs and the indices and sid
 * of the sub-cell pairs themselves. */
struct cell_split_pair cell_split_pairs[13] = {
    {1, /* (  1 ,  1 ,  1 ) */
     {{7, 0, 0}}},

    {4, /* (  1 ,  1 ,  0 ) */
     {{6, 0, 1}, {7, 1, 1}, {6, 1, 0}, {7, 0, 2}}},

    {1, /* (  1 ,  1 , -1 ) */
     {{6, 1, 2}}},

    {4, /* (  1 ,  0 ,  1 ) */
     {{5, 0, 3}, {7, 2, 3}, {5, 2, 0}, {7, 0, 6}}},

    {16, /* (  1 ,  0 ,  0 ) */
     {{4, 0, 4},
      {5, 0, 5},
      {6, 0, 7},
      {7, 0, 8},
      {4, 1, 3},
      {5, 1, 4},
      {6, 1, 6},
      {7, 1, 7},
      {4, 2, 1},
      {5, 2, 2},
      {6, 2, 4},
      {7, 2, 5},
      {4, 3, 0},
      {5, 3, 1},
      {6, 3, 3},
      {7, 3, 4}}},

    {4, /* (  1 ,  0 , -1 ) */
     {{4, 1, 5}, {6, 3, 5}, {4, 3, 2}, {6, 1, 8}}},

    {1, /* (  1 , -1 ,  1 ) */
     {{5, 2, 6}}},

    {4, /* (  1 , -1 ,  0 ) */
     {{4, 3, 6}, {5, 2, 8}, {4, 2, 7}, {5, 3, 7}}},

    {1, /* (  1 , -1 , -1 ) */
     {{4, 3, 8}}},

    {4, /* (  0 ,  1 ,  1 ) */
     {{3, 0, 9}, {7, 4, 9}, {3, 4, 0}, {7, 0, 8}}},

    {16, /* (  0 ,  1 ,  0 ) */
     {{2, 0, 10},
      {3, 0, 11},
      {6, 0, 7},
      {7, 0, 6},
      {2, 1, 9},
      {3, 1, 10},
      {6, 1, 8},
      {7, 1, 7},
      {2, 4, 1},
      {3, 4, 2},
      {6, 4, 10},
      {7, 4, 11},
      {2, 5, 0},
      {3, 5, 1},
      {6, 5, 9},
      {7, 5, 10}}},

    {4, /* (  0 ,  1 , -1 ) */
     {{2, 1, 11}, {6, 5, 11}, {2, 5, 2}, {6, 1, 6}}},

    {16, /* (  0 ,  0 ,  1 ) */
     {{1, 0, 12},
      {3, 0, 11},
      {5, 0, 5},
      {7, 0, 2},
      {1, 2, 9},
      {3, 2, 12},
      {5, 2, 8},
      {7, 2, 5},
      {1, 4, 3},
      {3, 4, 6},
      {5, 4, 12},
      {7, 4, 11},
      {1, 6, 0},
      {3, 6, 3},
      {5, 6, 9},
      {7, 6, 12}}}};

163
164
165
166
167
extern int cell_to_check;
extern int parent_cell_to_check;
extern int super_cell_to_check;
int CHECK = 0;

168
169
170
171
172
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
173
int cell_getsize(struct cell *c) {
Pedro Gonnet's avatar
Pedro Gonnet committed
174
175
  /* Number of cells in this subtree. */
  int count = 1;
176

177
178
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
179
    for (int k = 0; k < 8; k++)
180
181
182
183
184
185
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

186
/**
187
 * @brief Link the cells recursively to the given #part array.
188
189
190
191
192
193
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
194
int cell_link_parts(struct cell *c, struct part *parts) {
195
#ifdef SWIFT_DEBUG_CHECKS
196
197
198
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

199
  if (c->hydro.parts != NULL)
200
201
202
    error("Linking parts into a cell that was already linked");
#endif

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
  c->hydro.parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->hydro.count;
}

/**
219
 * @brief Link the cells recursively to the given #gpart array.
220
221
 *
 * @param c The #cell.
222
 * @param gparts The #gpart array.
223
224
225
 *
 * @return The number of particles linked.
 */
226
int cell_link_gparts(struct cell *c, struct gpart *gparts) {
227
228
229
230
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

231
  if (c->grav.parts != NULL)
232
    error("Linking gparts into a cell that was already linked");
233
#endif
234

235
  c->grav.parts = gparts;
236
237
238
239
240
241
242
243
244
245
246

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
247
  return c->grav.count;
248
249
}

250
251
252
253
254
255
256
257
258
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {
259
260
261
262
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

263
  if (c->stars.parts != NULL)
264
265
266
    error("Linking sparts into a cell that was already linked");
#endif

267
  c->stars.parts = sparts;
268
  c->stars.parts_rebuild = sparts;
269
270
271
272
273
274
275
276
277
278
279

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
280
  return c->stars.count;
281
282
}

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/**
 * @brief Link the cells recursively to the given #bpart array.
 *
 * @param c The #cell.
 * @param bparts The #bpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_bparts(struct cell *c, struct bpart *bparts) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

  if (c->black_holes.parts != NULL)
    error("Linking bparts into a cell that was already linked");
#endif

  c->black_holes.parts = bparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_bparts(c->progeny[k], &bparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->black_holes.count;
}

316
317
318
319
320
321
322
323
324
325
/**
 * @brief Recurse down foreign cells until reaching one with hydro
 * tasks; then trigger the linking of the #part array from that
 * level.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
326
int cell_link_foreign_parts(struct cell *c, struct part *parts) {
327
328
#ifdef WITH_MPI

329
330
331
332
333
334
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
335
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

    /* Recursively attach the parts */
    const int counts = cell_link_parts(c, parts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->hydro.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_parts(c->progeny[k], &parts[count]);
      }
    }
354
355
356
    return count;
  } else {
    return 0;
357
  }
358
359
360
361

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
362
363
}

364
365
366
367
368
369
370
371
372
373
/**
 * @brief Recurse down foreign cells until reaching one with gravity
 * tasks; then trigger the linking of the #gpart array from that
 * level.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
374
int cell_link_foreign_gparts(struct cell *c, struct gpart *gparts) {
375
376
#ifdef WITH_MPI

377
378
379
380
381
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

382
383
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
384

385
    /* Recursively attach the gparts */
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    const int counts = cell_link_gparts(c, gparts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->grav.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_gparts(c->progeny[k], &gparts[count]);
      }
    }
402
403
404
    return count;
  } else {
    return 0;
405
  }
406
407
408
409

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
410
411
}

412
413
414
415
416
417
418
419
/**
 * @brief Recursively count the number of #part in foreign cells that
 * are in cells with hydro-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
420
int cell_count_parts_for_tasks(const struct cell *c) {
421
422
#ifdef WITH_MPI

423
424
425
426
427
428
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
429
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
430
431
432
433
434
435
436
437
438
439
    return c->hydro.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_parts_for_tasks(c->progeny[k]);
      }
    }
440
441
442
    return count;
  } else {
    return 0;
443
  }
444
445
446
447

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
448
449
}

450
451
452
453
454
455
456
457
/**
 * @brief Recursively count the number of #gpart in foreign cells that
 * are in cells with gravity-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
458
int cell_count_gparts_for_tasks(const struct cell *c) {
459
460
#ifdef WITH_MPI

461
462
463
464
465
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

466
467
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
468
469
470
471
472
473
474
475
476
477
    return c->grav.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_gparts_for_tasks(c->progeny[k]);
      }
    }
478
479
480
    return count;
  } else {
    return 0;
481
  }
482
483
484
485

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
486
487
}

488
489
490
491
492
493
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
494
495
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
496
497
498
 *
 * @return The number of packed cells.
 */
499
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
500
              const int with_gravity) {
501
502
#ifdef WITH_MPI

503
  /* Start by packing the data of the current cell. */
504
  pc->hydro.h_max = c->hydro.h_max;
505
  pc->stars.h_max = c->stars.h_max;
506
  pc->black_holes.h_max = c->black_holes.h_max;
507
508
509
510
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
511
  pc->stars.ti_end_min = c->stars.ti_end_min;
512
  pc->stars.ti_end_max = c->stars.ti_end_max;
513
514
  pc->black_holes.ti_end_min = c->black_holes.ti_end_min;
  pc->black_holes.ti_end_max = c->black_holes.ti_end_max;
515
516
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
517
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
518
  pc->stars.ti_old_part = c->stars.ti_old_part;
519
  pc->hydro.count = c->hydro.count;
520
521
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
522
  pc->black_holes.count = c->black_holes.count;
523
  pc->maxdepth = c->maxdepth;
524

525
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
526
  if (with_gravity) {
527
    const struct gravity_tensors *mp = c->grav.multipole;
528

529
530
531
532
533
534
535
536
537
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
538
539
  }

540
541
542
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
543
544

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
545
546
  int count = 1;
  for (int k = 0; k < 8; k++)
547
548
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
549
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
550
    } else {
551
      pc->progeny[k] = -1;
552
    }
553
554

  /* Return the number of packed cells used. */
555
  c->mpi.pcell_size = count;
556
  return count;
557
558
559
560
561

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
562
563
}

564
565
566
567
568
569
570
571
572
573
574
575
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {
#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
576
  tags[0] = c->mpi.tag;
577
578
579
580
581
582
583
584

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
585
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
586
587
588
589
590
591
592
593
594
595
596
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

597
598
599
600
601
602
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
603
604
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
605
606
607
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
608
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
609
                struct space *restrict s, const int with_gravity) {
610
611
612
#ifdef WITH_MPI

  /* Unpack the current pcell. */
613
  c->hydro.h_max = pc->hydro.h_max;
614
  c->stars.h_max = pc->stars.h_max;
615
  c->black_holes.h_max = pc->black_holes.h_max;
616
617
618
619
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
620
  c->stars.ti_end_min = pc->stars.ti_end_min;
621
  c->stars.ti_end_max = pc->stars.ti_end_max;
622
623
  c->black_holes.ti_end_min = pc->black_holes.ti_end_min;
  c->black_holes.ti_end_max = pc->black_holes.ti_end_max;
624
625
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
626
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
627
  c->stars.ti_old_part = pc->stars.ti_old_part;
628
  c->black_holes.ti_old_part = pc->black_holes.ti_old_part;
629
  c->hydro.count = pc->hydro.count;
630
631
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
632
  c->black_holes.count = pc->black_holes.count;
633
634
  c->maxdepth = pc->maxdepth;

635
636
637
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
638

639
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
640
  if (with_gravity) {
641
    struct gravity_tensors *mp = c->grav.multipole;
642

643
644
645
646
647
648
649
650
651
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
652
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
653

654
655
656
657
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
658
  c->split = 0;
659
660
661
662
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
663
      temp->hydro.count = 0;
664
665
      temp->grav.count = 0;
      temp->stars.count = 0;
666
667
668
669
670
671
672
673
674
675
676
677
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
678
      temp->hydro.dx_max_part = 0.f;
679
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
680
      temp->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
681
      temp->stars.dx_max_sort = 0.f;
682
      temp->black_holes.dx_max_part = 0.f;
683
684
685
686
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
687
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
688
689
690
    }

  /* Return the total number of unpacked cells. */
691
  c->mpi.pcell_size = count;
692
693
694
695
696
697
698
699
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

700
701
702
703
704
705
706
707
708
709
710
711
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {
#ifdef WITH_MPI

  /* Unpack the current pcell. */
712
  c->mpi.tag = tags[0];
713
714
715
716
717
718
719
720
721
722
723

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
724
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
725
726
727
728
729
730
731
732
733
734
735
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

736
737
738
739
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
740
 * @param pcells (output) The end-of-timestep information we pack into
741
742
743
 *
 * @return The number of packed cells.
 */
744
745
int cell_pack_end_step_hydro(struct cell *restrict c,
                             struct pcell_step_hydro *restrict pcells) {
746
747
#ifdef WITH_MPI

748
  /* Pack this cell's data. */
749
750
751
  pcells[0].ti_end_min = c->hydro.ti_end_min;
  pcells[0].ti_end_max = c->hydro.ti_end_max;
  pcells[0].dx_max_part = c->hydro.dx_max_part;
752

753
754
755
756
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
757
      count += cell_pack_end_step_hydro(c->progeny[k], &pcells[count]);
758
759
760
761
    }

  /* Return the number of packed values. */
  return count;
762
763
764
765
766

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
767
768
}

769
770
771
772
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
773
 * @param pcells The end-of-timestep information to unpack
774
775
776
 *
 * @return The number of cells created.
 */
777
778
int cell_unpack_end_step_hydro(struct cell *restrict c,
                               struct pcell_step_hydro *restrict pcells) {
779
780
#ifdef WITH_MPI

781
  /* Unpack this cell's data. */
782
783
784
  c->hydro.ti_end_min = pcells[0].ti_end_min;
  c->hydro.ti_end_max = pcells[0].ti_end_max;
  c->hydro.dx_max_part = pcells[0].dx_max_part;
785

786
787
788
789
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
      count += cell_unpack_end_step_hydro(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_grav(struct cell *restrict c,
                            struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->grav.ti_end_min;
  pcells[0].ti_end_max = c->grav.ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_grav(struct cell *restrict c,
                              struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->grav.ti_end_min = pcells[0].ti_end_min;
  c->grav.ti_end_max = pcells[0].ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_stars(struct cell *restrict c,
                             struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->stars.ti_end_min;
  pcells[0].ti_end_max = c->stars.ti_end_max;
  pcells[0].dx_max_part = c->stars.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_stars(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_stars(struct cell *restrict c,
                               struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->stars.ti_end_min = pcells[0].ti_end_min;
  c->stars.ti_end_max = pcells[0].ti_end_max;
  c->stars.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_stars(c->progeny[k], &pcells[count]);
921
922
923
    }

  /* Return the number of packed values. */
924
  return count;
925
926
927
928
929

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
930
}
931

932
933
934
935
936
937
938
939
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
940
941
int cell_pack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->black_holes.ti_end_min;
  pcells[0].ti_end_max = c->black_holes.ti_end_max;
  pcells[0].dx_max_part = c->black_holes.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
974
975
int cell_unpack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->black_holes.ti_end_min = pcells[0].ti_end_min;
  c->black_holes.ti_end_max = pcells[0].ti_end_max;
  c->black_holes.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1000
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
1001
1002
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
1003
1004
1005
1006
1007
1008
1009
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1010
                         struct gravity_tensors *restrict pcells) {
1011
1012
1013
#ifdef WITH_MPI

  /* Pack this cell's data. */
1014
  pcells[0] = *c->grav.multipole;
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1041
                           struct gravity_tensors *restrict pcells) {
1042
1043
1044
#ifdef WITH_MPI

  /* Unpack this cell's data. */
1045
  *c->grav.multipole = pcells[0];
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
/**
 * @brief Pack the counts for star formation of the given cell and all it's
 * sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_sf_counts(struct cell *restrict c,
                        struct pcell_sf *restrict pcells) {

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].stars.delta_from_rebuild = c->stars.parts - c->stars.parts_rebuild;
  pcells[0].stars.count = c->stars.count;
1080
1081
  pcells[0].stars.dx_max_part = c->stars.dx_max_part;
  
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
#ifdef SWIFT_DEBUG_CHECKS
  if (c->stars.parts_rebuild == NULL)
    error("Star particles array at rebuild is NULL! c->depth=%d", c->depth);

  if (pcells[0].stars.delta_from_rebuild < 0)
    error("Stars part pointer moved in the wrong direction!");

  if (pcells[0].stars.delta_from_rebuild > 0 && c->depth == 0)
    error("Shifting the top-level pointer is not allowed!");
#endif

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_sf_counts(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the counts for star formation of a given cell and its
 * sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_sf_counts(struct cell *restrict c,
                          struct pcell_sf *restrict pcells) {

#ifdef WITH_MPI

#ifdef SWIFT_DEBUG_CHECKS
  if (c->stars.parts_rebuild == NULL)
    error("Star particles array at rebuild is NULL!");
#endif

  /* Unpack this cell's data. */
  c->stars.count = pcells[0].stars.count;
  c->stars.parts = c->stars.parts_rebuild + pcells[0].stars.delta_from_rebuild;
1131
  c->stars.dx_max_part = pcells[0].stars.dx_max_part;
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_sf_counts(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1149
/**
1150
 * @brief Lock a cell for access to its array of #part and hold its parents.
1151
1152
 *
 * @param c The #cell.
1153
 * @return 0 on success, 1 on failure
1154
 */
1155
1156
1157
1158
int cell_locktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1159
  if (c->hydro.hold || lock_trylock(&c->hydro.lock) != 0) {
1160
1161
1162
1163
1164
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1165
  if (c->hydro.hold) {
1166
    /* Unlock this cell. */
1167
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1168
1169
1170
1171
1172
1173
1174

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1175
  struct cell *finger;
1176
1177
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1178
    if (lock_trylock(&finger->hydro.lock) != 0) break;
1179
1180

    /* Increment the hold. */
1181
    atomic_inc(&finger->hydro.hold);
1182
1183

    /* Unlock the cell. */
1184
    if (lock_unlock(&finger->hydro.lock) != 0) error("Failed to unlock cell.");
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1196
1197
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1198
      atomic_dec(&finger2->hydro.hold);
1199
1200

    /* Unlock this cell. */
1201
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1202
1203
1204
1205
1206
1207
1208

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1209
1210
1211
1212
1213
1214
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
1215
1216
1217
1218
int cell_glocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1219
  if (c->grav.phold || lock_trylock(&c->grav.plock) != 0) {
1220
1221
1222
1223
1224
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1225
  if (c->grav.phold) {
1226
    /* Unlock this cell. */
1227
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1228
1229
1230
1231
1232
1233
1234

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1235
  struct cell *finger;
1236
1237
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1238
    if (lock_trylock(&finger->grav.plock) != 0) break;
1239
1240

    /* Increment the hold. */
1241
    atomic_inc(&finger->grav.phold);
1242
1243

    /* Unlock the cell. */
1244
    if (lock_unlock(&finger->grav.plock) != 0) error("Failed to unlock cell.");
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1256
1257
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1258
      atomic_dec(&finger2->grav.phold);
1259
1260

    /* Unlock this cell. */
1261
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1262
1263
1264
1265
1266
1267

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
1268

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1279
  if (c->grav.mhold || lock_trylock(&c->grav.mlock) != 0) {
1280
1281
1282
1283
1284
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1285
  if (c->grav.mhold) {
1286
    /* Unlock this cell. */
1287
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1298
    if (lock_trylock(&finger->grav.mlock) != 0) break;
1299
1300

    /* Increment the hold. */
1301
    atomic_inc(&finger->grav.mhold);
1302
1303

    /* Unlock the cell. */
1304
    if (lock_unlock(&finger->grav.mlock) != 0) error("Failed to unlock cell.");
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1318
      atomic_dec(&finger2->grav.mhold);
1319
1320

    /* Unlock this cell. */
1321
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1322
1323
1324
1325
1326
1327
1328

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1339
  if (c->stars.hold || lock_trylock(&c->stars.lock) != 0) {
1340
1341
1342
1343
1344
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1345
  if (c->stars.hold) {
1346
    /* Unlock this cell. */
1347
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1358
    if (lock_trylock(&finger->stars.lock) != 0) break;
1359
1360

    /* Increment the hold. */
1361
    atomic_inc(&finger->stars.hold);
1362
1363

    /* Unlock the cell. */
1364
    if (lock_unlock(&finger->stars.lock) != 0) error("Failed to unlock cell.");
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)