hydro_iact.h 73.5 KB
Newer Older
1
2
/*******************************************************************************
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
5
 *
6
7
8
9
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
10
 *
11
12
13
14
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
15
 *
16
17
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18
 *
19
 ******************************************************************************/
20
21
#ifndef SWIFT_GADGET2_HYDRO_IACT_H
#define SWIFT_GADGET2_HYDRO_IACT_H
22
23

/**
24
 * @file Gadget2/hydro_iact.h
25
26
 * @brief SPH interaction functions following the Gadget-2 version of SPH.
 *
27
 * The interactions computed here are the ones presented in the Gadget-2 paper
28
29
 * Springel, V., MNRAS, Volume 364, Issue 4, pp. 1105-1134.
 * We use the same numerical coefficients as the Gadget-2 code. When used with
30
31
32
 * the Spline-3 kernel, the results should be equivalent to the ones obtained
 * with Gadget-2 up to the rounding errors and interactions missed by the
 * Gadget-2 tree-code neighbours search.
33
34
 */

35
#include "cache.h"
James Willis's avatar
James Willis committed
36
#include "minmax.h"
37

38
39
40
/**
 * @brief Density loop
 */
41
42
43
__attribute__((always_inline)) INLINE static void runner_iact_density(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

44
45
  float wi, wi_dx;
  float wj, wj_dx;
46
  float dv[3], curlvr[3];
47

48
  /* Get the masses. */
49
  const float mi = pi->mass;
50
51
52
53
54
55
56
57
58
59
60
61
62
  const float mj = pj->mass;

  /* Get r and r inverse. */
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Compute the kernel function for pi */
  const float hi_inv = 1.f / hi;
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);

  /* Compute contribution to the density */
  pi->rho += mj * wi;
63
  pi->density.rho_dh -= mj * (hydro_dimension * wi + ui * wi_dx);
64

65
66
67
68
69
70
71
72
73
74
75
  /* Compute contribution to the number of neighbours */
  pi->density.wcount += wi;
  pi->density.wcount_dh -= ui * wi_dx;

  /* Compute the kernel function for pj */
  const float hj_inv = 1.f / hj;
  const float uj = r * hj_inv;
  kernel_deval(uj, &wj, &wj_dx);

  /* Compute contribution to the density */
  pj->rho += mi * wj;
76
  pj->density.rho_dh -= mi * (hydro_dimension * wj + uj * wj_dx);
77

78
79
80
  /* Compute contribution to the number of neighbours */
  pj->density.wcount += wj;
  pj->density.wcount_dh -= uj * wj_dx;
81

82
83
  const float faci = mj * wi_dx * r_inv;
  const float facj = mi * wj_dx * r_inv;
84

85
86
87
88
  /* Compute dv dot r */
  dv[0] = pi->v[0] - pj->v[0];
  dv[1] = pi->v[1] - pj->v[1];
  dv[2] = pi->v[2] - pj->v[2];
89
90
  const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];

91
92
  pi->density.div_v -= faci * dvdr;
  pj->density.div_v -= facj * dvdr;
93
94
95
96
97
98

  /* Compute dv cross r */
  curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
  curlvr[1] = dv[2] * dx[0] - dv[0] * dx[2];
  curlvr[2] = dv[0] * dx[1] - dv[1] * dx[0];

99
100
101
  pi->density.rot_v[0] += faci * curlvr[0];
  pi->density.rot_v[1] += faci * curlvr[1];
  pi->density.rot_v[2] += faci * curlvr[2];
102

103
104
105
  pj->density.rot_v[0] += facj * curlvr[0];
  pj->density.rot_v[1] += facj * curlvr[1];
  pj->density.rot_v[2] += facj * curlvr[2];
106
107
}

108
109
110
111
112
113
/**
 * @brief Density loop (Vectorized version)
 */
__attribute__((always_inline)) INLINE static void runner_iact_vec_density(
    float *R2, float *Dx, float *Hi, float *Hj, struct part **pi,
    struct part **pj) {
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

#ifdef WITH_VECTORIZATION

  vector r, ri, r2, xi, xj, hi, hj, hi_inv, hj_inv, wi, wj, wi_dx, wj_dx;
  vector rhoi, rhoj, rhoi_dh, rhoj_dh, wcounti, wcountj, wcounti_dh, wcountj_dh;
  vector mi, mj;
  vector dx[3], dv[3];
  vector vi[3], vj[3];
  vector dvdr, div_vi, div_vj;
  vector curlvr[3], curl_vi[3], curl_vj[3];
  int k, j;

#if VEC_SIZE == 8
  /* Get the masses. */
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass,
                 pi[4]->mass, pi[5]->mass, pi[6]->mass, pi[7]->mass);
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass,
                 pj[4]->mass, pj[5]->mass, pj[6]->mass, pj[7]->mass);
  /* Get each velocity component. */
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k],
                      pi[4]->v[k], pi[5]->v[k], pi[6]->v[k], pi[7]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k],
                      pj[4]->v[k], pj[5]->v[k], pj[6]->v[k], pj[7]->v[k]);
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
139
140
  /* Get each component of particle separation.
   * (Dx={dx1,dy1,dz1,dx2,dy2,dz2,...,dxn,dyn,dzn})*/
141
142
143
144
145
146
147
148
149
150
151
152
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k], Dx[12 + k],
                      Dx[15 + k], Dx[18 + k], Dx[21 + k]);
#elif VEC_SIZE == 4
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass);
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass);
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k]);
153
#else
154
  error("Unknown vector size.");
155
156
157
158
#endif

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
159
  ri = vec_reciprocal_sqrt(r2);
160
161
162
  r.v = r2.v * ri.v;

  hi.v = vec_load(Hi);
163
  hi_inv = vec_reciprocal(hi);
164
165
166
  xi.v = r.v * hi_inv.v;

  hj.v = vec_load(Hj);
167
  hj_inv = vec_reciprocal(hj);
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
  xj.v = r.v * hj_inv.v;

  /* Compute the kernel function. */
  kernel_deval_vec(&xi, &wi, &wi_dx);
  kernel_deval_vec(&xj, &wj, &wj_dx);

  /* Compute dv. */
  dv[0].v = vi[0].v - vj[0].v;
  dv[1].v = vi[1].v - vj[1].v;
  dv[2].v = vi[2].v - vj[2].v;

  /* Compute dv dot r */
  dvdr.v = (dv[0].v * dx[0].v) + (dv[1].v * dx[1].v) + (dv[2].v * dx[2].v);
  dvdr.v = dvdr.v * ri.v;

  /* Compute dv cross r */
  curlvr[0].v = dv[1].v * dx[2].v - dv[2].v * dx[1].v;
  curlvr[1].v = dv[2].v * dx[0].v - dv[0].v * dx[2].v;
  curlvr[2].v = dv[0].v * dx[1].v - dv[1].v * dx[0].v;
  for (k = 0; k < 3; k++) curlvr[k].v *= ri.v;

  /* Compute density of pi. */
  rhoi.v = mj.v * wi.v;
191
  rhoi_dh.v = mj.v * (vec_set1(hydro_dimension) * wi.v + xi.v * wi_dx.v);
192
193
194
195
196
197
198
  wcounti.v = wi.v;
  wcounti_dh.v = xi.v * wi_dx.v;
  div_vi.v = mj.v * dvdr.v * wi_dx.v;
  for (k = 0; k < 3; k++) curl_vi[k].v = mj.v * curlvr[k].v * wi_dx.v;

  /* Compute density of pj. */
  rhoj.v = mi.v * wj.v;
199
  rhoj_dh.v = mi.v * (vec_set1(hydro_dimension) * wj.v + xj.v * wj_dx.v);
200
201
202
203
204
205
206
207
  wcountj.v = wj.v;
  wcountj_dh.v = xj.v * wj_dx.v;
  div_vj.v = mi.v * dvdr.v * wj_dx.v;
  for (k = 0; k < 3; k++) curl_vj[k].v = mi.v * curlvr[k].v * wj_dx.v;

  /* Update particles. */
  for (k = 0; k < VEC_SIZE; k++) {
    pi[k]->rho += rhoi.f[k];
208
    pi[k]->density.rho_dh -= rhoi_dh.f[k];
209
210
    pi[k]->density.wcount += wcounti.f[k];
    pi[k]->density.wcount_dh -= wcounti_dh.f[k];
211
    pi[k]->density.div_v -= div_vi.f[k];
212
213
    for (j = 0; j < 3; j++) pi[k]->density.rot_v[j] += curl_vi[j].f[k];
    pj[k]->rho += rhoj.f[k];
214
    pj[k]->density.rho_dh -= rhoj_dh.f[k];
215
216
    pj[k]->density.wcount += wcountj.f[k];
    pj[k]->density.wcount_dh -= wcountj_dh.f[k];
217
    pj[k]->density.div_v -= div_vj.f[k];
218
219
220
221
222
    for (j = 0; j < 3; j++) pj[k]->density.rot_v[j] += curl_vj[j].f[k];
  }

#else

Matthieu Schaller's avatar
Matthieu Schaller committed
223
224
  error(
      "The Gadget2 serial version of runner_iact_density was called when the "
225
      "vectorised version should have been used.");
226
227

#endif
228
229
}

230
231
232
/**
 * @brief Density loop (non-symmetric version)
 */
233
234
235
236
237
238
239
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_density(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

  float wi, wi_dx;
  float dv[3], curlvr[3];

  /* Get the masses. */
240
  const float mj = pj->mass;
241
242

  /* Get r and r inverse. */
243
244
  const float r = sqrtf(r2);
  const float ri = 1.0f / r;
245

246
  /* Compute the kernel function */
247
248
249
  const float hi_inv = 1.0f / hi;
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
250
251
252

  /* Compute contribution to the density */
  pi->rho += mj * wi;
253
  pi->density.rho_dh -= mj * (hydro_dimension * wi + ui * wi_dx);
254
255
256

  /* Compute contribution to the number of neighbours */
  pi->density.wcount += wi;
257
  pi->density.wcount_dh -= ui * wi_dx;
258

259
  const float fac = mj * wi_dx * ri;
260

261
262
263
264
265
  /* Compute dv dot r */
  dv[0] = pi->v[0] - pj->v[0];
  dv[1] = pi->v[1] - pj->v[1];
  dv[2] = pi->v[2] - pj->v[2];
  const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];
266
  pi->density.div_v -= fac * dvdr;
267

268
269
270
271
272
  /* Compute dv cross r */
  curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
  curlvr[1] = dv[2] * dx[0] - dv[0] * dx[2];
  curlvr[2] = dv[0] * dx[1] - dv[1] * dx[0];

273
274
275
  pi->density.rot_v[0] += fac * curlvr[0];
  pi->density.rot_v[1] += fac * curlvr[1];
  pi->density.rot_v[2] += fac * curlvr[2];
276
277
}

278
279
280
281
282
283
/**
 * @brief Density loop (non-symmetric vectorized version)
 */
__attribute__((always_inline)) INLINE static void
runner_iact_nonsym_vec_density(float *R2, float *Dx, float *Hi, float *Hj,
                               struct part **pi, struct part **pj) {
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

#ifdef WITH_VECTORIZATION

  vector r, ri, r2, xi, hi, hi_inv, wi, wi_dx;
  vector rhoi, rhoi_dh, wcounti, wcounti_dh, div_vi;
  vector mj;
  vector dx[3], dv[3];
  vector vi[3], vj[3];
  vector dvdr;
  vector curlvr[3], curl_vi[3];
  int k, j;

#if VEC_SIZE == 8
  /* Get the masses. */
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass,
                 pj[4]->mass, pj[5]->mass, pj[6]->mass, pj[7]->mass);
  /* Get each velocity component. */
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k],
                      pi[4]->v[k], pi[5]->v[k], pi[6]->v[k], pi[7]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k],
                      pj[4]->v[k], pj[5]->v[k], pj[6]->v[k], pj[7]->v[k]);
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
307
308
  /* Get each component of particle separation.
   * (Dx={dx1,dy1,dz1,dx2,dy2,dz2,...,dxn,dyn,dzn})*/
309
310
311
312
313
314
315
316
317
318
319
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k], Dx[12 + k],
                      Dx[15 + k], Dx[18 + k], Dx[21 + k]);
#elif VEC_SIZE == 4
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass);
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k]);
320
#else
321
  error("Unknown vector size.");
322
323
324
325
#endif

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
326
  ri = vec_reciprocal_sqrt(r2);
327
328
329
  r.v = r2.v * ri.v;

  hi.v = vec_load(Hi);
330
  hi_inv = vec_reciprocal(hi);
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
  xi.v = r.v * hi_inv.v;

  kernel_deval_vec(&xi, &wi, &wi_dx);

  /* Compute dv. */
  dv[0].v = vi[0].v - vj[0].v;
  dv[1].v = vi[1].v - vj[1].v;
  dv[2].v = vi[2].v - vj[2].v;

  /* Compute dv dot r */
  dvdr.v = (dv[0].v * dx[0].v) + (dv[1].v * dx[1].v) + (dv[2].v * dx[2].v);
  dvdr.v = dvdr.v * ri.v;

  /* Compute dv cross r */
  curlvr[0].v = dv[1].v * dx[2].v - dv[2].v * dx[1].v;
  curlvr[1].v = dv[2].v * dx[0].v - dv[0].v * dx[2].v;
  curlvr[2].v = dv[0].v * dx[1].v - dv[1].v * dx[0].v;
  for (k = 0; k < 3; k++) curlvr[k].v *= ri.v;

  /* Compute density of pi. */
  rhoi.v = mj.v * wi.v;
352
  rhoi_dh.v = mj.v * (vec_set1(hydro_dimension) * wi.v + xi.v * wi_dx.v);
353
354
355
356
357
358
359
360
  wcounti.v = wi.v;
  wcounti_dh.v = xi.v * wi_dx.v;
  div_vi.v = mj.v * dvdr.v * wi_dx.v;
  for (k = 0; k < 3; k++) curl_vi[k].v = mj.v * curlvr[k].v * wi_dx.v;

  /* Update particles. */
  for (k = 0; k < VEC_SIZE; k++) {
    pi[k]->rho += rhoi.f[k];
361
    pi[k]->density.rho_dh -= rhoi_dh.f[k];
362
363
    pi[k]->density.wcount += wcounti.f[k];
    pi[k]->density.wcount_dh -= wcounti_dh.f[k];
364
    pi[k]->density.div_v -= div_vi.f[k];
365
366
367
368
369
    for (j = 0; j < 3; j++) pi[k]->density.rot_v[j] += curl_vi[j].f[k];
  }

#else

Matthieu Schaller's avatar
Matthieu Schaller committed
370
371
  error(
      "The Gadget2 serial version of runner_iact_nonsym_density was called "
372
      "when the vectorised version should have been used.");
373
374

#endif
375
376
}

377
#ifdef WITH_VECTORIZATION
378
379
380
381
382

/**
 * @brief Density interaction computed using 1 vector
 * (non-symmetric vectorized version).
 */
383
__attribute__((always_inline)) INLINE static void
Matthieu Schaller's avatar
Matthieu Schaller committed
384
385
386
387
388
389
390
391
runner_iact_nonsym_1_vec_density(vector *r2, vector *dx, vector *dy, vector *dz,
                                 vector hi_inv, vector vix, vector viy,
                                 vector viz, float *Vjx, float *Vjy, float *Vjz,
                                 float *Mj, vector *rhoSum, vector *rho_dhSum,
                                 vector *wcountSum, vector *wcount_dhSum,
                                 vector *div_vSum, vector *curlvxSum,
                                 vector *curlvySum, vector *curlvzSum,
                                 vector mask, int knlMask) {
392
393
394
395
396
397
398

  vector r, ri, xi, wi, wi_dx;
  vector mj;
  vector dvx, dvy, dvz;
  vector vjx, vjy, vjz;
  vector dvdr;
  vector curlvrx, curlvry, curlvrz;
James Willis's avatar
James Willis committed
399

400
  /* Fill the vectors. */
401
402
403
404
  mj.v = vec_load(Mj);
  vjx.v = vec_load(Vjx);
  vjy.v = vec_load(Vjy);
  vjz.v = vec_load(Vjz);
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

  /* Get the radius and inverse radius. */
  ri = vec_reciprocal_sqrt(*r2);
  r.v = vec_mul(r2->v, ri.v);

  xi.v = vec_mul(r.v, hi_inv.v);

  /* Calculate the kernel for two particles. */
  kernel_deval_1_vec(&xi, &wi, &wi_dx);

  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvz.v = vec_sub(viz.v, vjz.v);

  /* Compute dv dot r */
  dvdr.v = vec_fma(dvx.v, dx->v, vec_fma(dvy.v, dy->v, vec_mul(dvz.v, dz->v)));
  dvdr.v = vec_mul(dvdr.v, ri.v);

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
  /* Compute dv cross r */
  curlvrx.v =
      vec_fma(dvy.v, dz->v, vec_mul(vec_set1(-1.0f), vec_mul(dvz.v, dy->v)));
  curlvry.v =
      vec_fma(dvz.v, dx->v, vec_mul(vec_set1(-1.0f), vec_mul(dvx.v, dz->v)));
  curlvrz.v =
      vec_fma(dvx.v, dy->v, vec_mul(vec_set1(-1.0f), vec_mul(dvy.v, dx->v)));
  curlvrx.v = vec_mul(curlvrx.v, ri.v);
  curlvry.v = vec_mul(curlvry.v, ri.v);
  curlvrz.v = vec_mul(curlvrz.v, ri.v);

/* Mask updates to intermediate vector sums for particle pi. */
#ifdef HAVE_AVX512_F
  rhoSum->v =
      _mm512_mask_add_ps(rhoSum->v, knlMask, vec_mul(mj.v, wi.v), rhoSum->v);

  rho_dhSum->v =
      _mm512_mask_sub_ps(rho_dhSum->v, knlMask, rho_dhSum->v,
                         vec_mul(mj.v, vec_fma(vec_set1(hydro_dimension), wi.v,
                                               vec_mul(xi.v, wi_dx.v))));

  wcountSum->v = _mm512_mask_add_ps(wcountSum->v, knlMask, wi.v, wcountSum->v);

  wcount_dhSum->v = _mm512_mask_sub_ps(wcount_dhSum->v, knlMask,
                                       wcount_dhSum->v, vec_mul(xi.v, wi_dx.v));

  div_vSum->v = _mm512_mask_sub_ps(div_vSum->v, knlMask, div_vSum->v,
                                   vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)));

  curlvxSum->v = _mm512_mask_add_ps(curlvxSum->v, knlMask,
                                    vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)),
                                    curlvxSum->v);
James Willis's avatar
James Willis committed
456

457
458
459
  curlvySum->v = _mm512_mask_add_ps(curlvySum->v, knlMask,
                                    vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)),
                                    curlvySum->v);
James Willis's avatar
James Willis committed
460

461
462
463
  curlvzSum->v = _mm512_mask_add_ps(curlvzSum->v, knlMask,
                                    vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)),
                                    curlvzSum->v);
James Willis's avatar
James Willis committed
464
#else
465
466
  rhoSum->v += vec_and(vec_mul(mj.v, wi.v), mask.v);
  rho_dhSum->v -= vec_and(vec_mul(mj.v, vec_fma(vec_set1(hydro_dimension), wi.v,
James Willis's avatar
James Willis committed
467
468
                                                vec_mul(xi.v, wi_dx.v))),
                          mask.v);
469
470
471
472
473
474
475
476
477
  wcountSum->v += vec_and(wi.v, mask.v);
  wcount_dhSum->v -= vec_and(vec_mul(xi.v, wi_dx.v), mask.v);
  div_vSum->v -= vec_and(vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)), mask.v);
  curlvxSum->v += vec_and(vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)), mask.v);
  curlvySum->v += vec_and(vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)), mask.v);
  curlvzSum->v += vec_and(vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)), mask.v);
#endif
}

478
/**
James Willis's avatar
James Willis committed
479
480
 * @brief Density interaction computed using 2 interleaved vectors
 * (non-symmetric vectorized version).
481
482
 */
__attribute__((always_inline)) INLINE static void
James Willis's avatar
James Willis committed
483
484
485
486
487
488
runner_iact_nonsym_2_vec_density(
    float *R2, float *Dx, float *Dy, float *Dz, vector hi_inv, vector vix,
    vector viy, vector viz, float *Vjx, float *Vjy, float *Vjz, float *Mj,
    vector *rhoSum, vector *rho_dhSum, vector *wcountSum, vector *wcount_dhSum,
    vector *div_vSum, vector *curlvxSum, vector *curlvySum, vector *curlvzSum,
    vector mask, vector mask2, int knlMask, int knlMask2) {
489
490
491
492
493
494
495
496
497
498
499
500
501
502

  vector r, ri, r2, xi, wi, wi_dx;
  vector mj;
  vector dx, dy, dz, dvx, dvy, dvz;
  vector vjx, vjy, vjz;
  vector dvdr;
  vector curlvrx, curlvry, curlvrz;
  vector r_2, ri2, r2_2, xi2, wi2, wi_dx2;
  vector mj2;
  vector dx2, dy2, dz2, dvx2, dvy2, dvz2;
  vector vjx2, vjy2, vjz2;
  vector dvdr2;
  vector curlvrx2, curlvry2, curlvrz2;

James Willis's avatar
James Willis committed
503
  /* Fill the vectors. */
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
  mj.v = vec_load(Mj);
  mj2.v = vec_load(&Mj[VEC_SIZE]);
  vjx.v = vec_load(Vjx);
  vjx2.v = vec_load(&Vjx[VEC_SIZE]);
  vjy.v = vec_load(Vjy);
  vjy2.v = vec_load(&Vjy[VEC_SIZE]);
  vjz.v = vec_load(Vjz);
  vjz2.v = vec_load(&Vjz[VEC_SIZE]);
  dx.v = vec_load(Dx);
  dx2.v = vec_load(&Dx[VEC_SIZE]);
  dy.v = vec_load(Dy);
  dy2.v = vec_load(&Dy[VEC_SIZE]);
  dz.v = vec_load(Dz);
  dz2.v = vec_load(&Dz[VEC_SIZE]);

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
  r2_2.v = vec_load(&R2[VEC_SIZE]);
522
523
  ri = vec_reciprocal_sqrt(r2);
  ri2 = vec_reciprocal_sqrt(r2_2);
524
525
526
527
528
529
  r.v = vec_mul(r2.v, ri.v);
  r_2.v = vec_mul(r2_2.v, ri2.v);

  xi.v = vec_mul(r.v, hi_inv.v);
  xi2.v = vec_mul(r_2.v, hi_inv.v);

James Willis's avatar
James Willis committed
530
  /* Calculate the kernel for two particles. */
James Willis's avatar
James Willis committed
531
  kernel_deval_2_vec(&xi, &wi, &wi_dx, &xi2, &wi2, &wi_dx2);
532
533
534
535
536
537
538
539
540
541
542

  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvx2.v = vec_sub(vix.v, vjx2.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvy2.v = vec_sub(viy.v, vjy2.v);
  dvz.v = vec_sub(viz.v, vjz.v);
  dvz2.v = vec_sub(viz.v, vjz2.v);

  /* Compute dv dot r */
  dvdr.v = vec_fma(dvx.v, dx.v, vec_fma(dvy.v, dy.v, vec_mul(dvz.v, dz.v)));
James Willis's avatar
James Willis committed
543
544
  dvdr2.v =
      vec_fma(dvx2.v, dx2.v, vec_fma(dvy2.v, dy2.v, vec_mul(dvz2.v, dz2.v)));
545
546
547
548
  dvdr.v = vec_mul(dvdr.v, ri.v);
  dvdr2.v = vec_mul(dvdr2.v, ri2.v);

  /* Compute dv cross r */
James Willis's avatar
James Willis committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
  curlvrx.v =
      vec_fma(dvy.v, dz.v, vec_mul(vec_set1(-1.0f), vec_mul(dvz.v, dy.v)));
  curlvrx2.v =
      vec_fma(dvy2.v, dz2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvz2.v, dy2.v)));
  curlvry.v =
      vec_fma(dvz.v, dx.v, vec_mul(vec_set1(-1.0f), vec_mul(dvx.v, dz.v)));
  curlvry2.v =
      vec_fma(dvz2.v, dx2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvx2.v, dz2.v)));
  curlvrz.v =
      vec_fma(dvx.v, dy.v, vec_mul(vec_set1(-1.0f), vec_mul(dvy.v, dx.v)));
  curlvrz2.v =
      vec_fma(dvx2.v, dy2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvy2.v, dx2.v)));
  curlvrx.v = vec_mul(curlvrx.v, ri.v);
  curlvrx2.v = vec_mul(curlvrx2.v, ri2.v);
  curlvry.v = vec_mul(curlvry.v, ri.v);
  curlvry2.v = vec_mul(curlvry2.v, ri2.v);
  curlvrz.v = vec_mul(curlvrz.v, ri.v);
  curlvrz2.v = vec_mul(curlvrz2.v, ri2.v);

/* Mask updates to intermediate vector sums for particle pi. */
569
#ifdef HAVE_AVX512_F
James Willis's avatar
James Willis committed
570
571
572
573
574
575
576
577
578
579
580
581
582
  rhoSum->v =
      _mm512_mask_add_ps(rhoSum->v, knlMask, vec_mul(mj.v, wi.v), rhoSum->v);
  rhoSum->v =
      _mm512_mask_add_ps(rhoSum->v, knlMask2, vec_mul(mj2.v, wi2.v), rhoSum->v);

  rho_dhSum->v =
      _mm512_mask_sub_ps(rho_dhSum->v, knlMask, rho_dhSum->v,
                         vec_mul(mj.v, vec_fma(vec_set1(hydro_dimension), wi.v,
                                               vec_mul(xi.v, wi_dx.v))));
  rho_dhSum->v = _mm512_mask_sub_ps(
      rho_dhSum->v, knlMask2, rho_dhSum->v,
      vec_mul(mj2.v, vec_fma(vec_set1(hydro_dimension), wi2.v,
                             vec_mul(xi2.v, wi_dx2.v))));
583
584

  wcountSum->v = _mm512_mask_add_ps(wcountSum->v, knlMask, wi.v, wcountSum->v);
James Willis's avatar
James Willis committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
  wcountSum->v =
      _mm512_mask_add_ps(wcountSum->v, knlMask2, wi2.v, wcountSum->v);

  wcount_dhSum->v = _mm512_mask_sub_ps(wcount_dhSum->v, knlMask,
                                       wcount_dhSum->v, vec_mul(xi.v, wi_dx.v));
  wcount_dhSum->v = _mm512_mask_sub_ps(
      wcount_dhSum->v, knlMask2, wcount_dhSum->v, vec_mul(xi2.v, wi_dx2.v));

  div_vSum->v = _mm512_mask_sub_ps(div_vSum->v, knlMask, div_vSum->v,
                                   vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)));
  div_vSum->v = _mm512_mask_sub_ps(div_vSum->v, knlMask2, div_vSum->v,
                                   vec_mul(mj2.v, vec_mul(dvdr2.v, wi_dx2.v)));

  curlvxSum->v = _mm512_mask_add_ps(curlvxSum->v, knlMask,
                                    vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)),
                                    curlvxSum->v);
  curlvxSum->v = _mm512_mask_add_ps(
      curlvxSum->v, knlMask2, vec_mul(mj2.v, vec_mul(curlvrx2.v, wi_dx2.v)),
      curlvxSum->v);

  curlvySum->v = _mm512_mask_add_ps(curlvySum->v, knlMask,
                                    vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)),
                                    curlvySum->v);
  curlvySum->v = _mm512_mask_add_ps(
      curlvySum->v, knlMask2, vec_mul(mj2.v, vec_mul(curlvry2.v, wi_dx2.v)),
      curlvySum->v);

  curlvzSum->v = _mm512_mask_add_ps(curlvzSum->v, knlMask,
                                    vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)),
                                    curlvzSum->v);
  curlvzSum->v = _mm512_mask_add_ps(
      curlvzSum->v, knlMask2, vec_mul(mj2.v, vec_mul(curlvrz2.v, wi_dx2.v)),
      curlvzSum->v);
618
#else
James Willis's avatar
James Willis committed
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
  rhoSum->v += vec_and(vec_mul(mj.v, wi.v), mask.v);
  rhoSum->v += vec_and(vec_mul(mj2.v, wi2.v), mask2.v);
  rho_dhSum->v -= vec_and(vec_mul(mj.v, vec_fma(vec_set1(hydro_dimension), wi.v,
                                                vec_mul(xi.v, wi_dx.v))),
                          mask.v);
  rho_dhSum->v -=
      vec_and(vec_mul(mj2.v, vec_fma(vec_set1(hydro_dimension), wi2.v,
                                     vec_mul(xi2.v, wi_dx2.v))),
              mask2.v);
  wcountSum->v += vec_and(wi.v, mask.v);
  wcountSum->v += vec_and(wi2.v, mask2.v);
  wcount_dhSum->v -= vec_and(vec_mul(xi.v, wi_dx.v), mask.v);
  wcount_dhSum->v -= vec_and(vec_mul(xi2.v, wi_dx2.v), mask2.v);
  div_vSum->v -= vec_and(vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)), mask.v);
  div_vSum->v -= vec_and(vec_mul(mj2.v, vec_mul(dvdr2.v, wi_dx2.v)), mask2.v);
  curlvxSum->v += vec_and(vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)), mask.v);
  curlvxSum->v +=
      vec_and(vec_mul(mj2.v, vec_mul(curlvrx2.v, wi_dx2.v)), mask2.v);
  curlvySum->v += vec_and(vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)), mask.v);
  curlvySum->v +=
      vec_and(vec_mul(mj2.v, vec_mul(curlvry2.v, wi_dx2.v)), mask2.v);
  curlvzSum->v += vec_and(vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)), mask.v);
  curlvzSum->v +=
      vec_and(vec_mul(mj2.v, vec_mul(curlvrz2.v, wi_dx2.v)), mask2.v);
643
644
#endif
}
James Willis's avatar
James Willis committed
645
#endif
646

647
648
649
/**
 * @brief Force loop
 */
650
651
652
__attribute__((always_inline)) INLINE static void runner_iact_force(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

653
654
655
  float wi, wj, wi_dx, wj_dx;

  const float fac_mu = 1.f; /* Will change with cosmological integration */
656

657
658
659
660
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Get some values in local variables. */
661
  const float mi = pi->mass;
662
663
664
665
666
667
  const float mj = pj->mass;
  const float rhoi = pi->rho;
  const float rhoj = pj->rho;

  /* Get the kernel for hi. */
  const float hi_inv = 1.0f / hi;
668
  const float hid_inv = pow_dimension_plus_one(hi_inv); /* 1/h^(d+1) */
669
670
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
671
  const float wi_dr = hid_inv * wi_dx;
672
673
674

  /* Get the kernel for hj. */
  const float hj_inv = 1.0f / hj;
675
  const float hjd_inv = pow_dimension_plus_one(hj_inv); /* 1/h^(d+1) */
676
677
  const float xj = r * hj_inv;
  kernel_deval(xj, &wj, &wj_dx);
678
  const float wj_dr = hjd_inv * wj_dx;
679

680
681
682
683
684
  /* Compute h-gradient terms */
  const float f_i = pi->force.f;
  const float f_j = pj->force.f;

  /* Compute pressure terms */
685
686
  const float P_over_rho2_i = pi->force.P_over_rho2;
  const float P_over_rho2_j = pj->force.P_over_rho2;
687
688

  /* Compute sound speeds */
689
690
  const float ci = pi->force.soundspeed;
  const float cj = pj->force.soundspeed;
691

692
  /* Compute dv dot r. */
693
694
695
  const float dvdr = (pi->v[0] - pj->v[0]) * dx[0] +
                     (pi->v[1] - pj->v[1]) * dx[1] +
                     (pi->v[2] - pj->v[2]) * dx[2];
696

697
  /* Balsara term */
698
699
  const float balsara_i = pi->force.balsara;
  const float balsara_j = pj->force.balsara;
Matthieu Schaller's avatar
Matthieu Schaller committed
700

701
  /* Are the particles moving towards each others ? */
702
  const float omega_ij = (dvdr < 0.f) ? dvdr : 0.f;
703
704
705
706
707
708
709
710
711
  const float mu_ij = fac_mu * r_inv * omega_ij; /* This is 0 or negative */

  /* Signal velocity */
  const float v_sig = ci + cj - 3.f * mu_ij;

  /* Now construct the full viscosity term */
  const float rho_ij = 0.5f * (rhoi + rhoj);
  const float visc = -0.25f * const_viscosity_alpha * v_sig * mu_ij *
                     (balsara_i + balsara_j) / rho_ij;
712
713

  /* Now, convolve with the kernel */
714
  const float visc_term = 0.5f * visc * (wi_dr + wj_dr) * r_inv;
715
  const float sph_term =
716
      (f_i * P_over_rho2_i * wi_dr + f_j * P_over_rho2_j * wj_dr) * r_inv;
717
718
719
720
721

  /* Eventually got the acceleration */
  const float acc = visc_term + sph_term;

  /* Use the force Luke ! */
722
723
724
  pi->a_hydro[0] -= mj * acc * dx[0];
  pi->a_hydro[1] -= mj * acc * dx[1];
  pi->a_hydro[2] -= mj * acc * dx[2];
725

726
727
728
  pj->a_hydro[0] += mi * acc * dx[0];
  pj->a_hydro[1] += mi * acc * dx[1];
  pj->a_hydro[2] += mi * acc * dx[2];
729

730
  /* Get the time derivative for h. */
731
732
  pi->force.h_dt -= mj * dvdr * r_inv / rhoj * wi_dr;
  pj->force.h_dt -= mi * dvdr * r_inv / rhoi * wj_dr;
733

734
  /* Update the signal velocity. */
735
736
  pi->force.v_sig = (pi->force.v_sig > v_sig) ? pi->force.v_sig : v_sig;
  pj->force.v_sig = (pj->force.v_sig > v_sig) ? pj->force.v_sig : v_sig;
737

738
  /* Change in entropy */
739
740
  pi->entropy_dt += mj * visc_term * dvdr;
  pj->entropy_dt += mi * visc_term * dvdr;
741
}
742

743
744
745
746
747
748
/**
 * @brief Force loop (Vectorized version)
 */
__attribute__((always_inline)) INLINE static void runner_iact_vec_force(
    float *R2, float *Dx, float *Hi, float *Hj, struct part **pi,
    struct part **pj) {
749
750
751
752
753
754

#ifdef WITH_VECTORIZATION

  vector r, r2, ri;
  vector xi, xj;
  vector hi, hj, hi_inv, hj_inv;
755
  vector hid_inv, hjd_inv;
756
  vector wi, wj, wi_dx, wj_dx, wi_dr, wj_dr, dvdr;
757
  vector piPOrho2, pjPOrho2, pirho, pjrho;
758
759
  vector mi, mj;
  vector f;
760
  vector grad_hi, grad_hj;
761
762
763
764
765
766
767
768
769
770
771
  vector dx[3];
  vector vi[3], vj[3];
  vector pia[3], pja[3];
  vector pih_dt, pjh_dt;
  vector ci, cj, v_sig;
  vector omega_ij, mu_ij, fac_mu, balsara;
  vector rho_ij, visc, visc_term, sph_term, acc, entropy_dt;
  int j, k;

  fac_mu.v = vec_set1(1.f); /* Will change with cosmological integration */

Matthieu Schaller's avatar
Matthieu Schaller committed
772
/* Load stuff. */
773
774
775
776
777
#if VEC_SIZE == 8
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass,
                 pi[4]->mass, pi[5]->mass, pi[6]->mass, pi[7]->mass);
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass,
                 pj[4]->mass, pj[5]->mass, pj[6]->mass, pj[7]->mass);
778
  piPOrho2.v = vec_set(pi[0]->force.P_over_rho2, pi[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
779
780
781
                       pi[2]->force.P_over_rho2, pi[3]->force.P_over_rho2,
                       pi[4]->force.P_over_rho2, pi[5]->force.P_over_rho2,
                       pi[6]->force.P_over_rho2, pi[7]->force.P_over_rho2);
782
  pjPOrho2.v = vec_set(pj[0]->force.P_over_rho2, pj[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
783
784
785
786
787
788
789
790
791
                       pj[2]->force.P_over_rho2, pj[3]->force.P_over_rho2,
                       pj[4]->force.P_over_rho2, pj[5]->force.P_over_rho2,
                       pj[6]->force.P_over_rho2, pj[7]->force.P_over_rho2);
  grad_hi.v =
      vec_set(pi[0]->force.f, pi[1]->force.f, pi[2]->force.f, pi[3]->force.f,
              pi[4]->force.f, pi[5]->force.f, pi[6]->force.f, pi[7]->force.f);
  grad_hj.v =
      vec_set(pj[0]->force.f, pj[1]->force.f, pj[2]->force.f, pj[3]->force.f,
              pj[4]->force.f, pj[5]->force.f, pj[6]->force.f, pj[7]->force.f);
792
793
794
795
  pirho.v = vec_set(pi[0]->rho, pi[1]->rho, pi[2]->rho, pi[3]->rho, pi[4]->rho,
                    pi[5]->rho, pi[6]->rho, pi[7]->rho);
  pjrho.v = vec_set(pj[0]->rho, pj[1]->rho, pj[2]->rho, pj[3]->rho, pj[4]->rho,
                    pj[5]->rho, pj[6]->rho, pj[7]->rho);
Matthieu Schaller's avatar
Matthieu Schaller committed
796
797
798
799
800
801
802
803
  ci.v = vec_set(pi[0]->force.soundspeed, pi[1]->force.soundspeed,
                 pi[2]->force.soundspeed, pi[3]->force.soundspeed,
                 pi[4]->force.soundspeed, pi[5]->force.soundspeed,
                 pi[6]->force.soundspeed, pi[7]->force.soundspeed);
  cj.v = vec_set(pj[0]->force.soundspeed, pj[1]->force.soundspeed,
                 pj[2]->force.soundspeed, pj[3]->force.soundspeed,
                 pj[4]->force.soundspeed, pj[5]->force.soundspeed,
                 pj[6]->force.soundspeed, pj[7]->force.soundspeed);
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k],
                      pi[4]->v[k], pi[5]->v[k], pi[6]->v[k], pi[7]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k],
                      pj[4]->v[k], pj[5]->v[k], pj[6]->v[k], pj[7]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k], Dx[12 + k],
                      Dx[15 + k], Dx[18 + k], Dx[21 + k]);
  balsara.v =
      vec_set(pi[0]->force.balsara, pi[1]->force.balsara, pi[2]->force.balsara,
              pi[3]->force.balsara, pi[4]->force.balsara, pi[5]->force.balsara,
              pi[6]->force.balsara, pi[7]->force.balsara) +
      vec_set(pj[0]->force.balsara, pj[1]->force.balsara, pj[2]->force.balsara,
              pj[3]->force.balsara, pj[4]->force.balsara, pj[5]->force.balsara,
              pj[6]->force.balsara, pj[7]->force.balsara);
#elif VEC_SIZE == 4
821
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass);
822
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass);
823
  piPOrho2.v = vec_set(pi[0]->force.P_over_rho2, pi[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
824
                       pi[2]->force.P_over_rho2, pi[3]->force.P_over_rho2);
825
  pjPOrho2.v = vec_set(pj[0]->force.P_over_rho2, pj[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
826
827
828
829
830
                       pj[2]->force.P_over_rho2, pj[3]->force.P_over_rho2);
  grad_hi.v =
      vec_set(pi[0]->force.f, pi[1]->force.f, pi[2]->force.f, pi[3]->force.f);
  grad_hj.v =
      vec_set(pj[0]->force.f, pj[1]->force.f, pj[2]->force.f, pj[3]->force.f);
831
832
  pirho.v = vec_set(pi[0]->rho, pi[1]->rho, pi[2]->rho, pi[3]->rho);
  pjrho.v = vec_set(pj[0]->rho, pj[1]->rho, pj[2]->rho, pj[3]->rho);
Matthieu Schaller's avatar
Matthieu Schaller committed
833
834
835
836
  ci.v = vec_set(pi[0]->force.soundspeed, pi[1]->force.soundspeed,
                 pi[2]->force.soundspeed, pi[3]->force.soundspeed);
  cj.v = vec_set(pj[0]->force.soundspeed, pj[1]->force.soundspeed,
                 pj[2]->force.soundspeed, pj[3]->force.soundspeed);
837
838
839
840
841
842
843
844
845
846
847
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k]);
  balsara.v = vec_set(pi[0]->force.balsara, pi[1]->force.balsara,
                      pi[2]->force.balsara, pi[3]->force.balsara) +
              vec_set(pj[0]->force.balsara, pj[1]->force.balsara,
                      pj[2]->force.balsara, pj[3]->force.balsara);
#else
848
  error("Unknown vector size.");
849
850
851
852
#endif

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
853
  ri = vec_reciprocal_sqrt(r2);
854
855
856
857
  r.v = r2.v * ri.v;

  /* Get the kernel for hi. */
  hi.v = vec_load(Hi);
858
  hi_inv = vec_reciprocal(hi);
859
  hid_inv = pow_dimension_plus_one_vec(hi_inv); /* 1/h^(d+1) */
860
861
  xi.v = r.v * hi_inv.v;
  kernel_deval_vec(&xi, &wi, &wi_dx);
862
  wi_dr.v = hid_inv.v * wi_dx.v;
863
864
865

  /* Get the kernel for hj. */
  hj.v = vec_load(Hj);
866
  hj_inv = vec_reciprocal(hj);
867
  hjd_inv = pow_dimension_plus_one_vec(hj_inv); /* 1/h^(d+1) */
868
869
  xj.v = r.v * hj_inv.v;
  kernel_deval_vec(&xj, &wj, &wj_dx);
870
  wj_dr.v = hjd_inv.v * wj_dx.v;
871
872
873
874

  /* Compute dv dot r. */
  dvdr.v = ((vi[0].v - vj[0].v) * dx[0].v) + ((vi[1].v - vj[1].v) * dx[1].v) +
           ((vi[2].v - vj[2].v) * dx[2].v);
Matthieu Schaller's avatar
Matthieu Schaller committed
875
  // dvdr.v = dvdr.v * ri.v;
876
877
878
879
880

  /* Compute the relative velocity. (This is 0 if the particles move away from
   * each other and negative otherwise) */
  omega_ij.v = vec_fmin(dvdr.v, vec_set1(0.0f));
  mu_ij.v = fac_mu.v * ri.v * omega_ij.v; /* This is 0 or negative */
Matthieu Schaller's avatar
Matthieu Schaller committed
881

882
883
  /* Compute signal velocity */
  v_sig.v = ci.v + cj.v - vec_set1(3.0f) * mu_ij.v;
Matthieu Schaller's avatar
Matthieu Schaller committed
884

885
886
  /* Now construct the full viscosity term */
  rho_ij.v = vec_set1(0.5f) * (pirho.v + pjrho.v);
Matthieu Schaller's avatar
Matthieu Schaller committed
887
888
  visc.v = vec_set1(-0.25f) * vec_set1(const_viscosity_alpha) * v_sig.v *
           mu_ij.v * balsara.v / rho_ij.v;
889
890
891

  /* Now, convolve with the kernel */
  visc_term.v = vec_set1(0.5f) * visc.v * (wi_dr.v + wj_dr.v) * ri.v;
James Willis's avatar
James Willis committed
892
893
894
  sph_term.v =
      (grad_hi.v * piPOrho2.v * wi_dr.v + grad_hj.v * pjPOrho2.v * wj_dr.v) *
      ri.v;
895
896
897

  /* Eventually get the acceleration */
  acc.v = visc_term.v + sph_term.v;
Matthieu Schaller's avatar
Matthieu Schaller committed
898

899
900
901
902
903
904
905
906
907
908
909
910
  /* Use the force, Luke! */
  for (k = 0; k < 3; k++) {
    f.v = dx[k].v * acc.v;
    pia[k].v = mj.v * f.v;
    pja[k].v = mi.v * f.v;
  }

  /* Get the time derivative for h. */
  pih_dt.v = mj.v * dvdr.v * ri.v / pjrho.v * wi_dr.v;
  pjh_dt.v = mi.v * dvdr.v * ri.v / pirho.v * wj_dr.v;

  /* Change in entropy */
911
  entropy_dt.v = visc_term.v * dvdr.v;
Matthieu Schaller's avatar
Matthieu Schaller committed
912

913
914
915
916
917
918
  /* Store the forces back on the particles. */
  for (k = 0; k < VEC_SIZE; k++) {
    for (j = 0; j < 3; j++) {
      pi[k]->a_hydro[j] -= pia[j].f[k];
      pj[k]->a_hydro[j] += pja[j].f[k];
    }
919
920
    pi[k]->force.h_dt -= pih_dt.f[k];
    pj[k]->force.h_dt -= pjh_dt.f[k];
921
922
    pi[k]->force.v_sig = max(pi[k]->force.v_sig, v_sig.f[k]);
    pj[k]->force.v_sig = max(pj[k]->force.v_sig, v_sig.f[k]);
923
    pi[k]->entropy_dt += entropy_dt.f[k] * mj.f[k];
924
    pj[k]->entropy_dt += entropy_dt.f[k] * mi.f[k];
925
926
  }

Matthieu Schaller's avatar
Matthieu Schaller committed
927
#else
928

Matthieu Schaller's avatar
Matthieu Schaller committed
929
930
  error(
      "The Gadget2 serial version of runner_iact_nonsym_force was called when "
931
      "the vectorised version should have been used.");
932
933

#endif
934
935
}

936
937
938
/**
 * @brief Force loop (non-symmetric version)
 */
939
940
941
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_force(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

942
943
944
  float wi, wj, wi_dx, wj_dx;

  const float fac_mu = 1.f; /* Will change with cosmological integration */
945

946
947
948
949
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Get some values in local variables. */
950
  // const float mi = pi->mass;
951
952
953
954
955
956
  const float mj = pj->mass;
  const float rhoi = pi->rho;
  const float rhoj = pj->rho;

  /* Get the kernel for hi. */
  const float hi_inv = 1.0f / hi;
957
  const float hid_inv = pow_dimension_plus_one(hi_inv); /* 1/h^(d+1) */
958
959
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
960
  const float wi_dr = hid_inv * wi_dx;
961
962
963

  /* Get the kernel for hj. */
  const float hj_inv = 1.0f / hj;
964
  const float hjd_inv = pow_dimension_plus_one(hj_inv); /* 1/h^(d+1) */
965
966
  const float xj = r * hj_inv;
  kernel_deval(xj, &wj, &wj_dx);
967
  const float wj_dr = hjd_inv * wj_dx;
968

969
970
971
972
973
  /* Compute h-gradient terms */
  const float f_i = pi->force.f;
  const float f_j = pj->force.f;

  /* Compute pressure terms */
974
975
  const float P_over_rho2_i = pi->force.P_over_rho2;
  const float P_over_rho2_j = pj->force.P_over_rho2;
976
977

  /* Compute sound speeds */
978
979
  const float ci = pi->force.soundspeed;
  const float cj = pj->force.soundspeed;
980

981
  /* Compute dv dot r. */
982
983
984
  const float dvdr = (pi->v[0] - pj->v[0]) * dx[0] +
                     (pi->v[1] - pj->v[1]) * dx[1] +
                     (pi->v[2] - pj->v[2]) * dx[2];
985

986
  /* Balsara term */
987
988
  const float balsara_i = pi->force.balsara;
  const float balsara_j = pj->force.balsara;
989
990

  /* Are the particles moving towards each others ? */
991
  const float omega_ij = (dvdr < 0.f) ? dvdr : 0.f;
992
993
994
995
996
997
998
999
1000
  const float mu_ij = fac_mu * r_inv * omega_ij; /* This is 0 or negative */

  /* Signal velocity */
  const float v_sig = ci + cj - 3.f * mu_ij;

  /* Now construct the full viscosity term */
  const float rho_ij = 0.5f * (rhoi + rhoj);
  const float visc = -0.25f * const_viscosity_alpha * v_sig * mu_ij *
                     (balsara_i + balsara_j) / rho_ij;
1001
1002

  /* Now, convolve with the kernel */
1003
  const float visc_term = 0.5f * visc * (wi_dr + wj_dr) * r_inv;
1004
  const float sph_term =
1005
      (f_i * P_over_rho2_i * wi_dr + f_j * P_over_rho2_j * wj_dr) * r_inv;
1006
1007
1008

  /* Eventually got the acceleration */
  const float acc = visc_term + sph_term;
1009

1010
  /* Use the force Luke ! */
1011
1012
1013
  pi->a_hydro[0] -= mj * acc * dx[0];
  pi->a_hydro[1] -= mj * acc * dx[1];
  pi->a_hydro[2] -= mj * acc * dx[2];
1014

1015
  /* Get the time derivative for h. */
1016
  pi->force.h_dt -= mj * dvdr * r_inv / rhoj * wi_dr;
1017

1018
  /* Update the signal velocity. */
1019
  pi->force.v_sig = (pi->force.v_sig > v_sig) ? pi->force.v_sig : v_sig;
1020

1021
  /* Change in entropy */
1022
  pi->entropy_dt += mj * visc_term * dvdr;
1023
}
1024

1025
1026
1027
1028
1029
1030
/**
 * @brief Force loop (Vectorized non-symmetric version)
 */
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_vec_force(
    float *R2, float *Dx, float *Hi, float *Hj, struct part **pi,
    struct part **pj) {
</