runner.c 134 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
 ******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
23

Pedro Gonnet's avatar
Pedro Gonnet committed
24
25
/* Config parameters. */
#include "../config.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
26
27
28
29

/* Some standard headers. */
#include <float.h>
#include <limits.h>
30
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
31

32
33
/* MPI headers. */
#ifdef WITH_MPI
34
#include <mpi.h>
35
36
#endif

37
38
39
/* This object's header. */
#include "runner.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
40
/* Local headers. */
41
#include "active.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
42
#include "approx_math.h"
43
#include "atomic.h"
44
#include "black_holes.h"
45
#include "cell.h"
46
#include "chemistry.h"
47
#include "const.h"
Stefan Arridge's avatar
Stefan Arridge committed
48
#include "cooling.h"
49
#include "debug.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
50
#include "drift.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
51
#include "engine.h"
52
#include "entropy_floor.h"
53
#include "error.h"
54
#include "feedback.h"
55
56
#include "gravity.h"
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
57
#include "hydro_properties.h"
58
#include "kick.h"
Loikki's avatar
Loikki committed
59
#include "logger.h"
60
#include "memuse.h"
61
#include "minmax.h"
James Willis's avatar
James Willis committed
62
#include "runner_doiact_vec.h"
63
#include "scheduler.h"
64
#include "sort_part.h"
65
#include "space.h"
66
#include "space_getsid.h"
67
#include "star_formation.h"
68
#include "star_formation_iact.h"
69
#include "star_formation_logger.h"
70
#include "stars.h"
71
72
#include "task.h"
#include "timers.h"
73
#include "timestep.h"
74
#include "timestep_limiter.h"
Folkert Nobels's avatar
Folkert Nobels committed
75
#include "tracers.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
76

77
78
79
80
#define TASK_LOOP_DENSITY 0
#define TASK_LOOP_GRADIENT 1
#define TASK_LOOP_FORCE 2
#define TASK_LOOP_LIMITER 3
Loic Hausammann's avatar
Loic Hausammann committed
81
#define TASK_LOOP_FEEDBACK 4
82

83
/* Import the density loop functions. */
84
#define FUNCTION density
85
#define FUNCTION_TASK_LOOP TASK_LOOP_DENSITY
86
#include "runner_doiact.h"
87
88
#undef FUNCTION
#undef FUNCTION_TASK_LOOP
89

90
/* Import the gradient loop functions (if required). */
91
92
#ifdef EXTRA_HYDRO_LOOP
#define FUNCTION gradient
93
#define FUNCTION_TASK_LOOP TASK_LOOP_GRADIENT
94
#include "runner_doiact.h"
95
96
#undef FUNCTION
#undef FUNCTION_TASK_LOOP
97
98
#endif

99
/* Import the force loop functions. */
100
#define FUNCTION force
101
#define FUNCTION_TASK_LOOP TASK_LOOP_FORCE
102
#include "runner_doiact.h"
103
104
#undef FUNCTION
#undef FUNCTION_TASK_LOOP
105

106
107
108
109
110
111
112
/* Import the limiter loop functions. */
#define FUNCTION limiter
#define FUNCTION_TASK_LOOP TASK_LOOP_LIMITER
#include "runner_doiact.h"
#undef FUNCTION
#undef FUNCTION_TASK_LOOP

113
/* Import the gravity loop functions. */
114
#include "runner_doiact_grav.h"
115

116
117
/* Import the stars density loop functions. */
#define FUNCTION density
Loic Hausammann's avatar
Loic Hausammann committed
118
#define FUNCTION_TASK_LOOP TASK_LOOP_DENSITY
Loic Hausammann's avatar
Loic Hausammann committed
119
#include "runner_doiact_stars.h"
Loic Hausammann's avatar
Loic Hausammann committed
120
#undef FUNCTION_TASK_LOOP
121
122
123
124
#undef FUNCTION

/* Import the stars feedback loop functions. */
#define FUNCTION feedback
Loic Hausammann's avatar
Loic Hausammann committed
125
#define FUNCTION_TASK_LOOP TASK_LOOP_FEEDBACK
Loic Hausammann's avatar
Loic Hausammann committed
126
#include "runner_doiact_stars.h"
Loic Hausammann's avatar
Loic Hausammann committed
127
#undef FUNCTION_TASK_LOOP
128
#undef FUNCTION
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
/* Import the black hole density loop functions. */
#define FUNCTION density
#define FUNCTION_TASK_LOOP TASK_LOOP_DENSITY
#include "runner_doiact_black_holes.h"
#undef FUNCTION_TASK_LOOP
#undef FUNCTION

/* Import the black hole feedback loop functions. */
#define FUNCTION feedback
#define FUNCTION_TASK_LOOP TASK_LOOP_FEEDBACK
#include "runner_doiact_black_holes.h"
#undef FUNCTION_TASK_LOOP
#undef FUNCTION

144
145
146
147
148
149
150
151
/**
 * @brief Intermediate task after the density to check that the smoothing
 * lengths are correct.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
Loic Hausammann's avatar
Loic Hausammann committed
152
void runner_do_stars_ghost(struct runner *r, struct cell *c, int timer) {
153

154
  struct spart *restrict sparts = c->stars.parts;
155
  const struct engine *e = r->e;
156
157
  const struct unit_system *us = e->internal_units;
  const int with_cosmology = (e->policy & engine_policy_cosmology);
158
  const struct cosmology *cosmo = e->cosmology;
159
  const struct feedback_props *feedback_props = e->feedback_props;
160
161
162
163
164
165
  const float stars_h_max = e->hydro_properties->h_max;
  const float stars_h_min = e->hydro_properties->h_min;
  const float eps = e->stars_properties->h_tolerance;
  const float stars_eta_dim =
      pow_dimension(e->stars_properties->eta_neighbours);
  const int max_smoothing_iter = e->stars_properties->max_smoothing_iterations;
166
  int redo = 0, scount = 0;
167

Matthieu Schaller's avatar
Matthieu Schaller committed
168
  /* Running value of the maximal smoothing length */
Loic Hausammann's avatar
Loic Hausammann committed
169
170
  double h_max = c->stars.h_max;

171
172
173
  TIMER_TIC;

  /* Anything to do here? */
174
  if (c->stars.count == 0) return;
Loic Hausammann's avatar
Loic Hausammann committed
175
  if (!cell_is_active_stars(c, e)) return;
176
177
178

  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
179
    for (int k = 0; k < 8; k++) {
180
      if (c->progeny[k] != NULL) {
181
        runner_do_stars_ghost(r, c->progeny[k], 0);
182

Matthieu Schaller's avatar
Matthieu Schaller committed
183
184
        /* Update h_max */
        h_max = max(h_max, c->progeny[k]->stars.h_max);
185
      }
Matthieu Schaller's avatar
Matthieu Schaller committed
186
    }
187
188
189
190
  } else {

    /* Init the list of active particles that have to be updated. */
    int *sid = NULL;
191
192
193
    float *h_0 = NULL;
    float *left = NULL;
    float *right = NULL;
194
    if ((sid = (int *)malloc(sizeof(int) * c->stars.count)) == NULL)
Loic Hausammann's avatar
Loic Hausammann committed
195
      error("Can't allocate memory for sid.");
196
    if ((h_0 = (float *)malloc(sizeof(float) * c->stars.count)) == NULL)
197
      error("Can't allocate memory for h_0.");
198
    if ((left = (float *)malloc(sizeof(float) * c->stars.count)) == NULL)
199
      error("Can't allocate memory for left.");
200
    if ((right = (float *)malloc(sizeof(float) * c->stars.count)) == NULL)
201
      error("Can't allocate memory for right.");
202
    for (int k = 0; k < c->stars.count; k++)
203
204
      if (spart_is_active(&sparts[k], e) &&
          feedback_is_active(&sparts[k], e->time, cosmo, with_cosmology)) {
205
        sid[scount] = k;
206
207
208
        h_0[scount] = sparts[k].h;
        left[scount] = 0.f;
        right[scount] = stars_h_max;
209
        ++scount;
210
211
212
      }

    /* While there are particles that need to be updated... */
213
    for (int num_reruns = 0; scount > 0 && num_reruns < max_smoothing_iter;
214
215
216
217
218
219
         num_reruns++) {

      /* Reset the redo-count. */
      redo = 0;

      /* Loop over the remaining active parts in this cell. */
220
      for (int i = 0; i < scount; i++) {
221
222
223
224
225
226

        /* Get a direct pointer on the part. */
        struct spart *sp = &sparts[sid[i]];

#ifdef SWIFT_DEBUG_CHECKS
        /* Is this part within the timestep? */
227
228
        if (!spart_is_active(sp, e))
          error("Ghost applied to inactive particle");
229
230
231
#endif

        /* Get some useful values */
232
        const float h_init = h_0[i];
233
234
235
        const float h_old = sp->h;
        const float h_old_dim = pow_dimension(h_old);
        const float h_old_dim_minus_one = pow_dimension_minus_one(h_old);
236

237
238
239
        float h_new;
        int has_no_neighbours = 0;

240
        if (sp->density.wcount == 0.f) { /* No neighbours case */
241
242
243
244
245
246

          /* Flag that there were no neighbours */
          has_no_neighbours = 1;

          /* Double h and try again */
          h_new = 2.f * h_old;
247

248
249
250
        } else {

          /* Finish the density calculation */
Loic Hausammann's avatar
Loic Hausammann committed
251
          stars_end_density(sp, cosmo);
252
253

          /* Compute one step of the Newton-Raphson scheme */
254
          const float n_sum = sp->density.wcount * h_old_dim;
Loic Hausammann's avatar
Loic Hausammann committed
255
          const float n_target = stars_eta_dim;
256
257
          const float f = n_sum - n_target;
          const float f_prime =
258
259
              sp->density.wcount_dh * h_old_dim +
              hydro_dimension * sp->density.wcount * h_old_dim_minus_one;
260

261
          /* Improve the bisection bounds */
262
263
264
265
          if (n_sum < n_target)
            left[i] = max(left[i], h_old);
          else if (n_sum > n_target)
            right[i] = min(right[i], h_old);
266
267
268
269
270
271
272

#ifdef SWIFT_DEBUG_CHECKS
          /* Check the validity of the left and right bounds */
          if (left[i] > right[i])
            error("Invalid left (%e) and right (%e)", left[i], right[i]);
#endif

273
          /* Skip if h is already h_max and we don't have enough neighbours */
274
275
276
          /* Same if we are below h_min */
          if (((sp->h >= stars_h_max) && (f < 0.f)) ||
              ((sp->h <= stars_h_min) && (f > 0.f))) {
277

278
            stars_reset_feedback(sp);
279
            feedback_reset_feedback(sp, feedback_props);
280

281
282
283
284
285
            /* Ok, we are done with this particle */
            continue;
          }

          /* Normal case: Use Newton-Raphson to get a better value of h */
286

287
288
          /* Avoid floating point exception from f_prime = 0 */
          h_new = h_old - f / (f_prime + FLT_MIN);
289
290
291
292
293
294
295
296
297
298
299
300

          /* Be verbose about the particles that struggle to converge */
          if (num_reruns > max_smoothing_iter - 10) {

            message(
                "Smoothing length convergence problem: iter=%d p->id=%lld "
                "h_init=%12.8e h_old=%12.8e h_new=%12.8e f=%f f_prime=%f "
                "n_sum=%12.8e n_target=%12.8e left=%12.8e right=%12.8e",
                num_reruns, sp->id, h_init, h_old, h_new, f, f_prime, n_sum,
                n_target, left[i], right[i]);
          }

301
302
303
          /* Safety check: truncate to the range [ h_old/2 , 2h_old ]. */
          h_new = min(h_new, 2.f * h_old);
          h_new = max(h_new, 0.5f * h_old);
304
305
306
307

          /* Verify that we are actually progrssing towards the answer */
          h_new = max(h_new, left[i]);
          h_new = min(h_new, right[i]);
308
309
310
311
312
313
        }

        /* Check whether the particle has an inappropriate smoothing length */
        if (fabsf(h_new - h_old) > eps * h_old) {

          /* Ok, correct then */
314
315
316
317
318
319
320
321
322
323
324
325
326
327

          /* Case where we have been oscillating around the solution */
          if ((h_new == left[i] && h_old == right[i]) ||
              (h_old == left[i] && h_new == right[i])) {

            /* Bissect the remaining interval */
            sp->h = pow_inv_dimension(
                0.5f * (pow_dimension(left[i]) + pow_dimension(right[i])));

          } else {

            /* Normal case */
            sp->h = h_new;
          }
328
329

          /* If below the absolute maximum, try again */
330
          if (sp->h < stars_h_max && sp->h > stars_h_min) {
331
332
333

            /* Flag for another round of fun */
            sid[redo] = sid[i];
334
335
336
            h_0[redo] = h_0[i];
            left[redo] = left[i];
            right[redo] = right[i];
337
338
339
            redo += 1;

            /* Re-initialise everything */
Loic Hausammann's avatar
Loic Hausammann committed
340
            stars_init_spart(sp);
341
            feedback_init_spart(sp);
342
343
344
345

            /* Off we go ! */
            continue;

346
347
348
349
350
351
          } else if (sp->h <= stars_h_min) {

            /* Ok, this particle is a lost cause... */
            sp->h = stars_h_min;

          } else if (sp->h >= stars_h_max) {
352
353

            /* Ok, this particle is a lost cause... */
Loic Hausammann's avatar
Loic Hausammann committed
354
            sp->h = stars_h_max;
355
356
357

            /* Do some damage control if no neighbours at all were found */
            if (has_no_neighbours) {
Loic Hausammann's avatar
Loic Hausammann committed
358
              stars_spart_has_no_neighbours(sp, cosmo);
359
            }
360
361
362
363
364

          } else {
            error(
                "Fundamental problem with the smoothing length iteration "
                "logic.");
365
366
367
          }
        }

368
        /* We now have a particle whose smoothing length has converged */
Loic Hausammann's avatar
Loic Hausammann committed
369

Matthieu Schaller's avatar
Matthieu Schaller committed
370
371
        /* Check if h_max has increased */
        h_max = max(h_max, sp->h);
Loic Hausammann's avatar
Loic Hausammann committed
372

373
        stars_reset_feedback(sp);
374

375
        /* Only do feedback if stars have a reasonable birth time */
376
        if (feedback_do_feedback(sp)) {
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
          const integertime_t ti_step = get_integer_timestep(sp->time_bin);
          const integertime_t ti_begin =
              get_integer_time_begin(e->ti_current - 1, sp->time_bin);

          /* Get particle time-step */
          double dt;
          if (with_cosmology) {
            dt = cosmology_get_delta_time(e->cosmology, ti_begin,
                                          ti_begin + ti_step);
          } else {
            dt = get_timestep(sp->time_bin, e->time_base);
          }

          /* Calculate age of the star at current time */
          double star_age_end_of_step;
393
          if (with_cosmology) {
394
            star_age_end_of_step = cosmology_get_delta_time_from_scale_factors(
395
396
                cosmo, sp->birth_scale_factor, (float)cosmo->a);
          } else {
397
            star_age_end_of_step = (float)e->time - sp->birth_time;
398
399
          }

400
401
402
403
404
405
406
407
408
409
          /* Has this star been around for a while ? */
          if (star_age_end_of_step > 0.) {

            /* Age of the star at the start of the step */
            const double star_age_beg_of_step =
                max(star_age_end_of_step - dt, 0.);

            /* Compute the stellar evolution  */
            feedback_evolve_spart(sp, feedback_props, cosmo, us,
                                  star_age_beg_of_step, dt);
410
411
412
413
          } else {

            /* Reset the feedback fields of the star particle */
            feedback_reset_feedback(sp, feedback_props);
414
          }
415
416
417
418
        } else {

          /* Reset the feedback fields of the star particle */
          feedback_reset_feedback(sp, feedback_props);
419
        }
420
421
422
423
424
425
      }

      /* We now need to treat the particles whose smoothing length had not
       * converged again */

      /* Re-set the counter for the next loop (potentially). */
426
427
      scount = redo;
      if (scount > 0) {
428
429
430
431
432

        /* Climb up the cell hierarchy. */
        for (struct cell *finger = c; finger != NULL; finger = finger->parent) {

          /* Run through this cell's density interactions. */
Loic Hausammann's avatar
Loic Hausammann committed
433
          for (struct link *l = finger->stars.density; l != NULL; l = l->next) {
434
435
436
437
438
439
440
441

#ifdef SWIFT_DEBUG_CHECKS
            if (l->t->ti_run < r->e->ti_current)
              error("Density task should have been run.");
#endif

            /* Self-interaction? */
            if (l->t->type == task_type_self)
442
443
              runner_doself_subset_branch_stars_density(r, finger, sparts, sid,
                                                        scount);
444
445
446
447
448
449

            /* Otherwise, pair interaction? */
            else if (l->t->type == task_type_pair) {

              /* Left or right? */
              if (l->t->ci == finger)
450
451
                runner_dopair_subset_branch_stars_density(
                    r, finger, sparts, sid, scount, l->t->cj);
452
              else
453
454
                runner_dopair_subset_branch_stars_density(
                    r, finger, sparts, sid, scount, l->t->ci);
455
456
457
458
            }

            /* Otherwise, sub-self interaction? */
            else if (l->t->type == task_type_sub_self)
459
              runner_dosub_subset_stars_density(r, finger, sparts, sid, scount,
460
                                                NULL, 1);
461
462
463
464
465
466

            /* Otherwise, sub-pair interaction? */
            else if (l->t->type == task_type_sub_pair) {

              /* Left or right? */
              if (l->t->ci == finger)
467
                runner_dosub_subset_stars_density(r, finger, sparts, sid,
468
                                                  scount, l->t->cj, 1);
469
              else
470
                runner_dosub_subset_stars_density(r, finger, sparts, sid,
471
                                                  scount, l->t->ci, 1);
472
473
474
475
476
477
            }
          }
        }
      }
    }

478
479
    if (scount) {
      error("Smoothing length failed to converge on %i particles.", scount);
480
481
482
    }

    /* Be clean */
483
484
    free(left);
    free(right);
485
    free(sid);
486
    free(h_0);
487
488
  }

Matthieu Schaller's avatar
Matthieu Schaller committed
489
490
  /* Update h_max */
  c->stars.h_max = h_max;
Loic Hausammann's avatar
Loic Hausammann committed
491

492
  /* The ghost may not always be at the top level.
493
   * Therefore we need to update h_max between the super- and top-levels */
494
  if (c->stars.ghost) {
495
    for (struct cell *tmp = c->parent; tmp != NULL; tmp = tmp->parent) {
496
      atomic_max_d(&tmp->stars.h_max, h_max);
497
498
499
    }
  }

500
  if (timer) TIMER_TOC(timer_do_stars_ghost);
501
502
}

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
/**
 * @brief Intermediate task after the density to check that the smoothing
 * lengths are correct.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
void runner_do_black_holes_ghost(struct runner *r, struct cell *c, int timer) {

  struct bpart *restrict bparts = c->black_holes.parts;
  const struct engine *e = r->e;
  const struct cosmology *cosmo = e->cosmology;
  const float black_holes_h_max = e->hydro_properties->h_max;
  const float black_holes_h_min = e->hydro_properties->h_min;
  const float eps = e->hydro_properties->h_tolerance;
  const float black_holes_eta_dim =
      pow_dimension(e->hydro_properties->eta_neighbours);
  const int max_smoothing_iter = e->hydro_properties->max_smoothing_iterations;
  int redo = 0, bcount = 0;

  /* Running value of the maximal smoothing length */
  double h_max = c->black_holes.h_max;

527
528
  double dt = 0.001;

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
  TIMER_TIC;

  /* Anything to do here? */
  if (c->black_holes.count == 0) return;
  if (!cell_is_active_black_holes(c, e)) return;

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        runner_do_black_holes_ghost(r, c->progeny[k], 0);

        /* Update h_max */
        h_max = max(h_max, c->progeny[k]->black_holes.h_max);
      }
    }
  } else {

    /* Init the list of active particles that have to be updated. */
    int *sid = NULL;
    float *h_0 = NULL;
    float *left = NULL;
    float *right = NULL;
    if ((sid = (int *)malloc(sizeof(int) * c->black_holes.count)) == NULL)
      error("Can't allocate memory for sid.");
    if ((h_0 = (float *)malloc(sizeof(float) * c->black_holes.count)) == NULL)
      error("Can't allocate memory for h_0.");
    if ((left = (float *)malloc(sizeof(float) * c->black_holes.count)) == NULL)
      error("Can't allocate memory for left.");
    if ((right = (float *)malloc(sizeof(float) * c->black_holes.count)) == NULL)
      error("Can't allocate memory for right.");
    for (int k = 0; k < c->black_holes.count; k++)
      if (bpart_is_active(&bparts[k], e)) {
        sid[bcount] = k;
        h_0[bcount] = bparts[k].h;
        left[bcount] = 0.f;
        right[bcount] = black_holes_h_max;
        ++bcount;
      }

    /* While there are particles that need to be updated... */
    for (int num_reruns = 0; bcount > 0 && num_reruns < max_smoothing_iter;
         num_reruns++) {

      /* Reset the redo-count. */
      redo = 0;

      /* Loop over the remaining active parts in this cell. */
      for (int i = 0; i < bcount; i++) {

        /* Get a direct pointer on the part. */
        struct bpart *bp = &bparts[sid[i]];

#ifdef SWIFT_DEBUG_CHECKS
        /* Is this part within the timestep? */
        if (!bpart_is_active(bp, e))
          error("Ghost applied to inactive particle");
#endif

        /* Get some useful values */
        const float h_init = h_0[i];
        const float h_old = bp->h;
        const float h_old_dim = pow_dimension(h_old);
        const float h_old_dim_minus_one = pow_dimension_minus_one(h_old);

        float h_new;
        int has_no_neighbours = 0;

        if (bp->density.wcount == 0.f) { /* No neighbours case */

          /* Flag that there were no neighbours */
          has_no_neighbours = 1;

          /* Double h and try again */
          h_new = 2.f * h_old;

        } else {

          /* Finish the density calculation */
          black_holes_end_density(bp, cosmo);

          /* Compute one step of the Newton-Raphson scheme */
          const float n_sum = bp->density.wcount * h_old_dim;
          const float n_target = black_holes_eta_dim;
          const float f = n_sum - n_target;
          const float f_prime =
              bp->density.wcount_dh * h_old_dim +
              hydro_dimension * bp->density.wcount * h_old_dim_minus_one;

          /* Improve the bisection bounds */
          if (n_sum < n_target)
            left[i] = max(left[i], h_old);
          else if (n_sum > n_target)
            right[i] = min(right[i], h_old);

#ifdef SWIFT_DEBUG_CHECKS
          /* Check the validity of the left and right bounds */
          if (left[i] > right[i])
            error("Invalid left (%e) and right (%e)", left[i], right[i]);
#endif

          /* Skip if h is already h_max and we don't have enough neighbours */
          /* Same if we are below h_min */
          if (((bp->h >= black_holes_h_max) && (f < 0.f)) ||
              ((bp->h <= black_holes_h_min) && (f > 0.f))) {

635
636
637
638
639
            /* Compute variables required for the feedback loop */
            black_holes_prepare_feedback(bp, e->physical_constants,
                                         e->cosmology, dt);

            /* Reset quantities computed by the feedback loop */
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
            black_holes_reset_feedback(bp);

            /* Ok, we are done with this particle */
            continue;
          }

          /* Normal case: Use Newton-Raphson to get a better value of h */

          /* Avoid floating point exception from f_prime = 0 */
          h_new = h_old - f / (f_prime + FLT_MIN);

          /* Be verbose about the particles that struggle to converge */
          if (num_reruns > max_smoothing_iter - 10) {

            message(
                "Smoothing length convergence problem: iter=%d p->id=%lld "
                "h_init=%12.8e h_old=%12.8e h_new=%12.8e f=%f f_prime=%f "
                "n_sum=%12.8e n_target=%12.8e left=%12.8e right=%12.8e",
                num_reruns, bp->id, h_init, h_old, h_new, f, f_prime, n_sum,
                n_target, left[i], right[i]);
          }

          /* Safety check: truncate to the range [ h_old/2 , 2h_old ]. */
          h_new = min(h_new, 2.f * h_old);
          h_new = max(h_new, 0.5f * h_old);

          /* Verify that we are actually progrssing towards the answer */
          h_new = max(h_new, left[i]);
          h_new = min(h_new, right[i]);
        }

        /* Check whether the particle has an inappropriate smoothing length */
        if (fabsf(h_new - h_old) > eps * h_old) {

          /* Ok, correct then */

          /* Case where we have been oscillating around the solution */
          if ((h_new == left[i] && h_old == right[i]) ||
              (h_old == left[i] && h_new == right[i])) {

            /* Bissect the remaining interval */
            bp->h = pow_inv_dimension(
                0.5f * (pow_dimension(left[i]) + pow_dimension(right[i])));

          } else {

            /* Normal case */
            bp->h = h_new;
          }

          /* If below the absolute maximum, try again */
          if (bp->h < black_holes_h_max && bp->h > black_holes_h_min) {

            /* Flag for another round of fun */
            sid[redo] = sid[i];
            h_0[redo] = h_0[i];
            left[redo] = left[i];
            right[redo] = right[i];
            redo += 1;

            /* Re-initialise everything */
            black_holes_init_bpart(bp);

            /* Off we go ! */
            continue;

          } else if (bp->h <= black_holes_h_min) {

            /* Ok, this particle is a lost cause... */
            bp->h = black_holes_h_min;

          } else if (bp->h >= black_holes_h_max) {

            /* Ok, this particle is a lost cause... */
            bp->h = black_holes_h_max;

            /* Do some damage control if no neighbours at all were found */
            if (has_no_neighbours) {
              black_holes_bpart_has_no_neighbours(bp, cosmo);
            }

          } else {
            error(
                "Fundamental problem with the smoothing length iteration "
                "logic.");
          }
        }

        /* We now have a particle whose smoothing length has converged */

        /* Check if h_max has increased */
        h_max = max(h_max, bp->h);

733
734
735
736
737
        /* Compute variables required for the feedback loop */
        black_holes_prepare_feedback(bp, e->physical_constants, e->cosmology,
                                     dt);

        /* Reset quantities computed by the feedback loop */
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
        black_holes_reset_feedback(bp);
      }

      /* We now need to treat the particles whose smoothing length had not
       * converged again */

      /* Re-set the counter for the next loop (potentially). */
      bcount = redo;
      if (bcount > 0) {

        /* Climb up the cell hierarchy. */
        for (struct cell *finger = c; finger != NULL; finger = finger->parent) {

          /* Run through this cell's density interactions. */
          for (struct link *l = finger->black_holes.density; l != NULL;
               l = l->next) {

#ifdef SWIFT_DEBUG_CHECKS
            if (l->t->ti_run < r->e->ti_current)
              error("Density task should have been run.");
#endif

            /* Self-interaction? */
            if (l->t->type == task_type_self)
              runner_doself_subset_branch_bh_density(r, finger, bparts, sid,
                                                     bcount);

            /* Otherwise, pair interaction? */
            else if (l->t->type == task_type_pair) {

              /* Left or right? */
              if (l->t->ci == finger)
                runner_dopair_subset_branch_bh_density(r, finger, bparts, sid,
                                                       bcount, l->t->cj);
              else
                runner_dopair_subset_branch_bh_density(r, finger, bparts, sid,
                                                       bcount, l->t->ci);
            }

            /* Otherwise, sub-self interaction? */
            else if (l->t->type == task_type_sub_self)
              runner_dosub_subset_bh_density(r, finger, bparts, sid, bcount,
                                             NULL, 1);

            /* Otherwise, sub-pair interaction? */
            else if (l->t->type == task_type_sub_pair) {

              /* Left or right? */
              if (l->t->ci == finger)
                runner_dosub_subset_bh_density(r, finger, bparts, sid, bcount,
                                               l->t->cj, 1);
              else
                runner_dosub_subset_bh_density(r, finger, bparts, sid, bcount,
                                               l->t->ci, 1);
            }
          }
        }
      }
    }

    if (bcount) {
      error("Smoothing length failed to converge on %i particles.", bcount);
    }

    /* Be clean */
    free(left);
    free(right);
    free(sid);
    free(h_0);
  }

  /* Update h_max */
  c->black_holes.h_max = h_max;

  /* The ghost may not always be at the top level.
   * Therefore we need to update h_max between the super- and top-levels */
  if (c->black_holes.ghost) {
    for (struct cell *tmp = c->parent; tmp != NULL; tmp = tmp->parent) {
      atomic_max_d(&tmp->black_holes.h_max, h_max);
    }
  }

  if (timer) TIMER_TOC(timer_do_black_holes_ghost);
}

Tom Theuns's avatar
Tom Theuns committed
823
824
825
/**
 * @brief Calculate gravity acceleration from external potential
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
826
827
828
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
Tom Theuns's avatar
Tom Theuns committed
829
 */
830
void runner_do_grav_external(struct runner *r, struct cell *c, int timer) {
Tom Theuns's avatar
Tom Theuns committed
831

832
833
  struct gpart *restrict gparts = c->grav.parts;
  const int gcount = c->grav.count;
834
835
836
  const struct engine *e = r->e;
  const struct external_potential *potential = e->external_potential;
  const struct phys_const *constants = e->physical_constants;
837
  const double time = r->e->time;
Matthieu Schaller's avatar
Matthieu Schaller committed
838

839
  TIMER_TIC;
Tom Theuns's avatar
Tom Theuns committed
840

841
  /* Anything to do here? */
842
  if (!cell_is_active_gravity(c, e)) return;
843

Tom Theuns's avatar
Tom Theuns committed
844
845
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
846
    for (int k = 0; k < 8; k++)
847
      if (c->progeny[k] != NULL) runner_do_grav_external(r, c->progeny[k], 0);
848
  } else {
849

850
851
    /* Loop over the gparts in this cell. */
    for (int i = 0; i < gcount; i++) {
852

853
854
      /* Get a direct pointer on the part. */
      struct gpart *restrict gp = &gparts[i];
Matthieu Schaller's avatar
Matthieu Schaller committed
855

856
      /* Is this part within the time step? */
857
      if (gpart_is_active(gp, e)) {
858
859
        external_gravity_acceleration(time, potential, constants, gp);
      }
860
    }
861
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
862

863
  if (timer) TIMER_TOC(timer_dograv_external);
Tom Theuns's avatar
Tom Theuns committed
864
865
}

866
867
868
869
870
871
872
873
874
/**
 * @brief Calculate gravity accelerations from the periodic mesh
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_grav_mesh(struct runner *r, struct cell *c, int timer) {

875
876
  struct gpart *restrict gparts = c->grav.parts;
  const int gcount = c->grav.count;
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
  const struct engine *e = r->e;

#ifdef SWIFT_DEBUG_CHECKS
  if (!e->s->periodic) error("Calling mesh forces in non-periodic mode.");
#endif

  TIMER_TIC;

  /* Anything to do here? */
  if (!cell_is_active_gravity(c, e)) return;

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_grav_mesh(r, c->progeny[k], 0);
  } else {

    /* Get the forces from the gravity mesh */
    pm_mesh_interpolate_forces(e->mesh, e, gparts, gcount);
  }

  if (timer) TIMER_TOC(timer_dograv_mesh);
}

Stefan Arridge's avatar
Stefan Arridge committed
901
/**
902
903
 * @brief Calculate change in thermal state of particles induced
 * by radiative cooling and heating.
Stefan Arridge's avatar
Stefan Arridge committed
904
905
906
907
908
909
910
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_cooling(struct runner *r, struct cell *c, int timer) {

911
  const struct engine *e = r->e;
912
913
  const struct cosmology *cosmo = e->cosmology;
  const int with_cosmology = (e->policy & engine_policy_cosmology);
914
915
  const struct cooling_function_data *cooling_func = e->cooling_func;
  const struct phys_const *constants = e->physical_constants;
916
  const struct unit_system *us = e->internal_units;
917
  const struct hydro_props *hydro_props = e->hydro_properties;
918
  const struct entropy_floor_properties *entropy_floor_props = e->entropy_floor;
919
  const double time_base = e->time_base;
920
  const integertime_t ti_current = e->ti_current;
921
922
923
  struct part *restrict parts = c->hydro.parts;
  struct xpart *restrict xparts = c->hydro.xparts;
  const int count = c->hydro.count;
Stefan Arridge's avatar
Stefan Arridge committed
924
925
926

  TIMER_TIC;

927
  /* Anything to do here? */
928
  if (!cell_is_active_hydro(c, e)) return;
929

Stefan Arridge's avatar
Stefan Arridge committed
930
931
932
933
  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_cooling(r, c->progeny[k], 0);
934
  } else {
Stefan Arridge's avatar
Stefan Arridge committed
935

936
937
    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {
Stefan Arridge's avatar
Stefan Arridge committed
938

939
940
941
      /* Get a direct pointer on the part. */
      struct part *restrict p = &parts[i];
      struct xpart *restrict xp = &xparts[i];
Stefan Arridge's avatar
Stefan Arridge committed
942

943
      if (part_is_active(p, e)) {
944

945
        double dt_cool, dt_therm;
946
947
948
        if (with_cosmology) {
          const integertime_t ti_step = get_integer_timestep(p->time_bin);
          const integertime_t ti_begin =
949
950
              get_integer_time_begin(ti_current - 1, p->time_bin);

951
952
          dt_cool =
              cosmology_get_delta_time(cosmo, ti_begin, ti_begin + ti_step);
953
954
955
          dt_therm = cosmology_get_therm_kick_factor(e->cosmology, ti_begin,
                                                     ti_begin + ti_step);

956
957
        } else {
          dt_cool = get_timestep(p->time_bin, time_base);
958
          dt_therm = get_timestep(p->time_bin, time_base);
959
        }
960

961
        /* Let's cool ! */
962
963
964
        cooling_cool_part(constants, us, cosmo, hydro_props,
                          entropy_floor_props, cooling_func, p, xp, dt_cool,
                          dt_therm);
965
      }
Stefan Arridge's avatar
Stefan Arridge committed
966
967
968
969
970
971
    }
  }

  if (timer) TIMER_TOC(timer_do_cooling);
}

Matthieu Schaller's avatar
Matthieu Schaller committed
972
973
974
975
976
/**
 *
 */
void runner_do_star_formation(struct runner *r, struct cell *c, int timer) {

977
  struct engine *e = r->e;
978
  const struct cosmology *cosmo = e->cosmology;
979
980
  const struct star_formation *sf_props = e->star_formation;
  const struct phys_const *phys_const = e->physical_constants;
981
982
983
  const int count = c->hydro.count;
  struct part *restrict parts = c->hydro.parts;
  struct xpart *restrict xparts = c->hydro.xparts;
984
  const int with_cosmology = (e->policy & engine_policy_cosmology);
985
  const int with_feedback = (e->policy & engine_policy_feedback);
986
987
988
  const struct hydro_props *restrict hydro_props = e->hydro_properties;
  const struct unit_system *restrict us = e->internal_units;
  struct cooling_function_data *restrict cooling = e->cooling_func;
989
  const struct entropy_floor_properties *entropy_floor = e->entropy_floor;
990
991
  const double time_base = e->time_base;
  const integertime_t ti_current = e->ti_current;
992
  const int current_stars_count = c->stars.count;
Matthieu Schaller's avatar
Matthieu Schaller committed
993
994
995

  TIMER_TIC;

996
997
998
999
1000
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID != e->nodeID)
    error("Running star formation task on a foreign node!");
#endif

For faster browsing, not all history is shown. View entire blame