cell.c 83.4 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "chemistry.h"
53
#include "drift.h"
54
#include "engine.h"
55
#include "error.h"
56
#include "gravity.h"
57
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
58
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
59
#include "memswap.h"
60
#include "minmax.h"
61
#include "scheduler.h"
62
63
#include "space.h"
#include "timers.h"
64

65
66
67
/* Global variables. */
int cell_next_tag = 0;

68
69
70
71
72
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
73
int cell_getsize(struct cell *c) {
74

Pedro Gonnet's avatar
Pedro Gonnet committed
75
76
  /* Number of cells in this subtree. */
  int count = 1;
77

78
79
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
80
    for (int k = 0; k < 8; k++)
81
82
83
84
85
86
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

87
/**
88
 * @brief Link the cells recursively to the given #part array.
89
90
91
92
93
94
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
95
int cell_link_parts(struct cell *c, struct part *parts) {
96

97
98
99
  c->parts = parts;

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
100
101
102
103
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
104
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
Pedro Gonnet's avatar
Pedro Gonnet committed
105
106
    }
  }
107

108
  /* Return the total number of linked particles. */
109
110
  return c->count;
}
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/**
 * @brief Link the cells recursively to the given #gpart array.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_gparts(struct cell *c, struct gpart *gparts) {

  c->gparts = gparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->gcount;
}

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {

  c->sparts = sparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->scount;
}

162
163
164
165
166
167
168
169
170
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
171
int cell_pack(struct cell *restrict c, struct pcell *restrict pc) {
172

173
174
#ifdef WITH_MPI

175
176
  /* Start by packing the data of the current cell. */
  pc->h_max = c->h_max;
177
178
179
180
  pc->ti_hydro_end_min = c->ti_hydro_end_min;
  pc->ti_hydro_end_max = c->ti_hydro_end_max;
  pc->ti_gravity_end_min = c->ti_gravity_end_min;
  pc->ti_gravity_end_max = c->ti_gravity_end_max;
181
182
  pc->ti_old_part = c->ti_old_part;
  pc->ti_old_gpart = c->ti_old_gpart;
183
  pc->ti_old_multipole = c->ti_old_multipole;
184
  pc->count = c->count;
185
  pc->gcount = c->gcount;
186
  pc->scount = c->scount;
187
  c->tag = pc->tag = atomic_inc(&cell_next_tag) % cell_max_tag;
188
189
190
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
191
192

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
193
194
  int count = 1;
  for (int k = 0; k < 8; k++)
195
196
197
198
199
200
201
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
      count += cell_pack(c->progeny[k], &pc[count]);
    } else
      pc->progeny[k] = -1;

  /* Return the number of packed cells used. */
202
203
  c->pcell_size = count;
  return count;
204
205
206
207
208

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
209
210
}

211
212
213
214
215
216
217
218
219
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
220
221
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
                struct space *restrict s) {
222
223
224
225
226

#ifdef WITH_MPI

  /* Unpack the current pcell. */
  c->h_max = pc->h_max;
227
228
229
230
  c->ti_hydro_end_min = pc->ti_hydro_end_min;
  c->ti_hydro_end_max = pc->ti_hydro_end_max;
  c->ti_gravity_end_min = pc->ti_gravity_end_min;
  c->ti_gravity_end_max = pc->ti_gravity_end_max;
231
232
  c->ti_old_part = pc->ti_old_part;
  c->ti_old_gpart = pc->ti_old_gpart;
233
  c->ti_old_multipole = pc->ti_old_multipole;
234
235
236
237
  c->count = pc->count;
  c->gcount = pc->gcount;
  c->scount = pc->scount;
  c->tag = pc->tag;
238
239
240
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
      temp->count = 0;
      temp->gcount = 0;
      temp->scount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->dx_max_part = 0.f;
      temp->dx_max_gpart = 0.f;
      temp->dx_max_sort = 0.f;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
      count += cell_unpack(&pc[pc->progeny[k]], temp, s);
    }

  /* Return the total number of unpacked cells. */
  c->pcell_size = count;
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

285
286
287
288
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
289
 * @param pcells (output) The end-of-timestep information we pack into
290
291
292
 *
 * @return The number of packed cells.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
293
294
int cell_pack_end_step(struct cell *restrict c,
                       struct pcell_step *restrict pcells) {
295

296
297
#ifdef WITH_MPI

298
  /* Pack this cell's data. */
299
  pcells[0].ti_hydro_end_min = c->ti_hydro_end_min;
300
  pcells[0].ti_hydro_end_max = c->ti_hydro_end_max;
301
  pcells[0].ti_gravity_end_min = c->ti_gravity_end_min;
302
  pcells[0].ti_gravity_end_max = c->ti_gravity_end_max;
303
304
  pcells[0].dx_max_part = c->dx_max_part;
  pcells[0].dx_max_gpart = c->dx_max_gpart;
305

306
307
308
309
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
310
      count += cell_pack_end_step(c->progeny[k], &pcells[count]);
311
312
313
314
    }

  /* Return the number of packed values. */
  return count;
315
316
317
318
319

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
320
321
}

322
323
324
325
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
326
 * @param pcells The end-of-timestep information to unpack
327
328
329
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
330
331
int cell_unpack_end_step(struct cell *restrict c,
                         struct pcell_step *restrict pcells) {
332

333
334
#ifdef WITH_MPI

335
  /* Unpack this cell's data. */
336
  c->ti_hydro_end_min = pcells[0].ti_hydro_end_min;
337
  c->ti_hydro_end_max = pcells[0].ti_hydro_end_max;
338
  c->ti_gravity_end_min = pcells[0].ti_gravity_end_min;
339
  c->ti_gravity_end_max = pcells[0].ti_gravity_end_max;
340
341
  c->dx_max_part = pcells[0].dx_max_part;
  c->dx_max_gpart = pcells[0].dx_max_gpart;
342

343
344
345
346
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
347
      count += cell_unpack_end_step(c->progeny[k], &pcells[count]);
348
349
350
    }

  /* Return the number of packed values. */
351
  return count;
352
353
354
355
356

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
357
}
358

359
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
360
361
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
362
363
364
365
366
367
368
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
369
                         struct gravity_tensors *restrict pcells) {
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0] = *c->multipole;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
401
                           struct gravity_tensors *restrict pcells) {
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  *c->multipole = pcells[0];

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

424
/**
425
 * @brief Lock a cell for access to its array of #part and hold its parents.
426
427
 *
 * @param c The #cell.
428
 * @return 0 on success, 1 on failure
429
 */
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->hold || lock_trylock(&c->lock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->hold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
452
  struct cell *finger;
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->lock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->hold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->lock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
475
476
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
477
      atomic_dec(&finger2->hold);
478
479
480
481
482
483
484
485
486
487

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

488
489
490
491
492
493
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->ghold || lock_trylock(&c->glock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->ghold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
516
  struct cell *finger;
517
518
519
520
521
522
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->glock) != 0) break;

    /* Increment the hold. */
523
    atomic_inc(&finger->ghold);
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

    /* Unlock the cell. */
    if (lock_unlock(&finger->glock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
539
540
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
541
      atomic_dec(&finger2->ghold);
542
543
544
545
546
547
548
549
550

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
551

552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->mhold || lock_trylock(&c->mlock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->mhold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->mlock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->mhold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->mlock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->mhold);

    /* Unlock this cell. */
    if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->shold || lock_trylock(&c->slock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->shold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->slock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->shold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->slock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->shold);

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

680
/**
681
 * @brief Unlock a cell's parents for access to #part array.
682
683
684
 *
 * @param c The #cell.
 */
685
686
687
688
689
690
691
692
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
693
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
694
    atomic_dec(&finger->hold);
695
696
697
698

  TIMER_TOC(timer_locktree);
}

699
700
701
702
703
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
704
705
706
707
708
709
710
711
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
712
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
713
    atomic_dec(&finger->ghold);
714
715
716
717

  TIMER_TOC(timer_locktree);
}

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
/**
 * @brief Unlock a cell's parents for access to its #multipole.
 *
 * @param c The #cell.
 */
void cell_munlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->mhold);

  TIMER_TOC(timer_locktree);
}

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->shold);

  TIMER_TOC(timer_locktree);
}

756
757
758
759
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
760
761
 * @param parts_offset Offset of the cell parts array relative to the
 *        space's parts array, i.e. c->parts - s->parts.
762
763
 * @param sparts_offset Offset of the cell sparts array relative to the
 *        space's sparts array, i.e. c->sparts - s->sparts.
764
765
 * @param buff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices.
766
767
 * @param sbuff A buffer with at least max(c->scount, c->gcount) entries,
 *        used for sorting indices for the sparts.
Peter W. Draper's avatar
Peter W. Draper committed
768
769
 * @param gbuff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices for the gparts.
770
 */
771
772
void cell_split(struct cell *c, ptrdiff_t parts_offset, ptrdiff_t sparts_offset,
                struct cell_buff *buff, struct cell_buff *sbuff,
773
                struct cell_buff *gbuff) {
774

775
  const int count = c->count, gcount = c->gcount, scount = c->scount;
776
777
778
  struct part *parts = c->parts;
  struct xpart *xparts = c->xparts;
  struct gpart *gparts = c->gparts;
Matthieu Schaller's avatar
Matthieu Schaller committed
779
  struct spart *sparts = c->sparts;
780
781
782
783
784
785
  const double pivot[3] = {c->loc[0] + c->width[0] / 2,
                           c->loc[1] + c->width[1] / 2,
                           c->loc[2] + c->width[2] / 2};
  int bucket_count[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  int bucket_offset[9];

786
787
788
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the buffs are OK. */
  for (int k = 0; k < count; k++) {
789
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
790
        buff[k].x[2] != parts[k].x[2])
791
792
      error("Inconsistent buff contents.");
  }
793
794
795
796
797
798
799
800
801
802
  for (int k = 0; k < gcount; k++) {
    if (gbuff[k].x[0] != gparts[k].x[0] || gbuff[k].x[1] != gparts[k].x[1] ||
        gbuff[k].x[2] != gparts[k].x[2])
      error("Inconsistent gbuff contents.");
  }
  for (int k = 0; k < scount; k++) {
    if (sbuff[k].x[0] != sparts[k].x[0] || sbuff[k].x[1] != sparts[k].x[1] ||
        sbuff[k].x[2] != sparts[k].x[2])
      error("Inconsistent sbuff contents.");
  }
803
#endif /* SWIFT_DEBUG_CHECKS */
804
805
806

  /* Fill the buffer with the indices. */
  for (int k = 0; k < count; k++) {
807
808
    const int bid = (buff[k].x[0] >= pivot[0]) * 4 +
                    (buff[k].x[1] >= pivot[1]) * 2 + (buff[k].x[2] >= pivot[2]);
809
    bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
810
    buff[k].ind = bid;
811
  }
812

813
814
815
816
817
  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
818
819
  }

820
821
822
823
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
824
      int bid = buff[k].ind;
825
826
827
      if (bid != bucket) {
        struct part part = parts[k];
        struct xpart xpart = xparts[k];
828
        struct cell_buff temp_buff = buff[k];
829
830
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
831
          while (buff[j].ind == bid) {
832
833
834
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
835
836
          memswap(&parts[j], &part, sizeof(struct part));
          memswap(&xparts[j], &xpart, sizeof(struct xpart));
837
838
          memswap(&buff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
839
840
841
        }
        parts[k] = part;
        xparts[k] = xpart;
842
        buff[k] = temp_buff;
843
      }
844
      bucket_count[bid]++;
845
846
847
848
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
849
  for (int k = 0; k < 8; k++) {
850
851
852
    c->progeny[k]->count = bucket_count[k];
    c->progeny[k]->parts = &c->parts[bucket_offset[k]];
    c->progeny[k]->xparts = &c->xparts[bucket_offset[k]];
853
854
855
  }

  /* Re-link the gparts. */
856
857
  if (count > 0 && gcount > 0)
    part_relink_gparts_to_parts(parts, count, parts_offset);
858

859
#ifdef SWIFT_DEBUG_CHECKS
860
861
862
863
864
865
866
867
  /* Check that the buffs are OK. */
  for (int k = 1; k < count; k++) {
    if (buff[k].ind < buff[k - 1].ind) error("Buff not sorted.");
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
        buff[k].x[2] != parts[k].x[2])
      error("Inconsistent buff contents (k=%i).", k);
  }

868
  /* Verify that _all_ the parts have been assigned to a cell. */
869
870
871
872
873
874
875
876
  for (int k = 1; k < 8; k++)
    if (&c->progeny[k - 1]->parts[c->progeny[k - 1]->count] !=
        c->progeny[k]->parts)
      error("Particle sorting failed (internal consistency).");
  if (c->progeny[0]->parts != c->parts)
    error("Particle sorting failed (left edge).");
  if (&c->progeny[7]->parts[c->progeny[7]->count] != &c->parts[count])
    error("Particle sorting failed (right edge).");
877
878

  /* Verify a few sub-cells. */
879
  for (int k = 0; k < c->progeny[0]->count; k++)
880
881
882
    if (c->progeny[0]->parts[k].x[0] >= pivot[0] ||
        c->progeny[0]->parts[k].x[1] >= pivot[1] ||
        c->progeny[0]->parts[k].x[2] >= pivot[2])
883
884
      error("Sorting failed (progeny=0).");
  for (int k = 0; k < c->progeny[1]->count; k++)
885
886
887
    if (c->progeny[1]->parts[k].x[0] >= pivot[0] ||
        c->progeny[1]->parts[k].x[1] >= pivot[1] ||
        c->progeny[1]->parts[k].x[2] < pivot[2])
888
889
      error("Sorting failed (progeny=1).");
  for (int k = 0; k < c->progeny[2]->count; k++)
890
891
892
    if (c->progeny[2]->parts[k].x[0] >= pivot[0] ||
        c->progeny[2]->parts[k].x[1] < pivot[1] ||
        c->progeny[2]->parts[k].x[2] >= pivot[2])
893
      error("Sorting failed (progeny=2).");
894
  for (int k = 0; k < c->progeny[3]->count; k++)
895
896
897
    if (c->progeny[3]->parts[k].x[0] >= pivot[0] ||
        c->progeny[3]->parts[k].x[1] < pivot[1] ||
        c->progeny[3]->parts[k].x[2] < pivot[2])
898
899
      error("Sorting failed (progeny=3).");
  for (int k = 0; k < c->progeny[4]->count; k++)
900
901
902
    if (c->progeny[4]->parts[k].x[0] < pivot[0] ||
        c->progeny[4]->parts[k].x[1] >= pivot[1] ||
        c->progeny[4]->parts[k].x[2] >= pivot[2])
903
904
      error("Sorting failed (progeny=4).");
  for (int k = 0; k < c->progeny[5]->count; k++)
905
906
907
    if (c->progeny[5]->parts[k].x[0] < pivot[0] ||
        c->progeny[5]->parts[k].x[1] >= pivot[1] ||
        c->progeny[5]->parts[k].x[2] < pivot[2])
908
909
      error("Sorting failed (progeny=5).");
  for (int k = 0; k < c->progeny[6]->count; k++)
910
911
912
    if (c->progeny[6]->parts[k].x[0] < pivot[0] ||
        c->progeny[6]->parts[k].x[1] < pivot[1] ||
        c->progeny[6]->parts[k].x[2] >= pivot[2])
913
914
      error("Sorting failed (progeny=6).");
  for (int k = 0; k < c->progeny[7]->count; k++)
915
916
917
    if (c->progeny[7]->parts[k].x[0] < pivot[0] ||
        c->progeny[7]->parts[k].x[1] < pivot[1] ||
        c->progeny[7]->parts[k].x[2] < pivot[2])
918
      error("Sorting failed (progeny=7).");
919
#endif
920

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
  /* Now do the same song and dance for the sparts. */
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < scount; k++) {
    const int bid = (sbuff[k].x[0] > pivot[0]) * 4 +
                    (sbuff[k].x[1] > pivot[1]) * 2 + (sbuff[k].x[2] > pivot[2]);
    bucket_count[bid]++;
    sbuff[k].ind = bid;
  }

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
  }

  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
      int bid = sbuff[k].ind;
      if (bid != bucket) {
        struct spart spart = sparts[k];
        struct cell_buff temp_buff = sbuff[k];
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
          while (sbuff[j].ind == bid) {
            j++;
            bucket_count[bid]++;
          }
          memswap(&sparts[j], &spart, sizeof(struct spart));
          memswap(&sbuff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
        }
        sparts[k] = spart;
        sbuff[k] = temp_buff;
      }
      bucket_count[bid]++;
    }
  }

  /* Store the counts and offsets. */
  for (int k = 0; k < 8; k++) {
    c->progeny[k]->scount = bucket_count[k];
    c->progeny[k]->sparts = &c->sparts[bucket_offset[k]];
  }

  /* Re-link the gparts. */
  if (scount > 0 && gcount > 0)
972
    part_relink_gparts_to_sparts(sparts, scount, sparts_offset);
973
974

  /* Finally, do the same song and dance for the gparts. */
975
976
977
978
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < gcount; k++) {
979
980
    const int bid = (gbuff[k].x[0] > pivot[0]) * 4 +
                    (gbuff[k].x[1] > pivot[1]) * 2 + (gbuff[k].x[2] > pivot[2]);
981
    bucket_count[bid]++;
982
    gbuff[k].ind = bid;
983
  }
984
985
986
987
988
989

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
990
991
  }

992
993
994
995
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
996
      int bid = gbuff[k].ind;
997
998
      if (bid != bucket) {
        struct gpart gpart = gparts[k];
999
        struct cell_buff temp_buff = gbuff[k];
1000
1001
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
1002
          while (gbuff[j].ind == bid) {
1003
1004
1005
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
1006
          memswap(&gparts[j], &gpart, sizeof(struct gpart));
1007
1008
          memswap(&gbuff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
1009
1010
        }
        gparts[k] = gpart;
1011
        gbuff[k] = temp_buff;
1012
      }
1013
      bucket_count[bid]++;
1014
1015
1016
1017
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1018
  for (int k = 0; k < 8; k++) {
1019
1020
    c->progeny[k]->gcount = bucket_count[k];
    c->progeny[k]->gparts = &c->gparts[bucket_offset[k]];
1021
1022
1023
  }

  /* Re-link the parts. */
1024
  if (count > 0 && gcount > 0)
1025
    part_relink_parts_to_gparts(gparts, gcount, parts - parts_offset);
1026
1027
1028
1029

  /* Re-link the sparts. */
  if (scount > 0 && gcount > 0)
    part_relink_sparts_to_gparts(gparts, gcount, sparts - sparts_offset);
1030
}
1031

1032
1033
1034
1035
/**
 * @brief Sanitizes the smoothing length values of cells by setting large
 * outliers to more sensible values.
 *
1036
1037
 * Each cell with <1000 part will be processed. We limit h to be the size of
 * the cell and replace 0s with a good estimate.
1038
1039
 *
 * @param c The cell.
1040
 * @param treated Has the cell already been sanitized at this level ?
1041
 */
1042
void cell_sanitize(struct cell *c, int treated) {
1043
1044
1045

  const int count = c->count;
  struct part *parts = c->parts;
1046
  float h_max = 0.f;
1047

1048
1049
  /* Treat cells will <1000 particles */
  if (count < 1000 && !treated) {
1050

1051
1052
    /* Get an upper bound on h */
    const float upper_h_max = c->dmin / (1.2f * kernel_gamma);
1053

1054
1055
1056
1057
1058
1059
    /* Apply it */
    for (int i = 0; i < count; ++i) {
      if (parts[i].h == 0.f || parts[i].h > upper_h_max)
        parts[i].h = upper_h_max;
    }
  }
1060

1061
1062
  /* Recurse and gather the new h_max values */
  if (c->split) {
1063

1064
1065
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
1066

1067
1068
        /* Recurse */
        cell_sanitize(c->progeny[k], (count < 1000));
1069

1070
1071
1072
1073
        /* And collect */
        h_max = max(h_max, c->progeny[k]->h_max);
      }
    }
1074
1075
  } else {

1076
1077
    /* Get the new value of h_max */
    for (int i = 0; i < count; ++i) h_max = max(h_max, parts[i].h);
1078
  }
1079
1080
1081

  /* Record the change */
  c->h_max = h_max;
1082
1083
}

Matthieu Schaller's avatar
Matthieu Schaller committed
1084
1085
1086
1087
1088
1089
/**
 * @brief Cleans the links in a given cell.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
1090
void cell_clean_links(struct cell *c, void *data) {
Matthieu Schaller's avatar
Matthieu Schaller committed
1091
  c->density = NULL;
1092
  c->gradient = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1093
  c->force = NULL;
1094
  c->grav = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1095
}
1096

1097
/**
1098
 * @brief Checks that the #part in a cell are at the
1099
 * current point in time
1100
1101
1102
1103
1104
1105
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
1106
void cell_check_part_drift_point(struct cell *c, void *data) {
1107

1108
1109
#ifdef SWIFT_DEBUG_CHECKS

1110
  const integertime_t ti_drift = *(integertime_t *)data;
1111

1112
  /* Only check local cells */
1113
  if (c->nodeID != engine_rank) return;
1114

1115
1116
1117
  if (c->ti_old_part != ti_drift)
    error("Cell in an incorrect time-zone! c->ti_old_part=%lld ti_drift=%lld",
          c->ti_old_part, ti_drift);
1118

1119
1120
  for (int i = 0; i < c->count; ++i)
    if (c->parts[i].ti_drift != ti_drift)
1121
      error("part in an incorrect time-zone! p->ti_drift=%lld ti_drift=%lld",
1122
            c->parts[i].ti_drift, ti_drift);
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

/**
 * @brief Checks that the #gpart and #spart in a cell are at the
 * current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_gpart_drift_point(struct cell *c, void *data) {

#ifdef SWIFT_DEBUG_CHECKS

  const integertime_t ti_drift = *(integertime_t *)data;

  /* Only check local cells */
  if (c->nodeID != engine_rank) return;

  if (c->ti_old_gpart != ti_drift)
    error("Cell in an incorrect time-zone! c->ti_old_gpart=%lld ti_drift=%lld",
          c->ti_old_gpart, ti_drift);
1149

1150
1151
  for (int i = 0; i < c->gcount; ++i)
    if (c->gparts[i].ti_drift != ti_drift)
1152
      error("g-part in an incorrect time-zone! gp->ti_drift=%lld ti_drift=%lld",
1153
            c->gparts[i].ti_drift, ti_drift);
1154

1155
1156
1157
1158
  for (int i = 0; i < c->scount; ++i)
    if (c->sparts[i].ti_drift != ti_drift)
      error("s-part in an incorrect time-zone! sp->ti_drift=%lld ti_drift=%lld",
            c->sparts[i].ti_drift, ti_drift);
1159
1160
1161
#else
  error("Calling debugging code without debugging flag activated.");
#endif
1162
1163
}

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
/**
 * @brief Checks that the multipole of a cell is at the current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_multipole_drift_point(struct cell *c, void *data) {

#ifdef SWIFT_DEBUG_CHECKS

  const integertime_t ti_drift = *(integertime_t *)data;

  if (c->ti_old_multipole != ti_drift)
    error(
        "Cell multipole in an incorrect time-zone! c->ti_old_multipole=%lld "
1181
1182
        "ti_drift=%lld (depth=%d)",
        c->ti_old_multipole, ti_drift, c->depth);
1183
1184
1185
1186
1187
1188

#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
/**
 * @brief Resets all the individual cell task counters to 0.
 *
 * Should only be used for debugging purposes.
 *
 * @param c The #cell to reset.
 */
void cell_reset_task_counters(struct cell *c) {

#ifdef SWIFT_DEBUG_CHECKS
  for (int t = 0; t < task_type_count; ++t) c->tasks_executed[t] = 0;
  for (int t = 0; t < task_subtype_count; ++t) c->subtasks_executed[t] = 0;
#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

1206
1207
1208
1209
/**
 * @brief Recursively construct all the multipoles in a cell hierarchy.
 *
 * @param c The #cell.
Matthieu Schaller's avatar
Matthieu Schaller committed
1210
 * @param ti_current The current integer time.
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
 */
void cell_make_multipoles(struct cell *c, integertime_t ti_current) {

  /* Reset everything */
  gravity_reset(c->multipole);

  if (c->split) {

    /* Compute CoM of all progenies */
    double CoM[3] = {0., 0., 0.};
    double mass = 0.;

    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        const struct gravity_tensors *m = c->progeny[k]->multipole;
        CoM[0] += m->CoM[0] * m->m_pole.M_000;
        CoM[1] += m->CoM[1] * m->m_pole.M_000;
        CoM[2] += m->CoM[2] * m->m_pole.M_000;
        mass += m->m_pole.M_000;
      }
    }
    c->multipole->CoM[0] = CoM[0] / mass;
    c->multipole->CoM[1] = CoM[1] / mass;
    c->multipole->CoM[2] = CoM[2] / mass;

    /* Now shift progeny multipoles and add them up */
    struct multipole temp;
    double r_max = 0.;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        const struct cell *cp = c->progeny[k];
        const struct multipole *m = &cp->multipole->m_pole;

        /* Contribution to multipole */
        gravity_M2M(&temp, m, c->multipole->CoM, cp->multipole->CoM);
        gravity_multipole_add(&c->multipole->m_pole, &temp);

        /* Upper limit of max CoM<->gpart distance */
        const double dx = c->multipole->CoM[0] - cp->multipole->CoM[0];
        const double dy = c->multipole->CoM[1] - cp->multipole->CoM[1];
        const double dz = c->multipole->CoM[2] - cp->multipole->CoM[2];
        const double r2 = dx * dx + dy * dy + dz * dz;
        r_max = max(r_max, cp->multipole->r_max + sqrt(r2));
      }
    }
    /* Alternative upper limit of max CoM<->gpart distance */
    const double dx = c->multipole->CoM[0] > c->loc[0] + c->width[0] / 2.
                          ? c->multipole->CoM[0] - c->loc[0]
                          : c->loc[0] + c->width[0] - c->multipole->CoM[0];
    const double dy = c->multipole->CoM[1] > c->loc[1] + c->width[1] / 2.
                          ? c->multipole->CoM[1] - c->loc[1]
                          : c->loc[1] + c->width[1] - c->multipole->CoM[1];
    const double dz = c->multipole->CoM[2] > c->loc[2] + c->width[2] / 2.
                          ? c->multipole->CoM[2] - c->loc[2]
                          : c->loc[2] + c->width[2] - c->multipole->CoM[2];

    /* Take minimum of both limits */
    c->multipole->r_max = min(r_max, sqrt(dx * dx + dy * dy + dz * dz));

  } else {

    if (c->gcount > 0) {
      gravity_P2M(c->multipole, c->gparts, c->gcount);
      const double dx = c->multipole->CoM[0] > c->loc[0] + c->width[0] / 2.
                            ? c->multipole->CoM[0] - c->loc[0]
                            : c->loc[0] + c->width[0] - c->multipole->CoM[0];
      const double dy = c->multipole->CoM[1] > c->loc[1] + c->width[1] / 2.
                            ? c->multipole->CoM[1] - c->loc[1]
                            : c->loc[1] + c->width[1] - c->multipole->CoM[1];
      const double dz = c->multipole->CoM[2] > c->loc[2] + c->width[2] / 2.
                            ? c->multipole->CoM[2] - c->loc[2]
                            : c->loc[2] + c->width[2] - c->multipole->CoM[2];
      c->multipole->r_max = sqrt(dx * dx + dy * dy + dz * dz);
    } else {
      gravity_multipole_init(&c->multipole->m_pole);
      c->multipole->CoM[0] = c->loc[0] + c->width[0] / 2.;
      c->multipole->CoM[1] = c->loc[1] + c->width[1] / 2.;
      c->multipole->CoM[2] = c->loc[2] + c->width[2] / 2.;
      c->multipole->r_max = 0.;
    }
  }

  c->ti_old_multipole = ti_current;
}

1296
1297
1298
1299
1300
1301
1302
1303
1304
/**
 * @brief Computes the multi-pole brutally and compare to the
 * recursively computed one.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_check_multipole(struct cell *c, void *data) {

1305
#ifdef SWIFT_DEBUG_CHECKS
1306