runner_doiact_grav.h 40.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2013 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
 *               2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/
#ifndef SWIFT_RUNNER_DOIACT_GRAV_H
#define SWIFT_RUNNER_DOIACT_GRAV_H

/* Includes. */
#include "cell.h"
25
#include "gravity.h"
26
#include "inline.h"
27
28
#include "part.h"

Matthieu Schaller's avatar
Matthieu Schaller committed
29
30
31
32
33
34
35
36
/**
 * @brief Recursively propagate the multipoles down the tree by applying the
 * L2L and L2P kernels.
 *
 * @param r The #runner.
 * @param c The #cell we are working on.
 * @param timer Are we timing this ?
 */
37
38
void runner_do_grav_down(struct runner *r, struct cell *c, int timer) {

39
  /* Some constants */
40
  const struct engine *e = r->e;
41
42

  /* Cell properties */
43
44
  struct gpart *gparts = c->gparts;
  const int gcount = c->gcount;
45

46
  TIMER_TIC;
47

48
49
#ifdef SWIFT_DEBUG_CHECKS
  if (c->ti_old_multipole != e->ti_current) error("c->multipole not drifted.");
50
51
  if (c->multipole->pot.ti_init != e->ti_current)
    error("c->field tensor not initialised");
52
53
#endif

54
  if (c->split) { /* Node case */
55

56
    /* Add the field-tensor to all the 8 progenitors */
57
58
59
    for (int k = 0; k < 8; ++k) {
      struct cell *cp = c->progeny[k];

60
61
      /* Do we have a progenitor with any active g-particles ? */
      if (cp != NULL && cell_is_active(cp, e)) {
62

63
64
65
#ifdef SWIFT_DEBUG_CHECKS
        if (cp->ti_old_multipole != e->ti_current)
          error("cp->multipole not drifted.");
66
67
        if (cp->multipole->pot.ti_init != e->ti_current)
          error("cp->field tensor not initialised");
68
#endif
69
        struct grav_tensor shifted_tensor;
70

71
72
        /* If the tensor received any contribution, push it down */
        if (c->multipole->pot.interacted) {
73

74
75
76
77
78
79
80
          /* Shift the field tensor */
          gravity_L2L(&shifted_tensor, &c->multipole->pot, cp->multipole->CoM,
                      c->multipole->CoM);

          /* Add it to this level's tensor */
          gravity_field_tensors_add(&cp->multipole->pot, &shifted_tensor);
        }
81

82
        /* Recurse */
83
        runner_do_grav_down(r, cp, 0);
84
85
86
      }
    }

87
  } else { /* Leaf case */
88

89
90
91
    /* We can abort early if no interactions via multipole happened */
    if (!c->multipole->pot.interacted) return;

92
93
    if (!cell_are_gpart_drifted(c, e)) error("Un-drifted gparts");

94
95
    /* Apply accelerations to the particles */
    for (int i = 0; i < gcount; ++i) {
96
97

      /* Get a handle on the gpart */
98
      struct gpart *gp = &gparts[i];
99
100

      /* Update if active */
101
102
103
104
105
106
      if (gpart_is_active(gp, e)) {

#ifdef SWIFT_DEBUG_CHECKS
        /* Check that particles have been drifted to the current time */
        if (gp->ti_drift != e->ti_current)
          error("gpart not drifted to current time");
107
108
        if (c->multipole->pot.ti_init != e->ti_current)
          error("c->field tensor not initialised");
109
110
#endif

111
        /* Apply the kernel */
112
        gravity_L2P(&c->multipole->pot, c->multipole->CoM, gp);
113
      }
114
    }
115
  }
116
117

  if (timer) TIMER_TOC(timer_dograv_down);
118
119
}

120
121
122
123
124
125
126
127
/**
 * @brief Computes the interaction of the field tensor in a cell with the
 * multipole of another cell.
 *
 * @param r The #runner.
 * @param ci The #cell with field tensor to interact.
 * @param cj The #cell with the multipole.
 */
128
129
void runner_dopair_grav_mm(const struct runner *r, struct cell *restrict ci,
                           struct cell *restrict cj) {
130

131
  /* Some constants */
132
  const struct engine *e = r->e;
133
134
135
  const struct space *s = e->s;
  const int periodic = s->periodic;
  const double dim[3] = {s->dim[0], s->dim[1], s->dim[2]};
136
  const struct gravity_props *props = e->gravity_properties;
137
138
  // const float a_smooth = e->gravity_properties->a_smooth;
  // const float rlr_inv = 1. / (a_smooth * ci->super->width[0]);
139
140
141

  TIMER_TIC;

142
143
144
  /* Anything to do here? */
  if (!cell_is_active(ci, e)) return;

145
146
147
  /* Short-cut to the multipole */
  const struct multipole *multi_j = &cj->multipole->m_pole;

148
#ifdef SWIFT_DEBUG_CHECKS
149
150
  if (ci == cj) error("Interacting a cell with itself using M2L");

151
  if (multi_j->M_000 == 0.f) error("Multipole does not seem to have been set.");
152

153
154
  if (ci->multipole->pot.ti_init != e->ti_current)
    error("ci->grav tensor not initialised.");
155
#endif
156

157
158
159
160
  /* Do we need to drift the multipole ? */
  if (cj->ti_old_multipole != e->ti_current) cell_drift_multipole(cj, e);

  /* Let's interact at this level */
161
  gravity_M2L(&ci->multipole->pot, multi_j, ci->multipole->CoM,
162
              cj->multipole->CoM, props, periodic, dim);
163
164
165
166

  TIMER_TOC(timer_dopair_grav_mm);
}

167
168
169
170
171
172
173
static INLINE void runner_dopair_grav_pp_full(const struct engine *e,
                                              struct gravity_cache *ci_cache,
                                              struct gravity_cache *cj_cache,
                                              int gcount_i, int gcount_j,
                                              int gcount_padded_j,
                                              struct gpart *restrict gparts_i,
                                              struct gpart *restrict gparts_j) {
Matthieu Schaller's avatar
Matthieu Schaller committed
174

175
176
  TIMER_TIC;

177
178
  /* Loop over all particles in ci... */
  for (int pid = 0; pid < gcount_i; pid++) {
179

180
181
    /* Skip inactive particles */
    if (!ci_cache->active[pid]) continue;
182

183
184
    /* Skip particle that can use the multipole */
    if (ci_cache->use_mpole[pid]) continue;
185

186
187
188
189
#ifdef SWIFT_DEBUG_CHECKS
    if (!gpart_is_active(&gparts_i[pid], e))
      error("Active particle went through the cache");
#endif
190

191
192
193
    const float x_i = ci_cache->x[pid];
    const float y_i = ci_cache->y[pid];
    const float z_i = ci_cache->z[pid];
194

195
196
197
198
199
    /* Some powers of the softening length */
    const float h_i = ci_cache->epsilon[pid];
    const float h2_i = h_i * h_i;
    const float h_inv_i = 1.f / h_i;
    const float h_inv3_i = h_inv_i * h_inv_i * h_inv_i;
200

201
202
    /* Local accumulators for the acceleration */
    float a_x = 0.f, a_y = 0.f, a_z = 0.f;
203

204
205
206
207
208
209
    /* Make the compiler understand we are in happy vectorization land */
    swift_align_information(cj_cache->x, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(cj_cache->y, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(cj_cache->z, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(cj_cache->m, SWIFT_CACHE_ALIGNMENT);
    swift_assume_size(gcount_padded_j, VEC_SIZE);
210

211
212
    /* Loop over every particle in the other cell. */
    for (int pjd = 0; pjd < gcount_padded_j; pjd++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
213

214
215
216
217
218
      /* Get info about j */
      const float x_j = cj_cache->x[pjd];
      const float y_j = cj_cache->y[pjd];
      const float z_j = cj_cache->z[pjd];
      const float mass_j = cj_cache->m[pjd];
219

220
221
222
223
      /* Compute the pairwise (square) distance. */
      const float dx = x_i - x_j;
      const float dy = y_i - y_j;
      const float dz = z_i - z_j;
224
225
      const float r2 = dx * dx + dy * dy + dz * dz;

226
227
#ifdef SWIFT_DEBUG_CHECKS
      if (r2 == 0.f) error("Interacting particles with 0 distance");
228

229
230
231
232
233
234
      /* Check that particles have been drifted to the current time */
      if (gparts_i[pid].ti_drift != e->ti_current)
        error("gpi not drifted to current time");
      if (pjd < gcount_j && gparts_j[pjd].ti_drift != e->ti_current)
        error("gpj not drifted to current time");
#endif
235

236
237
238
239
240
241
242
243
      /* Interact! */
      float f_ij;
      runner_iact_grav_pp_full(r2, h2_i, h_inv_i, h_inv3_i, mass_j, &f_ij);

      /* Store it back */
      a_x -= f_ij * dx;
      a_y -= f_ij * dy;
      a_z -= f_ij * dz;
244
245

#ifdef SWIFT_DEBUG_CHECKS
246
247
      /* Update the interaction counter if it's not a padded gpart */
      if (pjd < gcount_j) gparts_i[pid].num_interacted++;
248
#endif
249
    }
250

251
252
253
254
255
    /* Store everything back in cache */
    ci_cache->a_x[pid] = a_x;
    ci_cache->a_y[pid] = a_y;
    ci_cache->a_z[pid] = a_z;
  }
256
257

  TIMER_TOC(timer_dopair_grav_pp);
258
}
259

260
261
262
263
264
static INLINE void runner_dopair_grav_pp_truncated(
    const struct engine *e, const float rlr_inv, struct gravity_cache *ci_cache,
    struct gravity_cache *cj_cache, int gcount_i, int gcount_j,
    int gcount_padded_j, struct gpart *restrict gparts_i,
    struct gpart *restrict gparts_j) {
265

266
267
  TIMER_TIC;

268
269
  /* Loop over all particles in ci... */
  for (int pid = 0; pid < gcount_i; pid++) {
270

271
272
    /* Skip inactive particles */
    if (!ci_cache->active[pid]) continue;
273

274
275
    /* Skip particle that can use the multipole */
    if (ci_cache->use_mpole[pid]) continue;
276
277

#ifdef SWIFT_DEBUG_CHECKS
278
279
    if (!gpart_is_active(&gparts_i[pid], e))
      error("Active particle went through the cache");
280
281
#endif

282
283
284
    const float x_i = ci_cache->x[pid];
    const float y_i = ci_cache->y[pid];
    const float z_i = ci_cache->z[pid];
285

286
287
288
289
290
    /* Some powers of the softening length */
    const float h_i = ci_cache->epsilon[pid];
    const float h2_i = h_i * h_i;
    const float h_inv_i = 1.f / h_i;
    const float h_inv3_i = h_inv_i * h_inv_i * h_inv_i;
291

292
293
    /* Local accumulators for the acceleration */
    float a_x = 0.f, a_y = 0.f, a_z = 0.f;
294

295
296
297
298
299
300
    /* Make the compiler understand we are in happy vectorization land */
    swift_align_information(cj_cache->x, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(cj_cache->y, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(cj_cache->z, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(cj_cache->m, SWIFT_CACHE_ALIGNMENT);
    swift_assume_size(gcount_padded_j, VEC_SIZE);
301

302
303
    /* Loop over every particle in the other cell. */
    for (int pjd = 0; pjd < gcount_padded_j; pjd++) {
304

305
      /* Get info about j */
306
307
308
      const float x_j = cj_cache->x[pjd];
      const float y_j = cj_cache->y[pjd];
      const float z_j = cj_cache->z[pjd];
309
      const float mass_j = cj_cache->m[pjd];
Matthieu Schaller's avatar
Matthieu Schaller committed
310

311
312
313
314
      /* Compute the pairwise (square) distance. */
      const float dx = x_i - x_j;
      const float dy = y_i - y_j;
      const float dz = z_i - z_j;
315
316
      const float r2 = dx * dx + dy * dy + dz * dz;

317
318
#ifdef SWIFT_DEBUG_CHECKS
      if (r2 == 0.f) error("Interacting particles with 0 distance");
319

320
321
322
323
324
325
      /* Check that particles have been drifted to the current time */
      if (gparts_i[pid].ti_drift != e->ti_current)
        error("gpi not drifted to current time");
      if (pjd < gcount_j && gparts_j[pjd].ti_drift != e->ti_current)
        error("gpj not drifted to current time");
#endif
326

327
328
329
330
331
332
333
334
335
      /* Interact! */
      float f_ij;
      runner_iact_grav_pp_truncated(r2, h2_i, h_inv_i, h_inv3_i, mass_j,
                                    rlr_inv, &f_ij);

      /* Store it back */
      a_x -= f_ij * dx;
      a_y -= f_ij * dy;
      a_z -= f_ij * dz;
336
337

#ifdef SWIFT_DEBUG_CHECKS
338
339
      /* Update the interaction counter if it's not a padded gpart */
      if (pjd < gcount_j) gparts_i[pid].num_interacted++;
340
#endif
341
    }
342

343
344
345
346
347
    /* Store everything back in cache */
    ci_cache->a_x[pid] = a_x;
    ci_cache->a_y[pid] = a_y;
    ci_cache->a_z[pid] = a_z;
  }
348
349

  TIMER_TOC(timer_dopair_grav_pp);
350
}
351

352
353
354
355
356
357
static INLINE void runner_dopair_grav_pm(
    const struct engine *restrict e, struct gravity_cache *ci_cache,
    int gcount_i, int gcount_padded_i, struct gpart *restrict gparts_i,
    const float CoM_j[3], const struct multipole *restrict multi_j,
    struct cell *restrict cj) {

358
359
  TIMER_TIC;

360
  /* Make the compiler understand we are in happy vectorization land */
361
362
363
364
365
366
367
368
369
370
371
372
  swift_declare_aligned_ptr(float, x, ci_cache->x, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, y, ci_cache->y, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, z, ci_cache->z, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, epsilon, ci_cache->epsilon,
                            SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, a_x, ci_cache->a_x, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, a_y, ci_cache->a_y, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, a_z, ci_cache->a_z, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(int, active, ci_cache->active,
                            SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(int, use_mpole, ci_cache->use_mpole,
                            SWIFT_CACHE_ALIGNMENT);
373
  swift_assume_size(gcount_padded_i, VEC_SIZE);
374

375
376
  /* Loop over all particles in ci... */
  for (int pid = 0; pid < gcount_padded_i; pid++) {
377

378
    /* Skip inactive particles */
379
    if (!active[pid]) continue;
380

381
    /* Skip particle that cannot use the multipole */
382
    if (!use_mpole[pid]) continue;
383
384

#ifdef SWIFT_DEBUG_CHECKS
385
386
    if (pid < gcount_i && !gpart_is_active(&gparts_i[pid], e))
      error("Active particle went through the cache");
387
388
#endif

389
390
391
    const float x_i = x[pid];
    const float y_i = y[pid];
    const float z_i = z[pid];
392
393

    /* Some powers of the softening length */
394
    const float h_i = epsilon[pid];
395
396
397
398
399
400
401
    const float h_inv_i = 1.f / h_i;

    /* Distance to the Multipole */
    const float dx = x_i - CoM_j[0];
    const float dy = y_i - CoM_j[1];
    const float dz = z_i - CoM_j[2];
    const float r2 = dx * dx + dy * dy + dz * dz;
Matthieu Schaller's avatar
Matthieu Schaller committed
402

403
404
405
406
407
408
    /* Interact! */
    float f_x, f_y, f_z;
    runner_iact_grav_pm(dx, dy, dz, r2, h_i, h_inv_i, multi_j, &f_x, &f_y,
                        &f_z);

    /* Store it back */
409
410
411
    a_x[pid] = f_x;
    a_y[pid] = f_y;
    a_z[pid] = f_z;
412
413

#ifdef SWIFT_DEBUG_CHECKS
414
415
416
    /* Update the interaction counter */
    if (pid < gcount_i)
      gparts_i[pid].num_interacted += cj->multipole->m_pole.num_gpart;
417
418
#endif
  }
419
420

  TIMER_TOC(timer_dopair_grav_pm);
421
422
423
424
}

/**
 * @brief Computes the interaction of all the particles in a cell with all the
425
 * particles of another cell (switching function between full and truncated).
426
427
428
429
430
 *
 * @param r The #runner.
 * @param ci The first #cell.
 * @param cj The other #cell.
 */
431
void runner_dopair_grav_pp(struct runner *r, struct cell *ci, struct cell *cj) {
432

433
434
435
436
437
  const struct engine *e = r->e;

  TIMER_TIC;

  /* Anything to do here? */
438
  if (!cell_is_active(ci, e) && !cell_is_active(cj, e)) return;
439
440
441
442
443
444
445
446
447

  /* Check that we are not doing something stupid */
  if (ci->split || cj->split) error("Running P-P on splitable cells");

  /* Let's start by drifting things */
  if (!cell_are_gpart_drifted(ci, e)) error("Un-drifted gparts");
  if (!cell_are_gpart_drifted(cj, e)) error("Un-drifted gparts");

  /* Recover some useful constants */
448
  struct space *s = e->s;
449
  const int periodic = s->periodic;
450
  const double cell_width = s->width[0];
451
  const float theta_crit2 = e->gravity_properties->theta_crit2;
452
453
  const double a_smooth = e->gravity_properties->a_smooth;
  const double r_cut_min = e->gravity_properties->r_cut_min;
454
  const double rlr = cell_width * a_smooth;
455
  const double min_trunc = rlr * r_cut_min;
456
457
458
459
460
461
  const float rlr_inv = 1. / rlr;

  /* Caches to play with */
  struct gravity_cache *const ci_cache = &r->ci_gravity_cache;
  struct gravity_cache *const cj_cache = &r->cj_gravity_cache;

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
  /* Get the distance vector between the pairs, wrapping. */
  double cell_shift[3];
  space_getsid(s, &ci, &cj, cell_shift);

  /* Record activity status */
  const int ci_active = cell_is_active(ci, e);
  const int cj_active = cell_is_active(cj, e);

  /* Do we need to drift the multipoles ? */
  if (cj_active && ci->ti_old_multipole != e->ti_current)
    cell_drift_multipole(ci, e);
  if (ci_active && cj->ti_old_multipole != e->ti_current)
    cell_drift_multipole(cj, e);

  /* Centre of the cell pair */
  const double loc[3] = {ci->loc[0],   // + 0. * ci->width[0],
                         ci->loc[1],   // + 0. * ci->width[1],
                         ci->loc[2]};  // + 0. * ci->width[2]};
480

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
  /* Shift to apply to the particles in each cell */
  const double shift_i[3] = {loc[0] + cell_shift[0], loc[1] + cell_shift[1],
                             loc[2] + cell_shift[2]};
  const double shift_j[3] = {loc[0], loc[1], loc[2]};

  /* Recover the multipole info and shift the CoM locations */
  const float rmax_i = ci->multipole->r_max;
  const float rmax_j = cj->multipole->r_max;
  const float rmax2_i = rmax_i * rmax_i;
  const float rmax2_j = rmax_j * rmax_j;
  const struct multipole *multi_i = &ci->multipole->m_pole;
  const struct multipole *multi_j = &cj->multipole->m_pole;
  const float CoM_i[3] = {ci->multipole->CoM[0] - shift_i[0],
                          ci->multipole->CoM[1] - shift_i[1],
                          ci->multipole->CoM[2] - shift_i[2]};
  const float CoM_j[3] = {cj->multipole->CoM[0] - shift_j[0],
                          cj->multipole->CoM[1] - shift_j[1],
                          cj->multipole->CoM[2] - shift_j[2]};

  /* Start by constructing particle caches */
501
502

  /* Computed the padded counts */
503
504
  const int gcount_i = ci->gcount;
  const int gcount_j = cj->gcount;
505
506
  const int gcount_padded_i = gcount_i - (gcount_i % VEC_SIZE) + VEC_SIZE;
  const int gcount_padded_j = gcount_j - (gcount_j % VEC_SIZE) + VEC_SIZE;
507

508
#ifdef SWIFT_DEBUG_CHECKS
509
  /* Check that we fit in cache */
Matthieu Schaller's avatar
Matthieu Schaller committed
510
511
512
  if (gcount_i > ci_cache->count || gcount_j > cj_cache->count)
    error("Not enough space in the caches! gcount_i=%d gcount_j=%d", gcount_i,
          gcount_j);
513
#endif
514

515
516
  /* Fill the caches */
  gravity_cache_populate(e->max_active_bin, ci_cache, ci->gparts, gcount_i,
517
518
                         gcount_padded_i, shift_i, CoM_j, rmax2_j, theta_crit2,
                         ci);
519
  gravity_cache_populate(e->max_active_bin, cj_cache, cj->gparts, gcount_j,
520
521
                         gcount_padded_j, shift_j, CoM_i, rmax2_i, theta_crit2,
                         cj);
522

523
524
  /* Can we use the Newtonian version or do we need the truncated one ? */
  if (!periodic) {
525

526
    /* Not periodic -> Can always use Newtonian potential */
Matthieu Schaller's avatar
Matthieu Schaller committed
527

528
529
    /* Let's updated the active cell(s) only */
    if (ci_active) {
530

531
532
533
      /* First the P2P */
      runner_dopair_grav_pp_full(e, ci_cache, cj_cache, gcount_i, gcount_j,
                                 gcount_padded_j, ci->gparts, cj->gparts);
534

535
536
537
      /* Then the M2P */
      runner_dopair_grav_pm(e, ci_cache, gcount_i, gcount_padded_i, ci->gparts,
                            CoM_j, multi_j, cj);
538
    }
539
540
541
542
543
544
545
546
    if (cj_active) {

      /* First the P2P */
      runner_dopair_grav_pp_full(e, cj_cache, ci_cache, gcount_j, gcount_i,
                                 gcount_padded_i, cj->gparts, ci->gparts);
      /* Then the M2P */
      runner_dopair_grav_pm(e, cj_cache, gcount_j, gcount_padded_j, cj->gparts,
                            CoM_i, multi_i, ci);
547
    }
548

549
  } else { /* Periodic BC */
550

551
552
553
554
    /* Get the relative distance between the CoMs */
    const double dx[3] = {CoM_j[0] - CoM_i[0], CoM_j[1] - CoM_i[1],
                          CoM_j[2] - CoM_i[2]};
    const double r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];
555
556

    /* Get the maximal distance between any two particles */
557
    const double max_r = sqrt(r2) + rmax_i + rmax_j;
558
559

    /* Do we need to use the truncated interactions ? */
560
561
562
563
564
    if (max_r > min_trunc) {

      /* Periodic but far-away cells must use the truncated potential */

      /* Let's updated the active cell(s) only */
565
566
567
      if (ci_active) {

        /* First the (truncated) P2P */
568
569
570
        runner_dopair_grav_pp_truncated(e, rlr_inv, ci_cache, cj_cache,
                                        gcount_i, gcount_j, gcount_padded_j,
                                        ci->gparts, cj->gparts);
571
572
573
574
575
576
577
578

        /* Then the M2P */
        runner_dopair_grav_pm(e, ci_cache, gcount_i, gcount_padded_i,
                              ci->gparts, CoM_j, multi_j, cj);
      }
      if (cj_active) {

        /* First the (truncated) P2P */
579
580
581
        runner_dopair_grav_pp_truncated(e, rlr_inv, cj_cache, ci_cache,
                                        gcount_j, gcount_i, gcount_padded_i,
                                        cj->gparts, ci->gparts);
582
583
584
585
586
587

        /* Then the M2P */
        runner_dopair_grav_pm(e, cj_cache, gcount_j, gcount_padded_j,
                              cj->gparts, CoM_i, multi_i, ci);
      }

588
589
590
591
592
    } else {

      /* Periodic but close-by cells can use the full Newtonian potential */

      /* Let's updated the active cell(s) only */
593
594
595
      if (ci_active) {

        /* First the (Newtonian) P2P */
596
597
        runner_dopair_grav_pp_full(e, ci_cache, cj_cache, gcount_i, gcount_j,
                                   gcount_padded_j, ci->gparts, cj->gparts);
598
599
600
601
602
603
604
605

        /* Then the M2P */
        runner_dopair_grav_pm(e, ci_cache, gcount_i, gcount_padded_i,
                              ci->gparts, CoM_j, multi_j, cj);
      }
      if (cj_active) {

        /* First the (Newtonian) P2P */
606
607
        runner_dopair_grav_pp_full(e, cj_cache, ci_cache, gcount_j, gcount_i,
                                   gcount_padded_i, cj->gparts, ci->gparts);
608
609
610
611
612

        /* Then the M2P */
        runner_dopair_grav_pm(e, cj_cache, gcount_j, gcount_padded_j,
                              cj->gparts, CoM_i, multi_i, ci);
      }
613
    }
614
  }
615

616
617
618
619
  /* Write back to the particles */
  if (ci_active) gravity_cache_write_back(ci_cache, ci->gparts, gcount_i);
  if (cj_active) gravity_cache_write_back(cj_cache, cj->gparts, gcount_j);

620
  TIMER_TOC(timer_dopair_grav_branch);
621
622
}

623
/**
624
625
 * @brief Computes the interaction of all the particles in a cell using the
 * full Newtonian potential.
626
627
 *
 * @param r The #runner.
Matthieu Schaller's avatar
Matthieu Schaller committed
628
 * @param c The #cell.
629
630
631
 *
 * @todo Use a local cache for the particles.
 */
632
void runner_doself_grav_pp_full(struct runner *r, struct cell *c) {
633

634
635
636
637
638
639
640
641
  /* Some constants */
  const struct engine *const e = r->e;
  struct gravity_cache *const ci_cache = &r->ci_gravity_cache;

  /* Cell properties */
  const int gcount = c->gcount;
  struct gpart *restrict gparts = c->gparts;
  const int c_active = cell_is_active(c, e);
642
643
644
  const double loc[3] = {c->loc[0] + 0.5 * c->width[0],
                         c->loc[1] + 0.5 * c->width[1],
                         c->loc[2] + 0.5 * c->width[2]};
645
646
647
648

  /* Anything to do here ?*/
  if (!c_active) return;

649
#ifdef SWIFT_DEBUG_CHECKS
650
651
  /* Check that we fit in cache */
  if (gcount > ci_cache->count)
652
    error("Not enough space in the cache! gcount=%d", gcount);
653
#endif
654
655
656
657

  /* Computed the padded counts */
  const int gcount_padded = gcount - (gcount % VEC_SIZE) + VEC_SIZE;

658
  gravity_cache_populate_no_mpole(e->max_active_bin, ci_cache, gparts, gcount,
659
                                  gcount_padded, loc, c);
660
661
662
663
664

  /* Ok... Here we go ! */

  /* Loop over all particles in ci... */
  for (int pid = 0; pid < gcount; pid++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
665

666
    /* Skip inactive particles */
667
    if (!ci_cache->active[pid]) continue;
Matthieu Schaller's avatar
Matthieu Schaller committed
668

669
670
671
    const float x_i = ci_cache->x[pid];
    const float y_i = ci_cache->y[pid];
    const float z_i = ci_cache->z[pid];
Matthieu Schaller's avatar
Matthieu Schaller committed
672

673
674
675
676
677
    /* Some powers of the softening length */
    const float h_i = ci_cache->epsilon[pid];
    const float h2_i = h_i * h_i;
    const float h_inv_i = 1.f / h_i;
    const float h_inv3_i = h_inv_i * h_inv_i * h_inv_i;
Matthieu Schaller's avatar
Matthieu Schaller committed
678

679
680
    /* Local accumulators for the acceleration */
    float a_x = 0.f, a_y = 0.f, a_z = 0.f;
Matthieu Schaller's avatar
Matthieu Schaller committed
681

682
683
684
685
686
687
    /* Make the compiler understand we are in happy vectorization land */
    swift_align_information(ci_cache->x, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(ci_cache->y, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(ci_cache->z, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(ci_cache->m, SWIFT_CACHE_ALIGNMENT);
    swift_assume_size(gcount_padded, VEC_SIZE);
Matthieu Schaller's avatar
Matthieu Schaller committed
688

689
690
    /* Loop over every other particle in the cell. */
    for (int pjd = 0; pjd < gcount_padded; pjd++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
691

692
      /* No self interaction */
Matthieu Schaller's avatar
Matthieu Schaller committed
693
      if (pid == pjd) continue;
694
695
696
697
698
699

      /* Get info about j */
      const float x_j = ci_cache->x[pjd];
      const float y_j = ci_cache->y[pjd];
      const float z_j = ci_cache->z[pjd];
      const float mass_j = ci_cache->m[pjd];
Matthieu Schaller's avatar
Matthieu Schaller committed
700

701
702
703
704
705
      /* Compute the pairwise (square) distance. */
      const float dx = x_i - x_j;
      const float dy = y_i - y_j;
      const float dz = z_i - z_j;
      const float r2 = dx * dx + dy * dy + dz * dz;
Matthieu Schaller's avatar
Matthieu Schaller committed
706

707
708
#ifdef SWIFT_DEBUG_CHECKS
      if (r2 == 0.f) error("Interacting particles with 0 distance");
Matthieu Schaller's avatar
Matthieu Schaller committed
709

710
711
      /* Check that particles have been drifted to the current time */
      if (gparts[pid].ti_drift != e->ti_current)
Matthieu Schaller's avatar
Matthieu Schaller committed
712
        error("gpi not drifted to current time");
713
      if (pjd < gcount && gparts[pjd].ti_drift != e->ti_current)
Matthieu Schaller's avatar
Matthieu Schaller committed
714
        error("gpj not drifted to current time");
715
#endif
Matthieu Schaller's avatar
Matthieu Schaller committed
716

717
718
719
      /* Interact! */
      float f_ij;
      runner_iact_grav_pp_full(r2, h2_i, h_inv_i, h_inv3_i, mass_j, &f_ij);
Matthieu Schaller's avatar
Matthieu Schaller committed
720

721
722
723
724
      /* Store it back */
      a_x -= f_ij * dx;
      a_y -= f_ij * dy;
      a_z -= f_ij * dz;
Matthieu Schaller's avatar
Matthieu Schaller committed
725

726
727
728
729
730
#ifdef SWIFT_DEBUG_CHECKS
      /* Update the interaction counter if it's not a padded gpart */
      if (pjd < gcount) gparts[pid].num_interacted++;
#endif
    }
Matthieu Schaller's avatar
Matthieu Schaller committed
731

732
    /* Store everything back in cache */
733
734
735
    ci_cache->a_x[pid] = a_x;
    ci_cache->a_y[pid] = a_y;
    ci_cache->a_z[pid] = a_z;
736
737
  }

738
  /* Write back to the particles */
739
  gravity_cache_write_back(ci_cache, gparts, gcount);
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
}

/**
 * @brief Computes the interaction of all the particles in a cell using the
 * truncated Newtonian potential.
 *
 * @param r The #runner.
 * @param c The #cell.
 *
 * @todo Use a local cache for the particles.
 */
void runner_doself_grav_pp_truncated(struct runner *r, struct cell *c) {

  /* Some constants */
  const struct engine *const e = r->e;
  const struct space *s = e->s;
  const double cell_width = s->width[0];
  const double a_smooth = e->gravity_properties->a_smooth;
  const double rlr = cell_width * a_smooth;
  const float rlr_inv = 1. / rlr;

761
762
763
764
765
766
767
  /* Caches to play with */
  struct gravity_cache *const ci_cache = &r->ci_gravity_cache;

  /* Cell properties */
  const int gcount = c->gcount;
  struct gpart *restrict gparts = c->gparts;
  const int c_active = cell_is_active(c, e);
768
769
770
  const double loc[3] = {c->loc[0] + 0.5 * c->width[0],
                         c->loc[1] + 0.5 * c->width[1],
                         c->loc[2] + 0.5 * c->width[2]};
771
772
773
774

  /* Anything to do here ?*/
  if (!c_active) return;

775
#ifdef SWIFT_DEBUG_CHECKS
776
777
  /* Check that we fit in cache */
  if (gcount > ci_cache->count)
778
    error("Not enough space in the caches! gcount=%d", gcount);
779
#endif
780
781
782
783

  /* Computed the padded counts */
  const int gcount_padded = gcount - (gcount % VEC_SIZE) + VEC_SIZE;

784
  gravity_cache_populate_no_mpole(e->max_active_bin, ci_cache, gparts, gcount,
785
                                  gcount_padded, loc, c);
786
787
788
789
790

  /* Ok... Here we go ! */

  /* Loop over all particles in ci... */
  for (int pid = 0; pid < gcount; pid++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
791

792
    /* Skip inactive particles */
793
    if (!ci_cache->active[pid]) continue;
Matthieu Schaller's avatar
Matthieu Schaller committed
794

795
796
797
    const float x_i = ci_cache->x[pid];
    const float y_i = ci_cache->y[pid];
    const float z_i = ci_cache->z[pid];
Matthieu Schaller's avatar
Matthieu Schaller committed
798

799
800
801
802
803
    /* Some powers of the softening length */
    const float h_i = ci_cache->epsilon[pid];
    const float h2_i = h_i * h_i;
    const float h_inv_i = 1.f / h_i;
    const float h_inv3_i = h_inv_i * h_inv_i * h_inv_i;
Matthieu Schaller's avatar
Matthieu Schaller committed
804

805
806
    /* Local accumulators for the acceleration */
    float a_x = 0.f, a_y = 0.f, a_z = 0.f;
Matthieu Schaller's avatar
Matthieu Schaller committed
807

808
809
810
811
812
813
    /* Make the compiler understand we are in happy vectorization land */
    swift_align_information(ci_cache->x, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(ci_cache->y, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(ci_cache->z, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(ci_cache->m, SWIFT_CACHE_ALIGNMENT);
    swift_assume_size(gcount_padded, VEC_SIZE);
Matthieu Schaller's avatar
Matthieu Schaller committed
814

815
816
    /* Loop over every other particle in the cell. */
    for (int pjd = 0; pjd < gcount_padded; pjd++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
817

818
      /* No self interaction */
Matthieu Schaller's avatar
Matthieu Schaller committed
819
      if (pid == pjd) continue;
820
821
822
823
824
825

      /* Get info about j */
      const float x_j = ci_cache->x[pjd];
      const float y_j = ci_cache->y[pjd];
      const float z_j = ci_cache->z[pjd];
      const float mass_j = ci_cache->m[pjd];
Matthieu Schaller's avatar
Matthieu Schaller committed
826

827
828
829
830
831
      /* Compute the pairwise (square) distance. */
      const float dx = x_i - x_j;
      const float dy = y_i - y_j;
      const float dz = z_i - z_j;
      const float r2 = dx * dx + dy * dy + dz * dz;
Matthieu Schaller's avatar
Matthieu Schaller committed
832

833
834
#ifdef SWIFT_DEBUG_CHECKS
      if (r2 == 0.f) error("Interacting particles with 0 distance");
Matthieu Schaller's avatar
Matthieu Schaller committed
835

836
837
      /* Check that particles have been drifted to the current time */
      if (gparts[pid].ti_drift != e->ti_current)
Matthieu Schaller's avatar
Matthieu Schaller committed
838
        error("gpi not drifted to current time");
839
      if (pjd < gcount && gparts[pjd].ti_drift != e->ti_current)
Matthieu Schaller's avatar
Matthieu Schaller committed
840
        error("gpj not drifted to current time");
841
#endif
Matthieu Schaller's avatar
Matthieu Schaller committed
842

843
844
845
846
      /* Interact! */
      float f_ij;
      runner_iact_grav_pp_truncated(r2, h2_i, h_inv_i, h_inv3_i, mass_j,
                                    rlr_inv, &f_ij);
847
848
849
850
851

      /* Store it back */
      a_x -= f_ij * dx;
      a_y -= f_ij * dy;
      a_z -= f_ij * dz;
Matthieu Schaller's avatar
Matthieu Schaller committed
852

853
854
855
856
857
#ifdef SWIFT_DEBUG_CHECKS
      /* Update the interaction counter if it's not a padded gpart */
      if (pjd < gcount) gparts[pid].num_interacted++;
#endif
    }
Matthieu Schaller's avatar
Matthieu Schaller committed
858

859
    /* Store everything back in cache */
860
861
862
    ci_cache->a_x[pid] = a_x;
    ci_cache->a_y[pid] = a_y;
    ci_cache->a_z[pid] = a_z;
863
864
  }

865
  /* Write back to the particles */
866
  gravity_cache_write_back(ci_cache, gparts, gcount);
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
}

/**
 * @brief Computes the interaction of all the particles in a cell directly
 * (Switching function between truncated and full)
 *
 * @param r The #runner.
 * @param c The #cell.
 */
void runner_doself_grav_pp(struct runner *r, struct cell *c) {

  /* Some properties of the space */
  const struct engine *e = r->e;
  const struct space *s = e->s;
  const int periodic = s->periodic;
  const double cell_width = s->width[0];
  const double a_smooth = e->gravity_properties->a_smooth;
  const double r_cut_min = e->gravity_properties->r_cut_min;
  const double min_trunc = cell_width * r_cut_min * a_smooth;

  TIMER_TIC;

#ifdef SWIFT_DEBUG_CHECKS
  if (c->gcount == 0) error("Doing self gravity on an empty cell !");
#endif

  /* Anything to do here? */
  if (!cell_is_active(c, e)) return;

896
897
898
  /* Check that we are not doing something stupid */
  if (c->split) error("Running P-P on a splitable cell");

899
  /* Do we need to start by drifting things ? */
900
  if (!cell_are_gpart_drifted(c, e)) error("Un-drifted gparts");
901
902
903
904
905
906
907

  /* Can we use the Newtonian version or do we need the truncated one ? */
  if (!periodic) {
    runner_doself_grav_pp_full(r, c);
  } else {

    /* Get the maximal distance between any two particles */
908
    const double max_r = 2. * c->multipole->r_max;
909
910
911
912
913
914
915

    /* Do we need to use the truncated interactions ? */
    if (max_r > min_trunc)
      runner_doself_grav_pp_truncated(r, c);
    else
      runner_doself_grav_pp_full(r, c);
  }
916

917
  TIMER_TOC(timer_doself_grav_pp);
918
919
}

Matthieu Schaller's avatar
Matthieu Schaller committed
920
921
922
923
924
925
926
/**
 * @brief Computes the interaction of all the particles in a cell with all the
 * particles of another cell.
 *
 * @param r The #runner.
 * @param ci The first #cell.
 * @param cj The other #cell.
927
 * @param gettimer Are we timing this ?
Matthieu Schaller's avatar
Matthieu Schaller committed
928
929
930
 *
 * @todo Use a local cache for the particles.
 */
931
932
void runner_dopair_grav(struct runner *r, struct cell *ci, struct cell *cj,
                        int gettimer) {
Matthieu Schaller's avatar
Matthieu Schaller committed
933

934
935
  /* Some constants */
  const struct engine *e = r->e;
936
937
  const struct space *s = e->s;
  const int periodic = s->periodic;
938
  const double cell_width = s->width[0];
939
  const double dim[3] = {s->dim[0], s->dim[1], s->dim[2]};
940
  const struct gravity_props *props = e->gravity_properties;
941
  const double theta_crit2 = props->theta_crit2;
942
943
  const double max_distance = props->a_smooth * props->r_cut_max * cell_width;
  const double max_distance2 = max_distance * max_distance;
944

Matthieu Schaller's avatar
Matthieu Schaller committed
945
#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
946

Matthieu Schaller's avatar
Matthieu Schaller committed
947
948
949
950
  const int gcount_i = ci->gcount;
  const int gcount_j = cj->gcount;

  /* Early abort? */
Matthieu Schaller's avatar
Matthieu Schaller committed
951
952
  if (gcount_i == 0 || gcount_j == 0)
    error("Doing pair gravity on an empty cell !");
Matthieu Schaller's avatar
Matthieu Schaller committed
953
954

  /* Sanity check */
955
  if (ci == cj) error("Pair interaction between a cell and itself.");
956
957
958
959
960

  if (cell_is_active(ci, e) && ci->ti_old_multipole != e->ti_current)
    error("ci->multipole not drifted.");
  if (cell_is_active(cj, e) && cj->ti_old_multipole != e->ti_current)
    error("cj->multipole not drifted.");
961
962
#endif

963
  TIMER_TIC;
964

965
966
  /* Anything to do here? */
  if (!cell_is_active(ci, e) && !cell_is_active(cj, e)) return;
Matthieu Schaller's avatar
Matthieu Schaller committed
967

968
969
970
  /* Recover the multipole information */
  struct gravity_tensors *const multi_i = ci->multipole;
  struct gravity_tensors *const multi_j = cj->multipole;
971

972
  /* Get the distance between the CoMs */
973
974
975
  double dx = multi_i->CoM_old[0] - multi_j->CoM_old[0];
  double dy = multi_i->CoM_old[1] - multi_j->CoM_old[1];
  double dz = multi_i->CoM_old[2] - multi_j->CoM_old[2];
976

977
978
979
980
981
  /* Apply BC */
  if (periodic) {
    dx = nearest(dx, dim[0]);
    dy = nearest(dy, dim[1]);
    dz = nearest(dz, dim[2]);
982
  }
983
  const double r2 = dx * dx + dy * dy + dz * dz;
984

985
986
  /* Are we beyond the distance where the truncated forces are 0? */
  if (periodic && r2 > max_distance2) {
987

988
989
990
991
992
993
994
995
996
997
998
999
#ifdef SWIFT_DEBUG_CHECKS
    /* Need to account for the interactions we missed */
    if (cell_is_active(ci, e))
      multi_i->pot.num_interacted += multi_j->m_pole.num_gpart;
    if (cell_is_active(cj, e))
      multi_j->pot.num_interacted += multi_i->m_pole.num_gpart;
#endif
    return;
  }

  /* OK, we actually need to compute this pair. Let's find the cheapest
   * option... */
1000

1001
  /* Can we use M-M interactions ? */