hydro.h 13.8 KB
Newer Older
1
2
/*******************************************************************************
 * This file is part of SWIFT.
3
 * Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/
19
20
21
22
23
24
25
26
27
28
29
30
31
#ifndef SWIFT_MINIMAL_HYDRO_H
#define SWIFT_MINIMAL_HYDRO_H

/**
 * @file Minimal/hydro.h
 * @brief Minimal conservative implementation of SPH (Non-neighbour loop
 * equations)
 *
 * The thermal variable is the internal energy (u). Simple constant
 * viscosity term without switches is implemented. No thermal conduction
 * term is implemented.
 *
 * This corresponds to equations (43), (44), (45), (101), (103)  and (104) with
32
33
 * \f$\beta=3\f$ and \f$\alpha_u=0\f$ of Price, D., Journal of Computational
 * Physics, 2012, Volume 231, Issue 3, pp. 759-794.
34
 */
35

36
#include "adiabatic_index.h"
37
#include "approx_math.h"
38
#include "dimension.h"
39
#include "equation_of_state.h"
40
#include "hydro_properties.h"
41
#include "hydro_space.h"
42
#include "kernel_hydro.h"
43
#include "minmax.h"
44
45
46
47
48
49
50
51
52
53
54

/**
 * @brief Returns the internal energy of a particle
 *
 * For implementations where the main thermodynamic variable
 * is not internal energy, this function computes the internal
 * energy from the thermodynamic variable.
 *
 * @param p The particle of interest
 */
__attribute__((always_inline)) INLINE static float hydro_get_internal_energy(
55
    const struct part *restrict p) {
56

57
  return p->u;
58
59
60
61
62
63
64
65
}

/**
 * @brief Returns the pressure of a particle
 *
 * @param p The particle of interest
 */
__attribute__((always_inline)) INLINE static float hydro_get_pressure(
66
    const struct part *restrict p) {
67

68
  return gas_pressure_from_internal_energy(p->rho, p->u);
69
70
71
72
73
74
75
76
77
78
79
80
}

/**
 * @brief Returns the entropy of a particle
 *
 * For implementations where the main thermodynamic variable
 * is not entropy, this function computes the entropy from
 * the thermodynamic variable.
 *
 * @param p The particle of interest
 */
__attribute__((always_inline)) INLINE static float hydro_get_entropy(
81
    const struct part *restrict p) {
82

83
  return gas_entropy_from_internal_energy(p->rho, p->u);
84
85
86
87
88
89
90
91
}

/**
 * @brief Returns the sound speed of a particle
 *
 * @param p The particle of interest
 */
__attribute__((always_inline)) INLINE static float hydro_get_soundspeed(
92
    const struct part *restrict p) {
93

94
  return p->force.soundspeed;
95
}
96

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/**
 * @brief Returns the density of a particle
 *
 * @param p The particle of interest
 */
__attribute__((always_inline)) INLINE static float hydro_get_density(
    const struct part *restrict p) {

  return p->rho;
}

/**
 * @brief Returns the mass of a particle
 *
 * @param p The particle of interest
 */
__attribute__((always_inline)) INLINE static float hydro_get_mass(
    const struct part *restrict p) {

  return p->mass;
}

119
/**
120
 * @brief Returns the time derivative of internal energy of a particle
121
 *
122
 * We assume a constant density.
123
 *
124
 * @param p The particle of interest
125
 */
126
127
__attribute__((always_inline)) INLINE static float hydro_get_internal_energy_dt(
    const struct part *restrict p) {
128

129
  return p->u_dt;
130
131
132
}

/**
133
 * @brief Returns the time derivative of internal energy of a particle
134
 *
135
 * We assume a constant density.
136
 *
137
138
 * @param p The particle of interest.
 * @param du_dt The new time derivative of the internal energy.
139
 */
140
141
__attribute__((always_inline)) INLINE static void hydro_set_internal_energy_dt(
    struct part *restrict p, float du_dt) {
142

143
  p->u_dt = du_dt;
144
}
145
146
147
/**
 * @brief Computes the hydro time-step of a given particle
 *
148
149
150
 * This function returns the time-step of a particle given its hydro-dynamical
 * state. A typical time-step calculation would be the use of the CFL condition.
 *
151
152
 * @param p Pointer to the particle data
 * @param xp Pointer to the extended particle data
153
 * @param hydro_properties The SPH parameters
154
155
156
 *
 */
__attribute__((always_inline)) INLINE static float hydro_compute_timestep(
157
158
    const struct part *restrict p, const struct xpart *restrict xp,
    const struct hydro_props *restrict hydro_properties) {
159
160

  const float CFL_condition = hydro_properties->CFL_condition;
161
162

  /* CFL condition */
163
164
  const float dt_cfl =
      2.f * kernel_gamma * CFL_condition * p->h / p->force.v_sig;
165

166
  return dt_cfl;
167
168
}

169
170
171
172
173
174
175
176
177
178
/**
 * @brief Does some extra hydro operations once the actual physical time step
 * for the particle is known.
 *
 * @param p The particle to act upon.
 * @param dt Physical time step of the particle during the next step.
 */
__attribute__((always_inline)) INLINE static void hydro_timestep_extra(
    struct part *p, float dt) {}

179
180
181
182
/**
 * @brief Prepares a particle for the density calculation.
 *
 * Zeroes all the relevant arrays in preparation for the sums taking place in
183
184
 * the various density loop over neighbours. Typically, all fields of the
 * density sub-structure of a particle get zeroed in here.
185
186
 *
 * @param p The particle to act upon
187
 * @param hs #hydro_space containing hydro specific space information.
188
 */
189
__attribute__((always_inline)) INLINE static void hydro_init_part(
190
    struct part *restrict p, const struct hydro_space *hs) {
191

192
193
194
  p->density.wcount = 0.f;
  p->density.wcount_dh = 0.f;
  p->rho = 0.f;
195
  p->density.rho_dh = 0.f;
196
197
198
199
200
201
202
}

/**
 * @brief Finishes the density calculation.
 *
 * Multiplies the density and number of neighbours by the appropiate constants
 * and add the self-contribution term.
203
204
205
 * Additional quantities such as velocity gradients will also get the final
 *terms
 * added to them here.
206
207
208
 *
 * @param p The particle to act upon
 */
209
__attribute__((always_inline)) INLINE static void hydro_end_density(
210
    struct part *restrict p) {
211
212
213

  /* Some smoothing length multiples. */
  const float h = p->h;
214
215
216
  const float h_inv = 1.0f / h;                       /* 1/h */
  const float h_inv_dim = pow_dimension(h_inv);       /* 1/h^d */
  const float h_inv_dim_plus_one = h_inv_dim * h_inv; /* 1/h^(d+1) */
217

218
219
  /* Final operation on the density (add self-contribution). */
  p->rho += p->mass * kernel_root;
220
  p->density.rho_dh -= hydro_dimension * p->mass * kernel_root;
221
  p->density.wcount += kernel_root;
222
  p->density.wcount_dh -= hydro_dimension * kernel_root;
223
224

  /* Finish the calculation by inserting the missing h-factors */
225
  p->rho *= h_inv_dim;
226
  p->density.rho_dh *= h_inv_dim_plus_one;
227
  p->density.wcount *= kernel_norm;
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
  p->density.wcount_dh *= h_inv_dim_plus_one;
}

/**
 * @brief Sets all particle fields to sensible values when the #part has 0 ngbs.
 *
 * @param p The particle to act upon
 * @param xp The extended particle data to act upon
 */
__attribute__((always_inline)) INLINE static void hydro_part_has_no_neighbours(
    struct part *restrict p, struct xpart *restrict xp) {

  /* Some smoothing length multiples. */
  const float h = p->h;
  const float h_inv = 1.0f / h;                 /* 1/h */
  const float h_inv_dim = pow_dimension(h_inv); /* 1/h^d */

  /* Re-set problematic values */
  p->rho = p->mass * kernel_root * h_inv_dim;
  p->density.wcount = kernel_root * kernel_norm * h_inv_dim;
  p->density.rho_dh = 0.f;
  p->density.wcount_dh = 0.f;
250
251
252
253
254
}

/**
 * @brief Prepare a particle for the force calculation.
 *
255
256
257
258
259
260
 * This function is called in the ghost task to convert some quantities coming
 * from the density loop over neighbours into quantities ready to be used in the
 * force loop over neighbours. Quantities are typically read from the density
 * sub-structure and written to the force sub-structure.
 * Examples of calculations done here include the calculation of viscosity term
 * constants, thermal conduction terms, hydro conversions, etc.
261
262
263
264
 *
 * @param p The particle to act upon
 * @param xp The extended particle data to act upon
 */
265
__attribute__((always_inline)) INLINE static void hydro_prepare_force(
266
    struct part *restrict p, struct xpart *restrict xp) {
267

268
  /* Compute the pressure */
269
  const float pressure = gas_pressure_from_internal_energy(p->rho, p->u);
270
271

  /* Compute the sound speed */
272
  const float soundspeed = gas_soundspeed_from_pressure(p->rho, pressure);
273

274
  /* Compute the "grad h" term */
275
  const float rho_inv = 1.f / p->rho;
276
277
  const float grad_h_term =
      1.f / (1.f + hydro_dimension_inv * p->h * p->density.rho_dh * rho_inv);
278

279
280
  /* Update variables. */
  p->force.f = grad_h_term;
281
  p->force.pressure = pressure;
282
  p->force.soundspeed = soundspeed;
283
284
285
286
287
288
}

/**
 * @brief Reset acceleration fields of a particle
 *
 * Resets all hydro acceleration and time derivative fields in preparation
289
 * for the sums taking  place in the various force tasks.
290
291
292
 *
 * @param p The particle to act upon
 */
293
__attribute__((always_inline)) INLINE static void hydro_reset_acceleration(
294
    struct part *restrict p) {
295
296
297
298
299
300
301

  /* Reset the acceleration. */
  p->a_hydro[0] = 0.0f;
  p->a_hydro[1] = 0.0f;
  p->a_hydro[2] = 0.0f;

  /* Reset the time derivatives. */
302
  p->u_dt = 0.0f;
303
  p->force.h_dt = 0.0f;
304
305
306
  p->force.v_sig = 0.0f;
}

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/**
 * @brief Sets the values to be predicted in the drifts to their values at a
 * kick time
 *
 * @param p The particle.
 * @param xp The extended data of this particle.
 */
__attribute__((always_inline)) INLINE static void hydro_reset_predicted_values(
    struct part *restrict p, const struct xpart *restrict xp) {

  /* Re-set the predicted velocities */
  p->v[0] = xp->v_full[0];
  p->v[1] = xp->v_full[1];
  p->v[2] = xp->v_full[2];

  /* Re-set the entropy */
  p->u = xp->u_full;
}

326
327
328
/**
 * @brief Predict additional particle fields forward in time when drifting
 *
329
330
331
 * Additional hydrodynamic quantites are drifted forward in time here. These
 * include thermal quantities (thermal energy or total energy or entropy, ...).
 *
332
333
334
 * @param p The particle.
 * @param xp The extended data of the particle.
 * @param dt The drift time-step.
335
336
 */
__attribute__((always_inline)) INLINE static void hydro_predict_extra(
337
    struct part *restrict p, const struct xpart *restrict xp, float dt) {
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

  const float h_inv = 1.f / p->h;

  /* Predict smoothing length */
  const float w1 = p->force.h_dt * h_inv * dt;
  if (fabsf(w1) < 0.2f)
    p->h *= approx_expf(w1); /* 4th order expansion of exp(w) */
  else
    p->h *= expf(w1);

  /* Predict density */
  const float w2 = -hydro_dimension * w1;
  if (fabsf(w2) < 0.2f)
    p->rho *= approx_expf(w2); /* 4th order expansion of exp(w) */
  else
    p->rho *= expf(w2);
354

355
356
357
358
359
  /* Predict the internal energy */
  p->u += p->u_dt * dt;

  /* Compute the new pressure */
  const float pressure = gas_pressure_from_internal_energy(p->rho, p->u);
360
361

  /* Compute the new sound speed */
362
  const float soundspeed = gas_soundspeed_from_pressure(p->rho, pressure);
363
364
365

  p->force.pressure = pressure;
  p->force.soundspeed = soundspeed;
366
367
368
369
370
}

/**
 * @brief Finishes the force calculation.
 *
371
372
373
 * Multiplies the force and accelerations by the appropiate constants
 * and add the self-contribution term. In most cases, there is nothing
 * to do here.
374
375
376
 *
 * @param p The particle to act upon
 */
377
__attribute__((always_inline)) INLINE static void hydro_end_force(
378
379
    struct part *restrict p) {

380
  p->force.h_dt *= p->h * hydro_dimension_inv;
381
}
382
383
384
385

/**
 * @brief Kick the additional variables
 *
386
387
388
 * Additional hydrodynamic quantites are kicked forward in time here. These
 * include thermal quantities (thermal energy or total energy or entropy, ...).
 *
389
 * @param p The particle to act upon
390
 * @param xp The particle extended data to act upon
391
392
 * @param dt The time-step for this kick
 */
393
__attribute__((always_inline)) INLINE static void hydro_kick_extra(
394
    struct part *restrict p, struct xpart *restrict xp, float dt) {
395

396
  /* Do not decrease the energy by more than a factor of 2*/
397
  if (dt > 0. && p->u_dt * dt < -0.5f * xp->u_full) {
398
399
400
    p->u_dt = -0.5f * xp->u_full / dt;
  }
  xp->u_full += p->u_dt * dt;
401
402

  /* Compute the pressure */
403
  const float pressure = gas_pressure_from_internal_energy(p->rho, xp->u_full);
404

405
406
  /* Compute the sound speed */
  const float soundspeed = gas_soundspeed_from_internal_energy(p->rho, p->u);
407

408
  p->force.pressure = pressure;
409
  p->force.soundspeed = soundspeed;
410
}
411
412

/**
413
 * @brief Converts hydro quantity of a particle at the start of a run
414
 *
415
416
417
418
 * This function is called once at the end of the engine_init_particle()
 * routine (at the start of a calculation) after the densities of
 * particles have been computed.
 * This can be used to convert internal energy into entropy for instance.
419
420
 *
 * @param p The particle to act upon
421
 * @param xp The extended particle to act upon
422
 */
423
__attribute__((always_inline)) INLINE static void hydro_convert_quantities(
424
    struct part *restrict p, struct xpart *restrict xp) {
425
426
427

  /* Compute the pressure */
  const float pressure = gas_pressure_from_internal_energy(p->rho, p->u);
428
429
430
431

  /* Compute the sound speed */
  const float soundspeed = gas_soundspeed_from_internal_energy(p->rho, p->u);

432
  p->force.pressure = pressure;
433
  p->force.soundspeed = soundspeed;
434
}
435

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/**
 * @brief Initialises the particles for the first time
 *
 * This function is called only once just after the ICs have been
 * read in to do some conversions or assignments between the particle
 * and extended particle fields.
 *
 * @param p The particle to act upon
 * @param xp The extended particle data to act upon
 */
__attribute__((always_inline)) INLINE static void hydro_first_init_part(
    struct part *restrict p, struct xpart *restrict xp) {

  p->time_bin = 0;
  xp->v_full[0] = p->v[0];
  xp->v_full[1] = p->v[1];
  xp->v_full[2] = p->v[2];
  xp->u_full = p->u;

  hydro_reset_acceleration(p);
456
  hydro_init_part(p, NULL);
457
458
}

459
#endif /* SWIFT_MINIMAL_HYDRO_H */