cell.c 12.1 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 * Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <float.h>
#include <limits.h>
#include <math.h>

32
33
34
35
36
/* MPI headers. */
#ifdef WITH_MPI
    #include <mpi.h>
#endif

37
38
39
40
41
/* Switch off timers. */
#ifdef TIMER
    #undef TIMER
#endif

42
/* Local headers. */
43
#include "const.h"
44
45
46
#include "cycle.h"
#include "lock.h"
#include "task.h"
47
#include "timers.h"
48
#include "part.h"
49
#include "space.h"
50
#include "cell.h"
51
52
#include "error.h"
#include "inline.h"
53
54


55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
 
int cell_getsize ( struct cell *c ) {

    int k, count = 1;
    
    /* Sum up the progeny if split. */
    if ( c->split )
        for ( k = 0 ; k < 8 ; k++ )
            if ( c->progeny[k] != NULL )
                count += cell_getsize( c->progeny[k] );
                
    /* Return the final count. */
    return count;

    }


/** 
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
 
87
int cell_unpack ( struct pcell *pc , struct cell *c , struct space *s ) {
88
89
90
91
92
93
94
95
96

    int k, count = 1;
    struct cell *temp;
    
    /* Unpack the current pcell. */
    c->h_max = pc->h_max;
    c->dt_min = pc->dt_min;
    c->dt_max = pc->dt_max;
    c->count = pc->count;
Pedro Gonnet's avatar
Pedro Gonnet committed
97
    c->tag = pc->tag;
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    
    /* Fill the progeny recursively, depth-first. */
    for ( k = 0 ; k < 8 ; k++ )
        if ( pc->progeny[k] >= 0 ) {
            temp = space_getcell( s );
            temp->count = 0;
            temp->loc[0] = c->loc[0];
            temp->loc[1] = c->loc[1];
            temp->loc[2] = c->loc[2];
            temp->h[0] = c->h[0]/2;
            temp->h[1] = c->h[1]/2;
            temp->h[2] = c->h[2]/2;
            temp->dmin = c->dmin/2;
            if ( k & 4 )
                temp->loc[0] += temp->h[0];
            if ( k & 2 )
                temp->loc[1] += temp->h[1];
            if ( k & 1 )
                temp->loc[2] += temp->h[2];
            temp->depth = c->depth + 1;
            temp->split = 0;
            temp->dx_max = 0.0;
            temp->nodeID = c->nodeID;
            temp->parent = c;
            c->progeny[k] = temp;
            c->split = 1;
124
            count += cell_unpack( &pc[ pc->progeny[k] ] , temp , s );
125
126
127
128
129
130
131
132
            }
            
    /* Return the total number of unpacked cells. */
    return count;

    }


133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/**
 * @brief Link the cells recursively to the given part array.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */

int cell_link ( struct cell *c , struct part *parts ) {

    int k, ind = 0;
    
    c->parts = parts;
    
    /* Fill the progeny recursively, depth-first. */
    if ( c->split )
        for ( k = 0 ; k < 8 ; k++ )
            if ( c->progeny[k] != NULL )
                ind += cell_link( c->progeny[k] , &parts[ind] );
            
    /* Return the total number of unpacked cells. */
    return c->count;

    }


160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
 
int cell_pack ( struct cell *c , struct pcell *pc ) {

    int k, count = 1;
    
    /* Start by packing the data of the current cell. */
    pc->h_max = c->h_max;
    pc->dt_min = c->dt_min;
    pc->dt_max = c->dt_max;
    pc->count = c->count;
179
    c->tag = pc->tag = ( ((long long int)c) / sizeof(struct cell) ) % (1 << 30);
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    
    /* Fill in the progeny, depth-first recursion. */
    for ( k = 0 ; k < 8 ; k++ )
        if ( c->progeny[k] != NULL ) {
            pc->progeny[k] = count;
            count += cell_pack( c->progeny[k] , &pc[count] );
            }
        else
            pc->progeny[k] = -1;
            
    /* Return the number of packed cells used. */
    return count;

    }


196
197
198
199
200
201
202
203
204
205
206
207
/**
 * @brief Lock a cell and hold its parents.
 *
 * @param c The #cell.
 */
 
int cell_locktree( struct cell *c ) {

    struct cell *finger, *finger2;
    TIMER_TIC

    /* First of all, try to lock this cell. */
208
    if ( c->hold || lock_trylock( &c->lock ) != 0 ) {
209
        TIMER_TOC(timer_locktree);
210
211
212
213
214
215
216
217
218
219
220
        return 1;
        }
        
    /* Did somebody hold this cell in the meantime? */
    if ( c->hold ) {
        
        /* Unlock this cell. */
        if ( lock_unlock( &c->lock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
221
        TIMER_TOC(timer_locktree);
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        return 1;
    
        }
        
    /* Climb up the tree and lock/hold/unlock. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent ) {
    
        /* Lock this cell. */
        if ( lock_trylock( &finger->lock ) != 0 )
            break;
            
        /* Increment the hold. */
        __sync_fetch_and_add( &finger->hold , 1 );
        
        /* Unlock the cell. */
        if ( lock_unlock( &finger->lock ) != 0 )
            error( "Failed to unlock cell." );
    
        }
        
    /* If we reached the top of the tree, we're done. */
    if ( finger == NULL ) {
244
        TIMER_TOC(timer_locktree);
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        return 0;
        }
        
    /* Otherwise, we hit a snag. */
    else {
    
        /* Undo the holds up to finger. */
        for ( finger2 = c->parent ; finger2 != finger ; finger2 = finger2->parent )
            __sync_fetch_and_sub( &finger2->hold , 1 );
            
        /* Unlock this cell. */
        if ( lock_unlock( &c->lock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
260
        TIMER_TOC(timer_locktree);
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        return 1;
    
        }

    }
    
    
/**
 * @brief Unock a cell's parents.
 *
 * @param c The #cell.
 */
 
void cell_unlocktree( struct cell *c ) {

    struct cell *finger;
    TIMER_TIC

    /* First of all, try to unlock this cell. */
    if ( lock_unlock( &c->lock ) != 0 )
        error( "Failed to unlock cell." );
        
    /* Climb up the tree and unhold the parents. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent )
        __sync_fetch_and_sub( &finger->hold , 1 );
        
287
    TIMER_TOC(timer_locktree);
288
289
290
291
292
293
294
295
296
297
298
299
        
    }
    
    
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
 */
 
void cell_split ( struct cell *c  ) {

300
    int i, j, k;
301
    struct part temp, *parts = c->parts;
302
    struct xpart xtemp, *xparts = c->xparts;
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    int left[8], right[8];
    double pivot[3];
    
    /* Init the pivot. */
    for ( k = 0 ; k < 3 ; k++ )
        pivot[k] = c->loc[k] + c->h[k]/2;
    
    /* Split along the x-axis. */
    i = 0; j = c->count - 1;
    while ( i <= j ) {
        while ( i <= c->count-1 && parts[i].x[0] <= pivot[0] )
            i += 1;
        while ( j >= 0 && parts[j].x[0] > pivot[0] )
            j -= 1;
        if ( i < j ) {
            temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
319
            xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
320
321
            }
        }
Pedro Gonnet's avatar
Pedro Gonnet committed
322
    /* for ( k = 0 ; k <= j ; k++ )
323
324
325
326
        if ( parts[k].x[0] > pivot[0] )
            error( "cell_split: sorting failed." );
    for ( k = i ; k < c->count ; k++ )
        if ( parts[k].x[0] < pivot[0] )
Pedro Gonnet's avatar
Pedro Gonnet committed
327
            error( "cell_split: sorting failed." ); */
328
329
330
331
332
333
334
335
336
337
338
339
340
    left[1] = i; right[1] = c->count - 1;
    left[0] = 0; right[0] = j;
    
    /* Split along the y axis, twice. */
    for ( k = 1 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && parts[i].x[1] <= pivot[1] )
                i += 1;
            while ( j >= left[k] && parts[j].x[1] > pivot[1] )
                j -= 1;
            if ( i < j ) {
                temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
341
                xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
342
343
                }
            }
Pedro Gonnet's avatar
Pedro Gonnet committed
344
        /* for ( int kk = left[k] ; kk <= j ; kk++ )
345
            if ( parts[kk].x[1] > pivot[1] ) {
346
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
347
348
                error( "sorting failed (left)." );
                }
Pedro Gonnet's avatar
Pedro Gonnet committed
349
        for ( int kk = i ; kk <= right[k] ; kk++ )
350
            if ( parts[kk].x[1] < pivot[1] )
Pedro Gonnet's avatar
Pedro Gonnet committed
351
                error( "sorting failed (right)." ); */
352
353
354
355
356
357
358
359
360
361
362
363
364
365
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }

    /* Split along the z axis, four times. */
    for ( k = 3 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && parts[i].x[2] <= pivot[2] )
                i += 1;
            while ( j >= left[k] && parts[j].x[2] > pivot[2] )
                j -= 1;
            if ( i < j ) {
                temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
366
                xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
367
368
                }
            }
Pedro Gonnet's avatar
Pedro Gonnet committed
369
        /* for ( int kk = left[k] ; kk <= j ; kk++ )
370
            if ( parts[kk].x[2] > pivot[2] ) {
371
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
372
373
                error( "sorting failed (left)." );
                }
Pedro Gonnet's avatar
Pedro Gonnet committed
374
        for ( int kk = i ; kk <= right[k] ; kk++ )
375
            if ( parts[kk].x[2] < pivot[2] ) {
376
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
377
                error( "sorting failed (right)." );
Pedro Gonnet's avatar
Pedro Gonnet committed
378
                } */
379
380
381
382
383
384
385
386
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }
        
    /* Store the counts and offsets. */
    for ( k = 0 ; k < 8 ; k++ ) {
        c->progeny[k]->count = right[k] - left[k] + 1;
        c->progeny[k]->parts = &c->parts[ left[k] ];
387
        c->progeny[k]->xparts = &c->xparts[ left[k] ];
388
389
        }
        
Pedro Gonnet's avatar
Pedro Gonnet committed
390
391
392
393
394
395
396
397
398
    /* Verify that _all_ the parts have been assigned to a cell. */
    /* for ( k = 1 ; k < 8 ; k++ )
        if ( &c->progeny[k-1]->parts[ c->progeny[k-1]->count ] != c->progeny[k]->parts )
            error( "Particle sorting failed (internal consistency)." );
    if ( c->progeny[0]->parts != c->parts )
        error( "Particle sorting failed (left edge)." );
    if ( &c->progeny[7]->parts[ c->progeny[7]->count ] != &c->parts[ c->count ] )
        error( "Particle sorting failed (right edge)." ); */
        
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    /* Verify a few sub-cells. */
    /* for ( k = 0 ; k < c->progeny[0]->count ; k++ )
        if ( c->progeny[0]->parts[k].x[0] > pivot[0] ||
             c->progeny[0]->parts[k].x[1] > pivot[1] ||
             c->progeny[0]->parts[k].x[2] > pivot[2] )
            error( "Sorting failed (progeny=0)." );
    for ( k = 0 ; k < c->progeny[1]->count ; k++ )
        if ( c->progeny[1]->parts[k].x[0] > pivot[0] ||
             c->progeny[1]->parts[k].x[1] > pivot[1] ||
             c->progeny[1]->parts[k].x[2] <= pivot[2] )
            error( "Sorting failed (progeny=1)." );
    for ( k = 0 ; k < c->progeny[2]->count ; k++ )
        if ( c->progeny[2]->parts[k].x[0] > pivot[0] ||
             c->progeny[2]->parts[k].x[1] <= pivot[1] ||
             c->progeny[2]->parts[k].x[2] > pivot[2] )
            error( "Sorting failed (progeny=2)." ); */

    }