runner.c 57.5 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
 ******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
23

Pedro Gonnet's avatar
Pedro Gonnet committed
24
25
/* Config parameters. */
#include "../config.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
26
27
28
29

/* Some standard headers. */
#include <float.h>
#include <limits.h>
30
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
31

32
33
/* MPI headers. */
#ifdef WITH_MPI
34
#include <mpi.h>
35
36
#endif

37
38
39
/* This object's header. */
#include "runner.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
40
/* Local headers. */
41
#include "active.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
42
#include "approx_math.h"
43
#include "atomic.h"
44
#include "cell.h"
45
#include "const.h"
Stefan Arridge's avatar
Stefan Arridge committed
46
#include "cooling.h"
47
#include "debug.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
48
#include "drift.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
49
#include "engine.h"
50
#include "error.h"
51
52
#include "gravity.h"
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
53
#include "hydro_properties.h"
54
#include "kick.h"
55
#include "minmax.h"
56
#include "runner_doiact_fft.h"
James Willis's avatar
James Willis committed
57
#include "runner_doiact_vec.h"
58
#include "scheduler.h"
59
#include "sort_part.h"
60
#include "sourceterms.h"
61
#include "space.h"
62
#include "stars.h"
63
64
#include "task.h"
#include "timers.h"
65
#include "timestep.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
66

67
/* Import the density loop functions. */
68
69
70
#define FUNCTION density
#include "runner_doiact.h"

71
/* Import the gradient loop functions (if required). */
72
73
74
75
76
77
#ifdef EXTRA_HYDRO_LOOP
#undef FUNCTION
#define FUNCTION gradient
#include "runner_doiact.h"
#endif

78
/* Import the force loop functions. */
79
80
81
82
#undef FUNCTION
#define FUNCTION force
#include "runner_doiact.h"

83
/* Import the gravity loop functions. */
84
#include "runner_doiact_fft.h"
85
#include "runner_doiact_grav.h"
86

Tom Theuns's avatar
Tom Theuns committed
87
/**
Tom Theuns's avatar
Tom Theuns committed
88
 * @brief Perform source terms
Tom Theuns's avatar
Tom Theuns committed
89
90
91
92
93
94
95
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_sourceterms(struct runner *r, struct cell *c, int timer) {
  const int count = c->count;
96
  const double cell_min[3] = {c->loc[0], c->loc[1], c->loc[2]};
Tom Theuns's avatar
Tom Theuns committed
97
  const double cell_width[3] = {c->width[0], c->width[1], c->width[2]};
Tom Theuns's avatar
Tom Theuns committed
98
  struct sourceterms *sourceterms = r->e->sourceterms;
99
  const int dimen = 3;
Tom Theuns's avatar
Tom Theuns committed
100
101
102
103
104
105
106

  TIMER_TIC;

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_sourceterms(r, c->progeny[k], 0);
107
  } else {
Tom Theuns's avatar
Tom Theuns committed
108

109
    if (count > 0) {
Tom Theuns's avatar
Tom Theuns committed
110

111
112
113
114
115
116
      /* do sourceterms in this cell? */
      const int incell =
          sourceterms_test_cell(cell_min, cell_width, sourceterms, dimen);
      if (incell == 1) {
        sourceterms_apply(r, sourceterms, c);
      }
Tom Theuns's avatar
Tom Theuns committed
117
118
    }
  }
Tom Theuns's avatar
Tom Theuns committed
119
120
121
122

  if (timer) TIMER_TOC(timer_dosource);
}

Tom Theuns's avatar
Tom Theuns committed
123
124
125
/**
 * @brief Calculate gravity acceleration from external potential
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
126
127
128
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
Tom Theuns's avatar
Tom Theuns committed
129
 */
130
void runner_do_grav_external(struct runner *r, struct cell *c, int timer) {
Tom Theuns's avatar
Tom Theuns committed
131

Matthieu Schaller's avatar
Matthieu Schaller committed
132
133
  struct gpart *restrict gparts = c->gparts;
  const int gcount = c->gcount;
134
135
136
  const struct engine *e = r->e;
  const struct external_potential *potential = e->external_potential;
  const struct phys_const *constants = e->physical_constants;
137
  const double time = r->e->time;
Matthieu Schaller's avatar
Matthieu Schaller committed
138

139
  TIMER_TIC;
Tom Theuns's avatar
Tom Theuns committed
140

141
  /* Anything to do here? */
142
  if (!cell_is_active(c, e)) return;
143

Tom Theuns's avatar
Tom Theuns committed
144
145
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
146
    for (int k = 0; k < 8; k++)
147
      if (c->progeny[k] != NULL) runner_do_grav_external(r, c->progeny[k], 0);
148
  } else {
149

150
151
    /* Loop over the gparts in this cell. */
    for (int i = 0; i < gcount; i++) {
152

153
154
      /* Get a direct pointer on the part. */
      struct gpart *restrict gp = &gparts[i];
Matthieu Schaller's avatar
Matthieu Schaller committed
155

156
      /* Is this part within the time step? */
157
      if (gpart_is_active(gp, e)) {
158
159
        external_gravity_acceleration(time, potential, constants, gp);
      }
160
    }
161
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
162

163
  if (timer) TIMER_TOC(timer_dograv_external);
Tom Theuns's avatar
Tom Theuns committed
164
165
}

Stefan Arridge's avatar
Stefan Arridge committed
166
/**
167
168
 * @brief Calculate change in thermal state of particles induced
 * by radiative cooling and heating.
Stefan Arridge's avatar
Stefan Arridge committed
169
170
171
172
173
174
175
176
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_cooling(struct runner *r, struct cell *c, int timer) {

  struct part *restrict parts = c->parts;
177
  struct xpart *restrict xparts = c->xparts;
Stefan Arridge's avatar
Stefan Arridge committed
178
  const int count = c->count;
179
180
181
  const struct engine *e = r->e;
  const struct cooling_function_data *cooling_func = e->cooling_func;
  const struct phys_const *constants = e->physical_constants;
182
  const struct unit_system *us = e->internal_units;
183
  const double timeBase = e->timeBase;
Stefan Arridge's avatar
Stefan Arridge committed
184
185
186

  TIMER_TIC;

187
188
189
  /* Anything to do here? */
  if (!cell_is_active(c, e)) return;

Stefan Arridge's avatar
Stefan Arridge committed
190
191
192
193
  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_cooling(r, c->progeny[k], 0);
194
  } else {
Stefan Arridge's avatar
Stefan Arridge committed
195

196
197
    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {
Stefan Arridge's avatar
Stefan Arridge committed
198

199
200
201
      /* Get a direct pointer on the part. */
      struct part *restrict p = &parts[i];
      struct xpart *restrict xp = &xparts[i];
Stefan Arridge's avatar
Stefan Arridge committed
202

203
      if (part_is_active(p, e)) {
204

205
206
        /* Let's cool ! */
        const double dt = get_timestep(p->time_bin, timeBase);
207
208
        cooling_cool_part(constants, us, cooling_func, p, xp, dt);
      }
Stefan Arridge's avatar
Stefan Arridge committed
209
210
211
212
213
214
    }
  }

  if (timer) TIMER_TOC(timer_do_cooling);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
215
216
217
218
219
220
/**
 * @brief Sort the entries in ascending order using QuickSort.
 *
 * @param sort The entries
 * @param N The number of entries.
 */
221
void runner_do_sort_ascending(struct entry *sort, int N) {
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

  struct {
    short int lo, hi;
  } qstack[10];
  int qpos, i, j, lo, hi, imin;
  struct entry temp;
  float pivot;

  /* Sort parts in cell_i in decreasing order with quicksort */
  qstack[0].lo = 0;
  qstack[0].hi = N - 1;
  qpos = 0;
  while (qpos >= 0) {
    lo = qstack[qpos].lo;
    hi = qstack[qpos].hi;
    qpos -= 1;
    if (hi - lo < 15) {
      for (i = lo; i < hi; i++) {
        imin = i;
        for (j = i + 1; j <= hi; j++)
          if (sort[j].d < sort[imin].d) imin = j;
        if (imin != i) {
          temp = sort[imin];
          sort[imin] = sort[i];
          sort[i] = temp;
        }
      }
    } else {
      pivot = sort[(lo + hi) / 2].d;
      i = lo;
      j = hi;
      while (i <= j) {
        while (sort[i].d < pivot) i++;
        while (sort[j].d > pivot) j--;
        if (i <= j) {
          if (i < j) {
            temp = sort[i];
            sort[i] = sort[j];
            sort[j] = temp;
          }
          i += 1;
          j -= 1;
        }
      }
      if (j > (lo + hi) / 2) {
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
Pedro Gonnet's avatar
Pedro Gonnet committed
276
        }
277
278
279
280
281
282
283
284
285
286
287
288
      } else {
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
        }
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
      }
Pedro Gonnet's avatar
Pedro Gonnet committed
289
    }
290
291
292
  }
}

Matthieu Schaller's avatar
Matthieu Schaller committed
293
294
295
296
297
298
299
300
/**
 * @brief Recursively checks that the flags are consistent in a cell hierarchy.
 *
 * Debugging function.
 *
 * @param c The #cell to check.
 * @param flags The sorting flags to check.
 */
301
void runner_check_sorts(struct cell *c, int flags) {
Matthieu Schaller's avatar
Matthieu Schaller committed
302
303

#ifdef SWIFT_DEBUG_CHECKS
Pedro Gonnet's avatar
Pedro Gonnet committed
304
  if (flags & ~c->sorted) error("Inconsistent sort flags (downward)!");
305
306
  if (c->split)
    for (int k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
307
      if (c->progeny[k] != NULL) runner_check_sorts(c->progeny[k], c->sorted);
Matthieu Schaller's avatar
Matthieu Schaller committed
308
309
310
#else
  error("Calling debugging code without debugging flag activated.");
#endif
311
312
}

Pedro Gonnet's avatar
Pedro Gonnet committed
313
314
315
316
317
/**
 * @brief Sort the particles in the given cell along all cardinal directions.
 *
 * @param r The #runner.
 * @param c The #cell.
318
 * @param flags Cell flag.
319
320
 * @param cleanup If true, re-build the sorts for the selected flags instead
 *        of just adding them.
321
322
 * @param clock Flag indicating whether to record the timing or not, needed
 *      for recursive calls.
Pedro Gonnet's avatar
Pedro Gonnet committed
323
 */
324
325
void runner_do_sort(struct runner *r, struct cell *c, int flags, int cleanup,
                    int clock) {
326
327
328
329

  struct entry *finger;
  struct entry *fingers[8];
  struct part *parts = c->parts;
330
  struct xpart *xparts = c->xparts;
331
  const int count = c->count;
Matthieu Schaller's avatar
Matthieu Schaller committed
332
  float buff[8];
333

334
335
336
  TIMER_TIC;

  /* Check that the particles have been moved to the current time */
337
  if (!cell_are_part_drifted(c, r->e)) error("Sorting un-drifted cell");
Pedro Gonnet's avatar
Pedro Gonnet committed
338

339
340
341
342
343
#ifdef SWIFT_DEBUG_CHECKS
  /* Make sure the sort flags are consistent (downward). */
  runner_check_sorts(c, c->sorted);

  /* Make sure the sort flags are consistent (upard). */
Pedro Gonnet's avatar
Pedro Gonnet committed
344
345
346
  for (struct cell *finger = c->parent; finger != NULL;
       finger = finger->parent) {
    if (finger->sorted & ~c->sorted) error("Inconsistent sort flags (upward).");
347
348
  }
#endif
349

350
351
  /* Clean-up the flags, i.e. filter out what's already been sorted unless
     we're cleaning up. */
352
  if (cleanup && c->dx_max_sort > 0.0f) {
353
    /* Clear stale sorts. */
354
    c->sorted = 0;
355
356
357
  } else {
    /* Ignore dimensions that are already sorted. */
    flags &= ~c->sorted;
358
  }
359
360
  if (flags == 0) return;

361
362
  /* Update the sort timer which represents the last time the sorts
     were re-set. */
363
364
  if (c->sorted == 0) c->ti_sort = r->e->ti_current;

365
  /* start by allocating the entry arrays. */
366
367
368
  if (c->sort == NULL) {
    if ((c->sort = (struct entry *)malloc(sizeof(struct entry) * (count + 1) *
                                          13)) == NULL)
369
370
      error("Failed to allocate sort memory.");
  }
371
  struct entry *sort = c->sort;
372
373
374
375
376

  /* Does this cell have any progeny? */
  if (c->split) {

    /* Fill in the gaps within the progeny. */
377
    float dx_max_sort = 0.0f;
378
    float dx_max_sort_old = 0.0f;
379
    for (int k = 0; k < 8; k++) {
380
      if (c->progeny[k] != NULL) {
381
382
383
384
385
        /* Only propagate cleanup if the progeny is stale. */
        runner_do_sort(r, c->progeny[k], flags,
                       cleanup && (c->progeny[k]->dx_max_sort >
                                   space_maxreldx * c->progeny[k]->dmin),
                       0);
386
        dx_max_sort = max(dx_max_sort, c->progeny[k]->dx_max_sort);
387
        dx_max_sort_old = max(dx_max_sort_old, c->progeny[k]->dx_max_sort_old);
388
      }
389
    }
390
391
    c->dx_max_sort = dx_max_sort;
    c->dx_max_sort_old = dx_max_sort_old;
392
393

    /* Loop over the 13 different sort arrays. */
394
    for (int j = 0; j < 13; j++) {
395
396
397
398
399

      /* Has this sort array been flagged? */
      if (!(flags & (1 << j))) continue;

      /* Init the particle index offsets. */
400
      int off[8];
401
402
      off[0] = 0;
      for (int k = 1; k < 8; k++)
403
404
405
406
407
408
        if (c->progeny[k - 1] != NULL)
          off[k] = off[k - 1] + c->progeny[k - 1]->count;
        else
          off[k] = off[k - 1];

      /* Init the entries and indices. */
409
      int inds[8];
410
      for (int k = 0; k < 8; k++) {
411
412
413
414
415
416
417
418
419
420
        inds[k] = k;
        if (c->progeny[k] != NULL && c->progeny[k]->count > 0) {
          fingers[k] = &c->progeny[k]->sort[j * (c->progeny[k]->count + 1)];
          buff[k] = fingers[k]->d;
          off[k] = off[k];
        } else
          buff[k] = FLT_MAX;
      }

      /* Sort the buffer. */
421
422
      for (int i = 0; i < 7; i++)
        for (int k = i + 1; k < 8; k++)
423
          if (buff[inds[k]] < buff[inds[i]]) {
424
            int temp_i = inds[i];
425
426
427
428
429
430
            inds[i] = inds[k];
            inds[k] = temp_i;
          }

      /* For each entry in the new sort list. */
      finger = &sort[j * (count + 1)];
431
      for (int ind = 0; ind < count; ind++) {
432
433
434
435
436
437
438
439
440
441

        /* Copy the minimum into the new sort array. */
        finger[ind].d = buff[inds[0]];
        finger[ind].i = fingers[inds[0]]->i + off[inds[0]];

        /* Update the buffer. */
        fingers[inds[0]] += 1;
        buff[inds[0]] = fingers[inds[0]]->d;

        /* Find the smallest entry. */
442
        for (int k = 1; k < 8 && buff[inds[k]] < buff[inds[k - 1]]; k++) {
443
          int temp_i = inds[k - 1];
444
445
          inds[k - 1] = inds[k];
          inds[k] = temp_i;
Pedro Gonnet's avatar
Pedro Gonnet committed
446
        }
447

448
449
450
451
452
453
454
      } /* Merge. */

      /* Add a sentinel. */
      sort[j * (count + 1) + count].d = FLT_MAX;
      sort[j * (count + 1) + count].i = 0;

      /* Mark as sorted. */
455
      atomic_or(&c->sorted, 1 << j);
456
457
458
459
460
461
462
463

    } /* loop over sort arrays. */

  } /* progeny? */

  /* Otherwise, just sort. */
  else {

464
    /* Reset the sort distance */
465
    if (c->sorted == 0) {
466
467
468
469
470
471
472
473

      /* And the individual sort distances if we are a local cell */
      if (xparts != NULL) {
        for (int k = 0; k < count; k++) {
          xparts[k].x_diff_sort[0] = 0.0f;
          xparts[k].x_diff_sort[1] = 0.0f;
          xparts[k].x_diff_sort[2] = 0.0f;
        }
474
      }
475
      c->dx_max_sort_old = c->dx_max_sort = 0.f;
476
477
    }

478
    /* Fill the sort array. */
479
    for (int k = 0; k < count; k++) {
480
      const double px[3] = {parts[k].x[0], parts[k].x[1], parts[k].x[2]};
481
      for (int j = 0; j < 13; j++)
482
483
        if (flags & (1 << j)) {
          sort[j * (count + 1) + k].i = k;
Matthieu Schaller's avatar
Matthieu Schaller committed
484
485
486
          sort[j * (count + 1) + k].d = px[0] * runner_shift[j][0] +
                                        px[1] * runner_shift[j][1] +
                                        px[2] * runner_shift[j][2];
487
        }
488
    }
489
490

    /* Add the sentinel and sort. */
491
    for (int j = 0; j < 13; j++)
492
493
494
      if (flags & (1 << j)) {
        sort[j * (count + 1) + count].d = FLT_MAX;
        sort[j * (count + 1) + count].i = 0;
495
        runner_do_sort_ascending(&sort[j * (count + 1)], count);
496
        atomic_or(&c->sorted, 1 << j);
497
498
499
      }
  }

500
#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
501
  /* Verify the sorting. */
502
  for (int j = 0; j < 13; j++) {
503
504
    if (!(flags & (1 << j))) continue;
    finger = &sort[j * (count + 1)];
505
    for (int k = 1; k < count; k++) {
506
507
508
509
510
      if (finger[k].d < finger[k - 1].d)
        error("Sorting failed, ascending array.");
      if (finger[k].i >= count) error("Sorting failed, indices borked.");
    }
  }
Pedro Gonnet's avatar
Pedro Gonnet committed
511

512
513
514
515
  /* Make sure the sort flags are consistent (downward). */
  runner_check_sorts(c, flags);

  /* Make sure the sort flags are consistent (upward). */
Pedro Gonnet's avatar
Pedro Gonnet committed
516
517
518
  for (struct cell *finger = c->parent; finger != NULL;
       finger = finger->parent) {
    if (finger->sorted & ~c->sorted) error("Inconsistent sort flags.");
519
  }
520
#endif
521
522
523
524

  if (clock) TIMER_TOC(timer_dosort);
}

525
/**
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
 * @brief Initialize the multipoles before the gravity calculation.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_init_grav(struct runner *r, struct cell *c, int timer) {

  const struct engine *e = r->e;

  TIMER_TIC;

#ifdef SWIFT_DEBUG_CHECKS
  if (!(e->policy & engine_policy_self_gravity))
    error("Grav-init task called outside of self-gravity calculation");
#endif

  /* Anything to do here? */
  if (!cell_is_active(c, e)) return;

  /* Drift the multipole */
  cell_drift_multipole(c, e);
548

549
550
551
552
553
554
555
556
557
558
559
560
561
  /* Reset the gravity acceleration tensors */
  gravity_field_tensors_init(&c->multipole->pot);

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) runner_do_init_grav(r, c->progeny[k], 0);
    }
  }

  if (timer) TIMER_TOC(timer_init_grav);
}

562
/**
563
564
565
566
567
 * @brief Intermediate task after the gradient loop that does final operations
 * on the gradient quantities and optionally slope limits the gradients
 *
 * @param r The runner thread.
 * @param c The cell.
568
 * @param timer Are we timing this ?
569
 */
570
void runner_do_extra_ghost(struct runner *r, struct cell *c, int timer) {
571

572
#ifdef EXTRA_HYDRO_LOOP
573

574
575
  struct part *restrict parts = c->parts;
  const int count = c->count;
576
  const struct engine *e = r->e;
577

578
579
  TIMER_TIC;

580
  /* Anything to do here? */
581
  if (!cell_is_active(c, e)) return;
582

583
584
585
  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
586
      if (c->progeny[k] != NULL) runner_do_extra_ghost(r, c->progeny[k], 0);
587
588
589
590
591
592
593
594
  } else {

    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {

      /* Get a direct pointer on the part. */
      struct part *restrict p = &parts[i];

595
      if (part_is_active(p, e)) {
596
597
598
599
600
601

        /* Get ready for a force calculation */
        hydro_end_gradient(p);
      }
    }
  }
602

603
604
  if (timer) TIMER_TOC(timer_do_extra_ghost);

605
606
#else
  error("SWIFT was not compiled with the extra hydro loop activated.");
607
#endif
608
}
609

610
/**
611
612
 * @brief Intermediate task after the density to check that the smoothing
 * lengths are correct.
613
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
614
 * @param r The runner thread.
615
 * @param c The cell.
616
 * @param timer Are we timing this ?
617
 */
618
void runner_do_ghost(struct runner *r, struct cell *c, int timer) {
619

Matthieu Schaller's avatar
Matthieu Schaller committed
620
621
  struct part *restrict parts = c->parts;
  struct xpart *restrict xparts = c->xparts;
622
  const struct engine *e = r->e;
623
  const struct space *s = e->s;
624
  const float hydro_h_max = e->hydro_properties->h_max;
625
626
627
  const float eps = e->hydro_properties->h_tolerance;
  const float hydro_eta_dim =
      pow_dimension(e->hydro_properties->eta_neighbours);
628
  const int max_smoothing_iter = e->hydro_properties->max_smoothing_iterations;
629
  int redo = 0, count = 0;
630

631
632
  TIMER_TIC;

633
  /* Anything to do here? */
634
  if (!cell_is_active(c, e)) return;
635

636
637
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
638
    for (int k = 0; k < 8; k++)
639
640
      if (c->progeny[k] != NULL) runner_do_ghost(r, c->progeny[k], 0);
  } else {
641

642
    /* Init the list of active particles that have to be updated. */
643
    int *pid = NULL;
644
    if ((pid = malloc(sizeof(int) * c->count)) == NULL)
645
      error("Can't allocate memory for pid.");
646
647
648
649
650
    for (int k = 0; k < c->count; k++)
      if (part_is_active(&parts[k], e)) {
        pid[count] = k;
        ++count;
      }
651

652
653
654
    /* While there are particles that need to be updated... */
    for (int num_reruns = 0; count > 0 && num_reruns < max_smoothing_iter;
         num_reruns++) {
655

656
657
      /* Reset the redo-count. */
      redo = 0;
658

659
      /* Loop over the remaining active parts in this cell. */
660
      for (int i = 0; i < count; i++) {
661

662
663
664
        /* Get a direct pointer on the part. */
        struct part *restrict p = &parts[pid[i]];
        struct xpart *restrict xp = &xparts[pid[i]];
665

666
#ifdef SWIFT_DEBUG_CHECKS
667
        /* Is this part within the timestep? */
668
669
670
        if (!part_is_active(p, e)) error("Ghost applied to inactive particle");
#endif

671
672
673
674
675
        /* Get some useful values */
        const float h_old = p->h;
        const float h_old_dim = pow_dimension(h_old);
        const float h_old_dim_minus_one = pow_dimension_minus_one(h_old);
        float h_new;
676

677
        if (p->density.wcount == 0.f) { /* No neighbours case */
678

679
680
681
          /* Double h and try again */
          h_new = 2.f * h_old;
        } else {
Matthieu Schaller's avatar
Matthieu Schaller committed
682

683
684
          /* Finish the density calculation */
          hydro_end_density(p);
685

686
687
688
689
690
691
692
          /* Compute one step of the Newton-Raphson scheme */
          const float n_sum = p->density.wcount * h_old_dim;
          const float n_target = hydro_eta_dim;
          const float f = n_sum - n_target;
          const float f_prime =
              p->density.wcount_dh * h_old_dim +
              hydro_dimension * p->density.wcount * h_old_dim_minus_one;
693

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
          h_new = h_old - f / f_prime;

#ifdef SWIFT_DEBUG_CHECKS
          if ((f > 0.f && h_new > h_old) || (f < 0.f && h_new < h_old))
            error(
                "Smoothing length correction not going in the right direction");
#endif

          /* Safety check: truncate to the range [ h_old/2 , 2h_old ]. */
          h_new = min(h_new, 2.f * h_old);
          h_new = max(h_new, 0.5f * h_old);
        }

        /* Check whether the particle has an inappropriate smoothing length */
        if (fabsf(h_new - h_old) > eps * h_old) {
709

710
          /* Ok, correct then */
711
          p->h = h_new;
712

713
714
          /* If below the absolute maximum, try again */
          if (p->h < hydro_h_max) {
715

716
717
718
            /* Flag for another round of fun */
            pid[redo] = pid[i];
            redo += 1;
719

720
            /* Re-initialise everything */
721
            hydro_init_part(p, &s->hs);
722
723
724
725
726
727
728

            /* Off we go ! */
            continue;
          } else {

            /* Ok, this particle is a lost cause... */
            p->h = hydro_h_max;
729
730
731
732

            /* Do some damage control if no neighbours at all were found */
            if (p->density.wcount == kernel_root * kernel_norm)
              hydro_part_has_no_neighbours(p, xp);
733
          }
734
        }
735

736
        /* We now have a particle whose smoothing length has converged */
Matthieu Schaller's avatar
Matthieu Schaller committed
737

738
        /* As of here, particle force variables will be set. */
739

740
741
        /* Compute variables required for the force loop */
        hydro_prepare_force(p, xp);
742

743
744
        /* The particle force values are now set.  Do _NOT_
           try to read any particle density variables! */
Matthieu Schaller's avatar
Matthieu Schaller committed
745

746
747
        /* Prepare the particle for the force loop over neighbours */
        hydro_reset_acceleration(p);
748
749
      }

750
751
      /* We now need to treat the particles whose smoothing length had not
       * converged again */
752

753
754
755
      /* Re-set the counter for the next loop (potentially). */
      count = redo;
      if (count > 0) {
756

757
758
        /* Climb up the cell hierarchy. */
        for (struct cell *finger = c; finger != NULL; finger = finger->parent) {
Matthieu Schaller's avatar
Matthieu Schaller committed
759

760
761
          /* Run through this cell's density interactions. */
          for (struct link *l = finger->density; l != NULL; l = l->next) {
762

763
764
765
766
#ifdef SWIFT_DEBUG_CHECKS
            if (l->t->ti_run < r->e->ti_current)
              error("Density task should have been run.");
#endif
Matthieu Schaller's avatar
Matthieu Schaller committed
767

768
769
770
            /* Self-interaction? */
            if (l->t->type == task_type_self)
              runner_doself_subset_density(r, finger, parts, pid, count);
771

772
773
            /* Otherwise, pair interaction? */
            else if (l->t->type == task_type_pair) {
774

775
776
777
778
779
780
781
              /* Left or right? */
              if (l->t->ci == finger)
                runner_dopair_subset_density(r, finger, parts, pid, count,
                                             l->t->cj);
              else
                runner_dopair_subset_density(r, finger, parts, pid, count,
                                             l->t->ci);
782

783
            }
784

785
786
787
788
            /* Otherwise, sub-self interaction? */
            else if (l->t->type == task_type_sub_self)
              runner_dosub_subset_density(r, finger, parts, pid, count, NULL,
                                          -1, 1);
789

790
791
792
793
794
795
796
797
798
799
800
            /* Otherwise, sub-pair interaction? */
            else if (l->t->type == task_type_sub_pair) {

              /* Left or right? */
              if (l->t->ci == finger)
                runner_dosub_subset_density(r, finger, parts, pid, count,
                                            l->t->cj, -1, 1);
              else
                runner_dosub_subset_density(r, finger, parts, pid, count,
                                            l->t->ci, -1, 1);
            }
801
802
803
          }
        }
      }
804
    }
805

806
807
#ifdef SWIFT_DEBUG_CHECKS
    if (count) {
808
      error("Smoothing length failed to converge on %i particles.", count);
809
810
    }
#else
811
    if (count)
812
      error("Smoothing length failed to converge on %i particles.", count);
813
#endif
814

815
816
817
    /* Be clean */
    free(pid);
  }
818

819
  if (timer) TIMER_TOC(timer_do_ghost);
820
821
}

822
/**
823
 * @brief Unskip any tasks associated with active cells.
824
825
 *
 * @param c The cell.
826
 * @param e The engine.
827
 */
828
static void runner_do_unskip(struct cell *c, struct engine *e) {
829

830
831
832
  /* Ignore empty cells. */
  if (c->count == 0 && c->gcount == 0) return;

833
834
  /* Skip inactive cells. */
  if (!cell_is_active(c, e)) return;
835

836
  /* Recurse */
837
838
  if (c->split) {
    for (int k = 0; k < 8; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
839
      if (c->progeny[k] != NULL) {
Matthieu Schaller's avatar
Matthieu Schaller committed
840
        struct cell *cp = c->progeny[k];
841
        runner_do_unskip(cp, e);
842
843
844
      }
    }
  }
845
846

  /* Unskip any active tasks. */
847
848
  const int forcerebuild = cell_unskip_tasks(c, &e->sched);
  if (forcerebuild) atomic_inc(&e->forcerebuild);
849
}
850

851
/**
852
 * @brief Mapper function to unskip active tasks.
853
854
855
856
857
 *
 * @param map_data An array of #cell%s.
 * @param num_elements Chunk size.
 * @param extra_data Pointer to an #engine.
 */
858
859
void runner_do_unskip_mapper(void *map_data, int num_elements,
                             void *extra_data) {
860

861
862
  struct engine *e = (struct engine *)extra_data;
  struct cell *cells = (struct cell *)map_data;
863

864
865
  for (int ind = 0; ind < num_elements; ind++) {
    struct cell *c = &cells[ind];
866
    if (c != NULL) runner_do_unskip(c, e);
867
  }
868
}
869
/**
870
 * @brief Drift all part in a cell.
871
872
873
874
875
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
876
void runner_do_drift_part(struct runner *r, struct cell *c, int timer) {
877

878
  TIMER_TIC;
Matthieu Schaller's avatar
Matthieu Schaller committed
879

880
  cell_drift_part(c, r->e, 0);
881

882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
  if (timer) TIMER_TOC(timer_drift_part);
}

/**
 * @brief Drift all gpart in a cell.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
void runner_do_drift_gpart(struct runner *r, struct cell *c, int timer) {

  TIMER_TIC;

  cell_drift_gpart(c, r->e);

  if (timer) TIMER_TOC(timer_drift_gpart);
899
}
900

901
902
903
904
905
906
907
/**
 * @brief Perform the first half-kick on all the active particles in a cell.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
908
void runner_do_kick1(struct runner *r, struct cell *c, int timer) {
909

910
911
912
913
  const struct engine *e = r->e;
  struct part *restrict parts = c->parts;
  struct xpart *restrict xparts = c->xparts;
  struct gpart *restrict gparts = c->gparts;
914
  struct spart *restrict sparts = c->sparts;
915
916
  const int count = c->count;
  const int gcount = c->gcount;
917
  const int scount = c->scount;
918
  const integertime_t ti_current = e->ti_current;
919
  const double timeBase = e->timeBase;
920

921
922
923
  TIMER_TIC;

  /* Anything to do here? */
924
  if (!cell_is_starting(c, e)) return;
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

  /* Recurse? */
  if (c<