hydro_iact.h 34 KB
Newer Older
1
2
/*******************************************************************************
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
5
 *
6
7
8
9
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
10
 *
11
12
13
14
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
15
 *
16
17
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18
 *
19
 ******************************************************************************/
20
21
#ifndef SWIFT_GADGET2_HYDRO_IACT_H
#define SWIFT_GADGET2_HYDRO_IACT_H
22
23

/**
24
 * @file Gadget2/hydro_iact.h
25
26
 * @brief SPH interaction functions following the Gadget-2 version of SPH.
 *
27
 * The interactions computed here are the ones presented in the Gadget-2 paper
28
29
 * Springel, V., MNRAS, Volume 364, Issue 4, pp. 1105-1134.
 * We use the same numerical coefficients as the Gadget-2 code. When used with
30
31
32
 * the Spline-3 kernel, the results should be equivalent to the ones obtained
 * with Gadget-2 up to the rounding errors and interactions missed by the
 * Gadget-2 tree-code neighbours search.
33
34
 */

35
#include "cache.h"
James Willis's avatar
James Willis committed
36
#include "minmax.h"
37

38
39
40
/**
 * @brief Density loop
 */
41
42
43
__attribute__((always_inline)) INLINE static void runner_iact_density(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

44
45
  float wi, wi_dx;
  float wj, wj_dx;
46
  float dv[3], curlvr[3];
47

48
  /* Get the masses. */
49
  const float mi = pi->mass;
50
51
52
53
54
55
56
57
58
59
60
61
62
  const float mj = pj->mass;

  /* Get r and r inverse. */
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Compute the kernel function for pi */
  const float hi_inv = 1.f / hi;
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);

  /* Compute contribution to the density */
  pi->rho += mj * wi;
63
  pi->density.rho_dh -= mj * (hydro_dimension * wi + ui * wi_dx);
64

65
66
  /* Compute contribution to the number of neighbours */
  pi->density.wcount += wi;
67
  pi->density.wcount_dh -= (hydro_dimension * wi + ui * wi_dx);
68
69
70
71
72
73
74
75

  /* Compute the kernel function for pj */
  const float hj_inv = 1.f / hj;
  const float uj = r * hj_inv;
  kernel_deval(uj, &wj, &wj_dx);

  /* Compute contribution to the density */
  pj->rho += mi * wj;
76
  pj->density.rho_dh -= mi * (hydro_dimension * wj + uj * wj_dx);
77

78
79
  /* Compute contribution to the number of neighbours */
  pj->density.wcount += wj;
80
  pj->density.wcount_dh -= (hydro_dimension * wj + uj * wj_dx);
81

82
83
  const float faci = mj * wi_dx * r_inv;
  const float facj = mi * wj_dx * r_inv;
84

85
86
87
88
  /* Compute dv dot r */
  dv[0] = pi->v[0] - pj->v[0];
  dv[1] = pi->v[1] - pj->v[1];
  dv[2] = pi->v[2] - pj->v[2];
89
90
  const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];

91
92
  pi->density.div_v -= faci * dvdr;
  pj->density.div_v -= facj * dvdr;
93
94
95
96
97
98

  /* Compute dv cross r */
  curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
  curlvr[1] = dv[2] * dx[0] - dv[0] * dx[2];
  curlvr[2] = dv[0] * dx[1] - dv[1] * dx[0];

99
100
101
  pi->density.rot_v[0] += faci * curlvr[0];
  pi->density.rot_v[1] += faci * curlvr[1];
  pi->density.rot_v[2] += faci * curlvr[2];
102

103
104
105
  pj->density.rot_v[0] += facj * curlvr[0];
  pj->density.rot_v[1] += facj * curlvr[1];
  pj->density.rot_v[2] += facj * curlvr[2];
106

lhausamm's avatar
lhausamm committed
107

108
#ifdef DEBUG_INTERACTIONS_SPH
109
  /* Update ngb counters */
110
  if (pi->num_ngb_density < MAX_NUM_OF_NEIGHBOURS)
111
    pi->ids_ngbs_density[pi->num_ngb_density] = pj->id;
James Willis's avatar
James Willis committed
112
  ++pi->num_ngb_density;
113

114
  if (pj->num_ngb_density < MAX_NUM_OF_NEIGHBOURS)
115
    pj->ids_ngbs_density[pj->num_ngb_density] = pi->id;
James Willis's avatar
James Willis committed
116
  ++pj->num_ngb_density;
117
#endif
118
119
}

120
121
122
/**
 * @brief Density loop (non-symmetric version)
 */
123
124
125
126
127
128
129
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_density(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

  float wi, wi_dx;
  float dv[3], curlvr[3];

  /* Get the masses. */
130
  const float mj = pj->mass;
131
132

  /* Get r and r inverse. */
133
  const float r = sqrtf(r2);
134
  const float r_inv = 1.0f / r;
135

136
  /* Compute the kernel function */
137
138
139
  const float hi_inv = 1.0f / hi;
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
140
141
142

  /* Compute contribution to the density */
  pi->rho += mj * wi;
143
  pi->density.rho_dh -= mj * (hydro_dimension * wi + ui * wi_dx);
144
145
146

  /* Compute contribution to the number of neighbours */
  pi->density.wcount += wi;
147
  pi->density.wcount_dh -= (hydro_dimension * wi + ui * wi_dx);
148

149
  const float fac = mj * wi_dx * r_inv;
150

151
152
153
154
155
  /* Compute dv dot r */
  dv[0] = pi->v[0] - pj->v[0];
  dv[1] = pi->v[1] - pj->v[1];
  dv[2] = pi->v[2] - pj->v[2];
  const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];
156
  pi->density.div_v -= fac * dvdr;
157

158
159
160
161
162
  /* Compute dv cross r */
  curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
  curlvr[1] = dv[2] * dx[0] - dv[0] * dx[2];
  curlvr[2] = dv[0] * dx[1] - dv[1] * dx[0];

163
164
165
  pi->density.rot_v[0] += fac * curlvr[0];
  pi->density.rot_v[1] += fac * curlvr[1];
  pi->density.rot_v[2] += fac * curlvr[2];
166

167
#ifdef DEBUG_INTERACTIONS_SPH
168
  /* Update ngb counters */
169
  if (pi->num_ngb_density < MAX_NUM_OF_NEIGHBOURS)
170
    pi->ids_ngbs_density[pi->num_ngb_density] = pj->id;
James Willis's avatar
James Willis committed
171
  ++pi->num_ngb_density;
172
#endif
173
174
}

175
#ifdef WITH_VECTORIZATION
176
177
178
179
180

/**
 * @brief Density interaction computed using 1 vector
 * (non-symmetric vectorized version).
 */
181
__attribute__((always_inline)) INLINE static void
Matthieu Schaller's avatar
Matthieu Schaller committed
182
183
184
185
186
187
188
runner_iact_nonsym_1_vec_density(vector *r2, vector *dx, vector *dy, vector *dz,
                                 vector hi_inv, vector vix, vector viy,
                                 vector viz, float *Vjx, float *Vjy, float *Vjz,
                                 float *Mj, vector *rhoSum, vector *rho_dhSum,
                                 vector *wcountSum, vector *wcount_dhSum,
                                 vector *div_vSum, vector *curlvxSum,
                                 vector *curlvySum, vector *curlvzSum,
189
                                 mask_t mask) {
190

191
  vector r, ri, ui, wi, wi_dx;
192
193
194
  vector dvx, dvy, dvz;
  vector dvdr;
  vector curlvrx, curlvry, curlvrz;
James Willis's avatar
James Willis committed
195

196
  /* Fill the vectors. */
197
198
199
200
  const vector mj = vector_load(Mj);
  const vector vjx = vector_load(Vjx);
  const vector vjy = vector_load(Vjy);
  const vector vjz = vector_load(Vjz);
201
202
203
204
205

  /* Get the radius and inverse radius. */
  ri = vec_reciprocal_sqrt(*r2);
  r.v = vec_mul(r2->v, ri.v);

206
  ui.v = vec_mul(r.v, hi_inv.v);
207
208

  /* Calculate the kernel for two particles. */
209
  kernel_deval_1_vec(&ui, &wi, &wi_dx);
210
211
212
213
214
215
216
217
218
219

  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvz.v = vec_sub(viz.v, vjz.v);

  /* Compute dv dot r */
  dvdr.v = vec_fma(dvx.v, dx->v, vec_fma(dvy.v, dy->v, vec_mul(dvz.v, dz->v)));
  dvdr.v = vec_mul(dvdr.v, ri.v);

220
221
222
223
224
225
226
227
228
229
230
  /* Compute dv cross r */
  curlvrx.v =
      vec_fma(dvy.v, dz->v, vec_mul(vec_set1(-1.0f), vec_mul(dvz.v, dy->v)));
  curlvry.v =
      vec_fma(dvz.v, dx->v, vec_mul(vec_set1(-1.0f), vec_mul(dvx.v, dz->v)));
  curlvrz.v =
      vec_fma(dvx.v, dy->v, vec_mul(vec_set1(-1.0f), vec_mul(dvy.v, dx->v)));
  curlvrx.v = vec_mul(curlvrx.v, ri.v);
  curlvry.v = vec_mul(curlvry.v, ri.v);
  curlvrz.v = vec_mul(curlvrz.v, ri.v);

231
232
  vector wcount_dh_update;
  wcount_dh_update.v =
James Willis's avatar
James Willis committed
233
      vec_fma(vec_set1(hydro_dimension), wi.v, vec_mul(ui.v, wi_dx.v));
234

235
  /* Mask updates to intermediate vector sums for particle pi. */
236
  rhoSum->v = vec_mask_add(rhoSum->v, vec_mul(mj.v, wi.v), mask);
237
238
  rho_dhSum->v =
      vec_mask_sub(rho_dhSum->v, vec_mul(mj.v, wcount_dh_update.v), mask);
239
  wcountSum->v = vec_mask_add(wcountSum->v, wi.v, mask);
240
  wcount_dhSum->v = vec_mask_sub(wcount_dhSum->v, wcount_dh_update.v, mask);
James Willis's avatar
James Willis committed
241
242
243
244
245
246
247
248
  div_vSum->v =
      vec_mask_sub(div_vSum->v, vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)), mask);
  curlvxSum->v = vec_mask_add(curlvxSum->v,
                              vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)), mask);
  curlvySum->v = vec_mask_add(curlvySum->v,
                              vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)), mask);
  curlvzSum->v = vec_mask_add(curlvzSum->v,
                              vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)), mask);
249
250
}

251
/**
James Willis's avatar
James Willis committed
252
253
 * @brief Density interaction computed using 2 interleaved vectors
 * (non-symmetric vectorized version).
254
255
 */
__attribute__((always_inline)) INLINE static void
James Willis's avatar
James Willis committed
256
257
258
259
260
261
262
263
runner_iact_nonsym_2_vec_density(float *R2, float *Dx, float *Dy, float *Dz,
                                 vector hi_inv, vector vix, vector viy,
                                 vector viz, float *Vjx, float *Vjy, float *Vjz,
                                 float *Mj, vector *rhoSum, vector *rho_dhSum,
                                 vector *wcountSum, vector *wcount_dhSum,
                                 vector *div_vSum, vector *curlvxSum,
                                 vector *curlvySum, vector *curlvzSum,
                                 mask_t mask, mask_t mask2, short mask_cond) {
264

265
266
  vector r, ri, ui, wi, wi_dx;
  vector dvx, dvy, dvz;
267
268
  vector dvdr;
  vector curlvrx, curlvry, curlvrz;
269
270
  vector r_2, ri2, ui2, wi2, wi_dx2;
  vector dvx2, dvy2, dvz2;
271
272
273
  vector dvdr2;
  vector curlvrx2, curlvry2, curlvrz2;

James Willis's avatar
James Willis committed
274
  /* Fill the vectors. */
275
276
277
278
279
280
281
282
283
284
285
286
287
288
  const vector mj = vector_load(Mj);
  const vector mj2 = vector_load(&Mj[VEC_SIZE]);
  const vector vjx = vector_load(Vjx);
  const vector vjx2 = vector_load(&Vjx[VEC_SIZE]);
  const vector vjy = vector_load(Vjy);
  const vector vjy2 = vector_load(&Vjy[VEC_SIZE]);
  const vector vjz = vector_load(Vjz);
  const vector vjz2 = vector_load(&Vjz[VEC_SIZE]);
  const vector dx = vector_load(Dx);
  const vector dx2 = vector_load(&Dx[VEC_SIZE]);
  const vector dy = vector_load(Dy);
  const vector dy2 = vector_load(&Dy[VEC_SIZE]);
  const vector dz = vector_load(Dz);
  const vector dz2 = vector_load(&Dz[VEC_SIZE]);
289
290

  /* Get the radius and inverse radius. */
291
292
  const vector r2 = vector_load(R2);
  const vector r2_2 = vector_load(&R2[VEC_SIZE]);
293
294
  ri = vec_reciprocal_sqrt(r2);
  ri2 = vec_reciprocal_sqrt(r2_2);
295
296
297
  r.v = vec_mul(r2.v, ri.v);
  r_2.v = vec_mul(r2_2.v, ri2.v);

298
299
  ui.v = vec_mul(r.v, hi_inv.v);
  ui2.v = vec_mul(r_2.v, hi_inv.v);
300

James Willis's avatar
James Willis committed
301
  /* Calculate the kernel for two particles. */
302
  kernel_deval_2_vec(&ui, &wi, &wi_dx, &ui2, &wi2, &wi_dx2);
303
304
305
306
307
308
309
310
311
312
313

  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvx2.v = vec_sub(vix.v, vjx2.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvy2.v = vec_sub(viy.v, vjy2.v);
  dvz.v = vec_sub(viz.v, vjz.v);
  dvz2.v = vec_sub(viz.v, vjz2.v);

  /* Compute dv dot r */
  dvdr.v = vec_fma(dvx.v, dx.v, vec_fma(dvy.v, dy.v, vec_mul(dvz.v, dz.v)));
James Willis's avatar
James Willis committed
314
315
  dvdr2.v =
      vec_fma(dvx2.v, dx2.v, vec_fma(dvy2.v, dy2.v, vec_mul(dvz2.v, dz2.v)));
316
317
318
319
  dvdr.v = vec_mul(dvdr.v, ri.v);
  dvdr2.v = vec_mul(dvdr2.v, ri2.v);

  /* Compute dv cross r */
James Willis's avatar
James Willis committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
  curlvrx.v =
      vec_fma(dvy.v, dz.v, vec_mul(vec_set1(-1.0f), vec_mul(dvz.v, dy.v)));
  curlvrx2.v =
      vec_fma(dvy2.v, dz2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvz2.v, dy2.v)));
  curlvry.v =
      vec_fma(dvz.v, dx.v, vec_mul(vec_set1(-1.0f), vec_mul(dvx.v, dz.v)));
  curlvry2.v =
      vec_fma(dvz2.v, dx2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvx2.v, dz2.v)));
  curlvrz.v =
      vec_fma(dvx.v, dy.v, vec_mul(vec_set1(-1.0f), vec_mul(dvy.v, dx.v)));
  curlvrz2.v =
      vec_fma(dvx2.v, dy2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvy2.v, dx2.v)));
  curlvrx.v = vec_mul(curlvrx.v, ri.v);
  curlvrx2.v = vec_mul(curlvrx2.v, ri2.v);
  curlvry.v = vec_mul(curlvry.v, ri.v);
  curlvry2.v = vec_mul(curlvry2.v, ri2.v);
  curlvrz.v = vec_mul(curlvrz.v, ri.v);
  curlvrz2.v = vec_mul(curlvrz2.v, ri2.v);

339
340
  vector wcount_dh_update, wcount_dh_update2;
  wcount_dh_update.v =
James Willis's avatar
James Willis committed
341
      vec_fma(vec_set1(hydro_dimension), wi.v, vec_mul(ui.v, wi_dx.v));
342
  wcount_dh_update2.v =
James Willis's avatar
James Willis committed
343
      vec_fma(vec_set1(hydro_dimension), wi2.v, vec_mul(ui2.v, wi_dx2.v));
344

James Willis's avatar
James Willis committed
345
  /* Mask updates to intermediate vector sums for particle pi. */
346
  /* Mask only when needed. */
James Willis's avatar
James Willis committed
347
  if (mask_cond) {
348
349
    rhoSum->v = vec_mask_add(rhoSum->v, vec_mul(mj.v, wi.v), mask);
    rhoSum->v = vec_mask_add(rhoSum->v, vec_mul(mj2.v, wi2.v), mask2);
James Willis's avatar
James Willis committed
350
    rho_dhSum->v =
351
        vec_mask_sub(rho_dhSum->v, vec_mul(mj.v, wcount_dh_update.v), mask);
James Willis's avatar
James Willis committed
352
    rho_dhSum->v =
353
        vec_mask_sub(rho_dhSum->v, vec_mul(mj2.v, wcount_dh_update2.v), mask2);
354
355
    wcountSum->v = vec_mask_add(wcountSum->v, wi.v, mask);
    wcountSum->v = vec_mask_add(wcountSum->v, wi2.v, mask2);
356
357
    wcount_dhSum->v = vec_mask_sub(wcount_dhSum->v, wcount_dh_update.v, mask);
    wcount_dhSum->v = vec_mask_sub(wcount_dhSum->v, wcount_dh_update2.v, mask2);
James Willis's avatar
James Willis committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    div_vSum->v = vec_mask_sub(div_vSum->v,
                               vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)), mask);
    div_vSum->v = vec_mask_sub(
        div_vSum->v, vec_mul(mj2.v, vec_mul(dvdr2.v, wi_dx2.v)), mask2);
    curlvxSum->v = vec_mask_add(
        curlvxSum->v, vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)), mask);
    curlvxSum->v = vec_mask_add(
        curlvxSum->v, vec_mul(mj2.v, vec_mul(curlvrx2.v, wi_dx2.v)), mask2);
    curlvySum->v = vec_mask_add(
        curlvySum->v, vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)), mask);
    curlvySum->v = vec_mask_add(
        curlvySum->v, vec_mul(mj2.v, vec_mul(curlvry2.v, wi_dx2.v)), mask2);
    curlvzSum->v = vec_mask_add(
        curlvzSum->v, vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)), mask);
    curlvzSum->v = vec_mask_add(
        curlvzSum->v, vec_mul(mj2.v, vec_mul(curlvrz2.v, wi_dx2.v)), mask2);
  } else {
375
376
    rhoSum->v = vec_add(rhoSum->v, vec_mul(mj.v, wi.v));
    rhoSum->v = vec_add(rhoSum->v, vec_mul(mj2.v, wi2.v));
377
378
    rho_dhSum->v = vec_sub(rho_dhSum->v, vec_mul(mj.v, wcount_dh_update.v));
    rho_dhSum->v = vec_sub(rho_dhSum->v, vec_mul(mj2.v, wcount_dh_update2.v));
379
380
    wcountSum->v = vec_add(wcountSum->v, wi.v);
    wcountSum->v = vec_add(wcountSum->v, wi2.v);
381
382
    wcount_dhSum->v = vec_sub(wcount_dhSum->v, wcount_dh_update.v);
    wcount_dhSum->v = vec_sub(wcount_dhSum->v, wcount_dh_update2.v);
383
    div_vSum->v = vec_sub(div_vSum->v, vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)));
James Willis's avatar
James Willis committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    div_vSum->v =
        vec_sub(div_vSum->v, vec_mul(mj2.v, vec_mul(dvdr2.v, wi_dx2.v)));
    curlvxSum->v =
        vec_add(curlvxSum->v, vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)));
    curlvxSum->v =
        vec_add(curlvxSum->v, vec_mul(mj2.v, vec_mul(curlvrx2.v, wi_dx2.v)));
    curlvySum->v =
        vec_add(curlvySum->v, vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)));
    curlvySum->v =
        vec_add(curlvySum->v, vec_mul(mj2.v, vec_mul(curlvry2.v, wi_dx2.v)));
    curlvzSum->v =
        vec_add(curlvzSum->v, vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)));
    curlvzSum->v =
        vec_add(curlvzSum->v, vec_mul(mj2.v, vec_mul(curlvrz2.v, wi_dx2.v)));
398
  }
399
}
James Willis's avatar
James Willis committed
400
#endif
401

402
403
404
/**
 * @brief Force loop
 */
405
406
407
__attribute__((always_inline)) INLINE static void runner_iact_force(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

408
409
410
  float wi, wj, wi_dx, wj_dx;

  const float fac_mu = 1.f; /* Will change with cosmological integration */
411

412
413
414
415
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Get some values in local variables. */
416
  const float mi = pi->mass;
417
418
419
420
421
422
  const float mj = pj->mass;
  const float rhoi = pi->rho;
  const float rhoj = pj->rho;

  /* Get the kernel for hi. */
  const float hi_inv = 1.0f / hi;
423
  const float hid_inv = pow_dimension_plus_one(hi_inv); /* 1/h^(d+1) */
424
425
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
426
  const float wi_dr = hid_inv * wi_dx;
427
428
429

  /* Get the kernel for hj. */
  const float hj_inv = 1.0f / hj;
430
  const float hjd_inv = pow_dimension_plus_one(hj_inv); /* 1/h^(d+1) */
431
432
  const float xj = r * hj_inv;
  kernel_deval(xj, &wj, &wj_dx);
433
  const float wj_dr = hjd_inv * wj_dx;
434

435
436
437
438
439
  /* Compute h-gradient terms */
  const float f_i = pi->force.f;
  const float f_j = pj->force.f;

  /* Compute pressure terms */
440
441
  const float P_over_rho2_i = pi->force.P_over_rho2;
  const float P_over_rho2_j = pj->force.P_over_rho2;
442
443

  /* Compute sound speeds */
444
445
  const float ci = pi->force.soundspeed;
  const float cj = pj->force.soundspeed;
446

447
  /* Compute dv dot r. */
448
449
450
  const float dvdr = (pi->v[0] - pj->v[0]) * dx[0] +
                     (pi->v[1] - pj->v[1]) * dx[1] +
                     (pi->v[2] - pj->v[2]) * dx[2];
451

452
  /* Balsara term */
453
454
  const float balsara_i = pi->force.balsara;
  const float balsara_j = pj->force.balsara;
Matthieu Schaller's avatar
Matthieu Schaller committed
455

456
  /* Are the particles moving towards each others ? */
457
  const float omega_ij = (dvdr < 0.f) ? dvdr : 0.f;
458
459
460
461
462
463
464
465
466
  const float mu_ij = fac_mu * r_inv * omega_ij; /* This is 0 or negative */

  /* Signal velocity */
  const float v_sig = ci + cj - 3.f * mu_ij;

  /* Now construct the full viscosity term */
  const float rho_ij = 0.5f * (rhoi + rhoj);
  const float visc = -0.25f * const_viscosity_alpha * v_sig * mu_ij *
                     (balsara_i + balsara_j) / rho_ij;
467
468

  /* Now, convolve with the kernel */
469
  const float visc_term = 0.5f * visc * (wi_dr + wj_dr) * r_inv;
470
  const float sph_term =
471
      (f_i * P_over_rho2_i * wi_dr + f_j * P_over_rho2_j * wj_dr) * r_inv;
472
473
474
475
476

  /* Eventually got the acceleration */
  const float acc = visc_term + sph_term;

  /* Use the force Luke ! */
477
478
479
  pi->a_hydro[0] -= mj * acc * dx[0];
  pi->a_hydro[1] -= mj * acc * dx[1];
  pi->a_hydro[2] -= mj * acc * dx[2];
480

481
482
483
  pj->a_hydro[0] += mi * acc * dx[0];
  pj->a_hydro[1] += mi * acc * dx[1];
  pj->a_hydro[2] += mi * acc * dx[2];
484

485
  /* Get the time derivative for h. */
486
487
  pi->force.h_dt -= mj * dvdr * r_inv / rhoj * wi_dr;
  pj->force.h_dt -= mi * dvdr * r_inv / rhoi * wj_dr;
488

489
  /* Update the signal velocity. */
490
491
  pi->force.v_sig = (pi->force.v_sig > v_sig) ? pi->force.v_sig : v_sig;
  pj->force.v_sig = (pj->force.v_sig > v_sig) ? pj->force.v_sig : v_sig;
492

493
  /* Change in entropy */
494
495
  pi->entropy_dt += mj * visc_term * dvdr;
  pj->entropy_dt += mi * visc_term * dvdr;
496

497
#ifdef DEBUG_INTERACTIONS_SPH
498
  /* Update ngb counters */
499
  if (pi->num_ngb_force < MAX_NUM_OF_NEIGHBOURS)
500
    pi->ids_ngbs_force[pi->num_ngb_force] = pj->id;
James Willis's avatar
James Willis committed
501
  ++pi->num_ngb_force;
502

503
  if (pj->num_ngb_force < MAX_NUM_OF_NEIGHBOURS)
504
    pj->ids_ngbs_force[pj->num_ngb_force] = pi->id;
James Willis's avatar
James Willis committed
505
  ++pj->num_ngb_force;
506
#endif
507
}
508
509
510
511

/**
 * @brief Force loop (non-symmetric version)
 */
512
513
514
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_force(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

515
516
517
  float wi, wj, wi_dx, wj_dx;

  const float fac_mu = 1.f; /* Will change with cosmological integration */
518

519
520
521
522
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Get some values in local variables. */
523
  // const float mi = pi->mass;
524
525
526
527
528
529
  const float mj = pj->mass;
  const float rhoi = pi->rho;
  const float rhoj = pj->rho;

  /* Get the kernel for hi. */
  const float hi_inv = 1.0f / hi;
530
  const float hid_inv = pow_dimension_plus_one(hi_inv); /* 1/h^(d+1) */
531
532
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
533
  const float wi_dr = hid_inv * wi_dx;
534
535
536

  /* Get the kernel for hj. */
  const float hj_inv = 1.0f / hj;
537
  const float hjd_inv = pow_dimension_plus_one(hj_inv); /* 1/h^(d+1) */
538
539
  const float xj = r * hj_inv;
  kernel_deval(xj, &wj, &wj_dx);
540
  const float wj_dr = hjd_inv * wj_dx;
541

542
543
544
545
546
  /* Compute h-gradient terms */
  const float f_i = pi->force.f;
  const float f_j = pj->force.f;

  /* Compute pressure terms */
547
548
  const float P_over_rho2_i = pi->force.P_over_rho2;
  const float P_over_rho2_j = pj->force.P_over_rho2;
549
550

  /* Compute sound speeds */
551
552
  const float ci = pi->force.soundspeed;
  const float cj = pj->force.soundspeed;
553

554
  /* Compute dv dot r. */
555
556
557
  const float dvdr = (pi->v[0] - pj->v[0]) * dx[0] +
                     (pi->v[1] - pj->v[1]) * dx[1] +
                     (pi->v[2] - pj->v[2]) * dx[2];
558

559
  /* Balsara term */
560
561
  const float balsara_i = pi->force.balsara;
  const float balsara_j = pj->force.balsara;
562
563

  /* Are the particles moving towards each others ? */
564
  const float omega_ij = (dvdr < 0.f) ? dvdr : 0.f;
565
566
567
568
569
570
571
572
573
  const float mu_ij = fac_mu * r_inv * omega_ij; /* This is 0 or negative */

  /* Signal velocity */
  const float v_sig = ci + cj - 3.f * mu_ij;

  /* Now construct the full viscosity term */
  const float rho_ij = 0.5f * (rhoi + rhoj);
  const float visc = -0.25f * const_viscosity_alpha * v_sig * mu_ij *
                     (balsara_i + balsara_j) / rho_ij;
574
575

  /* Now, convolve with the kernel */
576
  const float visc_term = 0.5f * visc * (wi_dr + wj_dr) * r_inv;
577
  const float sph_term =
578
      (f_i * P_over_rho2_i * wi_dr + f_j * P_over_rho2_j * wj_dr) * r_inv;
579
580
581

  /* Eventually got the acceleration */
  const float acc = visc_term + sph_term;
582

583
  /* Use the force Luke ! */
584
585
586
  pi->a_hydro[0] -= mj * acc * dx[0];
  pi->a_hydro[1] -= mj * acc * dx[1];
  pi->a_hydro[2] -= mj * acc * dx[2];
587

588
  /* Get the time derivative for h. */
589
  pi->force.h_dt -= mj * dvdr * r_inv / rhoj * wi_dr;
590

591
  /* Update the signal velocity. */
592
  pi->force.v_sig = (pi->force.v_sig > v_sig) ? pi->force.v_sig : v_sig;
593

594
  /* Change in entropy */
595
  pi->entropy_dt += mj * visc_term * dvdr;
596

597
#ifdef DEBUG_INTERACTIONS_SPH
598
  /* Update ngb counters */
599
  if (pi->num_ngb_force < MAX_NUM_OF_NEIGHBOURS)
600
    pi->ids_ngbs_force[pi->num_ngb_force] = pj->id;
James Willis's avatar
James Willis committed
601
  ++pi->num_ngb_force;
602
#endif
603
}
604

605
#ifdef WITH_VECTORIZATION
James Willis's avatar
James Willis committed
606
607
static const vector const_viscosity_alpha_fac =
    FILL_VEC(-0.25f * const_viscosity_alpha);
608

James Willis's avatar
James Willis committed
609
610
611
612
/**
 * @brief Force interaction computed using 1 vector
 * (non-symmetric vectorized version).
 */
James Willis's avatar
James Willis committed
613
614
__attribute__((always_inline)) INLINE static void
runner_iact_nonsym_1_vec_force(
615
    vector *r2, vector *dx, vector *dy, vector *dz, vector vix, vector viy,
James Willis's avatar
James Willis committed
616
617
618
    vector viz, vector pirho, vector grad_hi, vector piPOrho2, vector balsara_i,
    vector ci, float *Vjx, float *Vjy, float *Vjz, float *Pjrho, float *Grad_hj,
    float *PjPOrho2, float *Balsara_j, float *Cj, float *Mj, vector hi_inv,
619
    vector hj_inv, vector *a_hydro_xSum, vector *a_hydro_ySum,
James Willis's avatar
James Willis committed
620
621
    vector *a_hydro_zSum, vector *h_dtSum, vector *v_sigSum,
    vector *entropy_dtSum, mask_t mask) {
622
623
624

#ifdef WITH_VECTORIZATION

625
  vector r, ri;
626
  vector dvx, dvy, dvz;
627
628
  vector xi, xj;
  vector hid_inv, hjd_inv;
629
  vector wi_dx, wj_dx, wi_dr, wj_dr, dvdr;
630
631
632
  vector piax, piay, piaz;
  vector pih_dt;
  vector v_sig;
633
  vector omega_ij, mu_ij, balsara;
634
635
636
  vector rho_ij, visc, visc_term, sph_term, acc, entropy_dt;

  /* Fill vectors. */
637
638
639
640
641
642
643
644
645
  const vector vjx = vector_load(Vjx);
  const vector vjy = vector_load(Vjy);
  const vector vjz = vector_load(Vjz);
  const vector mj = vector_load(Mj);
  const vector pjrho = vector_load(Pjrho);
  const vector grad_hj = vector_load(Grad_hj);
  const vector pjPOrho2 = vector_load(PjPOrho2);
  const vector balsara_j = vector_load(Balsara_j);
  const vector cj = vector_load(Cj);
646

647
648
  const vector fac_mu =
      vector_set1(1.f); /* Will change with cosmological integration */
649

James Willis's avatar
James Willis committed
650
  /* Load stuff. */
651
  balsara.v = vec_add(balsara_i.v, balsara_j.v);
652
653

  /* Get the radius and inverse radius. */
654
  ri = vec_reciprocal_sqrt(*r2);
655
  r.v = vec_mul(r2->v, ri.v);
656
657

  /* Get the kernel for hi. */
658
  hid_inv = pow_dimension_plus_one_vec(hi_inv);
659
  xi.v = vec_mul(r.v, hi_inv.v);
660
  kernel_eval_dWdx_force_vec(&xi, &wi_dx);
661
  wi_dr.v = vec_mul(hid_inv.v, wi_dx.v);
662
663
664

  /* Get the kernel for hj. */
  hjd_inv = pow_dimension_plus_one_vec(hj_inv);
665
  xj.v = vec_mul(r.v, hj_inv.v);
James Willis's avatar
James Willis committed
666

667
  /* Calculate the kernel. */
James Willis's avatar
James Willis committed
668
  kernel_eval_dWdx_force_vec(&xj, &wj_dx);
James Willis's avatar
James Willis committed
669

670
671
672
673
674
675
  wj_dr.v = vec_mul(hjd_inv.v, wj_dx.v);

  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvz.v = vec_sub(viz.v, vjz.v);
676
677

  /* Compute dv dot r. */
678
  dvdr.v = vec_fma(dvx.v, dx->v, vec_fma(dvy.v, dy->v, vec_mul(dvz.v, dz->v)));
679
680
681

  /* Compute the relative velocity. (This is 0 if the particles move away from
   * each other and negative otherwise) */
682
  omega_ij.v = vec_fmin(dvdr.v, vec_setzero());
James Willis's avatar
James Willis committed
683
684
  mu_ij.v =
      vec_mul(fac_mu.v, vec_mul(ri.v, omega_ij.v)); /* This is 0 or negative */
685
686

  /* Compute signal velocity */
687
  v_sig.v = vec_fnma(vec_set1(3.f), mu_ij.v, vec_add(ci.v, cj.v));
688
689

  /* Now construct the full viscosity term */
690
  rho_ij.v = vec_mul(vec_set1(0.5f), vec_add(pirho.v, pjrho.v));
James Willis's avatar
James Willis committed
691
692
693
  visc.v = vec_div(vec_mul(const_viscosity_alpha_fac.v,
                           vec_mul(v_sig.v, vec_mul(mu_ij.v, balsara.v))),
                   rho_ij.v);
694
695

  /* Now, convolve with the kernel */
James Willis's avatar
James Willis committed
696
697
698
  visc_term.v =
      vec_mul(vec_set1(0.5f),
              vec_mul(visc.v, vec_mul(vec_add(wi_dr.v, wj_dr.v), ri.v)));
James Willis's avatar
James Willis committed
699

700
  sph_term.v =
James Willis's avatar
James Willis committed
701
702
703
      vec_mul(vec_fma(vec_mul(grad_hi.v, piPOrho2.v), wi_dr.v,
                      vec_mul(grad_hj.v, vec_mul(pjPOrho2.v, wj_dr.v))),
              ri.v);
James Willis's avatar
James Willis committed
704

705
  /* Eventually get the acceleration */
706
  acc.v = vec_add(visc_term.v, sph_term.v);
707
708

  /* Use the force, Luke! */
709
710
711
  piax.v = vec_mul(mj.v, vec_mul(dx->v, acc.v));
  piay.v = vec_mul(mj.v, vec_mul(dy->v, acc.v));
  piaz.v = vec_mul(mj.v, vec_mul(dz->v, acc.v));
712
713

  /* Get the time derivative for h. */
James Willis's avatar
James Willis committed
714
715
  pih_dt.v =
      vec_div(vec_mul(mj.v, vec_mul(dvdr.v, vec_mul(ri.v, wi_dr.v))), pjrho.v);
716
717

  /* Change in entropy */
718
  entropy_dt.v = vec_mul(mj.v, vec_mul(visc_term.v, dvdr.v));
719

720
  /* Store the forces back on the particles. */
721
722
723
724
  a_hydro_xSum->v = vec_mask_sub(a_hydro_xSum->v, piax.v, mask);
  a_hydro_ySum->v = vec_mask_sub(a_hydro_ySum->v, piay.v, mask);
  a_hydro_zSum->v = vec_mask_sub(a_hydro_zSum->v, piaz.v, mask);
  h_dtSum->v = vec_mask_sub(h_dtSum->v, pih_dt.v, mask);
725
  v_sigSum->v = vec_fmax(v_sigSum->v, vec_and_mask(v_sig.v, mask));
726
  entropy_dtSum->v = vec_mask_add(entropy_dtSum->v, entropy_dt.v, mask);
727
728
729
730
731
732
733
734
735
736

#else

  error(
      "The Gadget2 serial version of runner_iact_nonsym_force was called when "
      "the vectorised version should have been used.");

#endif
}

James Willis's avatar
James Willis committed
737
738
739
740
/**
 * @brief Force interaction computed using 2 interleaved vectors
 * (non-symmetric vectorized version).
 */
James Willis's avatar
James Willis committed
741
742
__attribute__((always_inline)) INLINE static void
runner_iact_nonsym_2_vec_force(
743
    float *R2, float *Dx, float *Dy, float *Dz, vector vix, vector viy,
James Willis's avatar
James Willis committed
744
745
746
747
748
749
    vector viz, vector pirho, vector grad_hi, vector piPOrho2, vector balsara_i,
    vector ci, float *Vjx, float *Vjy, float *Vjz, float *Pjrho, float *Grad_hj,
    float *PjPOrho2, float *Balsara_j, float *Cj, float *Mj, vector hi_inv,
    float *Hj_inv, vector *a_hydro_xSum, vector *a_hydro_ySum,
    vector *a_hydro_zSum, vector *h_dtSum, vector *v_sigSum,
    vector *entropy_dtSum, mask_t mask, mask_t mask_2, short mask_cond) {
750
751
752

#ifdef WITH_VECTORIZATION

753
754
  vector r, ri;
  vector dvx, dvy, dvz;
755
  vector ui, uj;
756
  vector hid_inv, hjd_inv;
757
  vector wi_dx, wj_dx, wi_dr, wj_dr, dvdr;
758
759
760
  vector piax, piay, piaz;
  vector pih_dt;
  vector v_sig;
761
  vector omega_ij, mu_ij, balsara;
762
763
  vector rho_ij, visc, visc_term, sph_term, acc, entropy_dt;

764
765
  vector r_2, ri_2;
  vector dvx_2, dvy_2, dvz_2;
766
  vector ui_2, uj_2;
767
  vector hjd_inv_2;
768
  vector wi_dx_2, wj_dx_2, wi_dr_2, wj_dr_2, dvdr_2;
769
770
771
772
773
774
775
  vector piax_2, piay_2, piaz_2;
  vector pih_dt_2;
  vector v_sig_2;
  vector omega_ij_2, mu_ij_2, balsara_2;
  vector rho_ij_2, visc_2, visc_term_2, sph_term_2, acc_2, entropy_dt_2;

  /* Fill vectors. */
776
777
778
779
780
781
782
783
784
785
786
787
788
789
  const vector mj = vector_load(Mj);
  const vector mj_2 = vector_load(&Mj[VEC_SIZE]);
  const vector vjx = vector_load(Vjx);
  const vector vjx_2 = vector_load(&Vjx[VEC_SIZE]);
  const vector vjy = vector_load(Vjy);
  const vector vjy_2 = vector_load(&Vjy[VEC_SIZE]);
  const vector vjz = vector_load(Vjz);
  const vector vjz_2 = vector_load(&Vjz[VEC_SIZE]);
  const vector dx = vector_load(Dx);
  const vector dx_2 = vector_load(&Dx[VEC_SIZE]);
  const vector dy = vector_load(Dy);
  const vector dy_2 = vector_load(&Dy[VEC_SIZE]);
  const vector dz = vector_load(Dz);
  const vector dz_2 = vector_load(&Dz[VEC_SIZE]);
James Willis's avatar
James Willis committed
790

791
  /* Get the radius and inverse radius. */
792
793
  const vector r2 = vector_load(R2);
  const vector r2_2 = vector_load(&R2[VEC_SIZE]);
794
795
796
797
  ri = vec_reciprocal_sqrt(r2);
  ri_2 = vec_reciprocal_sqrt(r2_2);
  r.v = vec_mul(r2.v, ri.v);
  r_2.v = vec_mul(r2_2.v, ri_2.v);
798

799
  /* Get remaining properties. */
800
801
802
803
804
805
806
807
808
809
810
811
  const vector pjrho = vector_load(Pjrho);
  const vector pjrho_2 = vector_load(&Pjrho[VEC_SIZE]);
  const vector grad_hj = vector_load(Grad_hj);
  const vector grad_hj_2 = vector_load(&Grad_hj[VEC_SIZE]);
  const vector pjPOrho2 = vector_load(PjPOrho2);
  const vector pjPOrho2_2 = vector_load(&PjPOrho2[VEC_SIZE]);
  const vector balsara_j = vector_load(Balsara_j);
  const vector balsara_j_2 = vector_load(&Balsara_j[VEC_SIZE]);
  const vector cj = vector_load(Cj);
  const vector cj_2 = vector_load(&Cj[VEC_SIZE]);
  const vector hj_inv = vector_load(Hj_inv);
  const vector hj_inv_2 = vector_load(&Hj_inv[VEC_SIZE]);
812

813
814
  const vector fac_mu =
      vector_set1(1.f); /* Will change with cosmological integration */
815

816
817
818
  /* Find the balsara switch. */
  balsara.v = vec_add(balsara_i.v, balsara_j.v);
  balsara_2.v = vec_add(balsara_i.v, balsara_j_2.v);
819
820

  /* Get the kernel for hi. */
821
  hid_inv = pow_dimension_plus_one_vec(hi_inv);
822
823
824
825
826
827
  ui.v = vec_mul(r.v, hi_inv.v);
  ui_2.v = vec_mul(r_2.v, hi_inv.v);
  kernel_eval_dWdx_force_vec(&ui, &wi_dx);
  kernel_eval_dWdx_force_vec(&ui_2, &wi_dx_2);
  wi_dr.v = vec_mul(hid_inv.v, wi_dx.v);
  wi_dr_2.v = vec_mul(hid_inv.v, wi_dx_2.v);
828
829
830
831

  /* Get the kernel for hj. */
  hjd_inv = pow_dimension_plus_one_vec(hj_inv);
  hjd_inv_2 = pow_dimension_plus_one_vec(hj_inv_2);
832
833
  uj.v = vec_mul(r.v, hj_inv.v);
  uj_2.v = vec_mul(r_2.v, hj_inv_2.v);
James Willis's avatar
James Willis committed
834

835
  /* Calculate the kernel for two particles. */
836
837
  kernel_eval_dWdx_force_vec(&uj, &wj_dx);
  kernel_eval_dWdx_force_vec(&uj_2, &wj_dx_2);
James Willis's avatar
James Willis committed
838

839
840
  wj_dr.v = vec_mul(hjd_inv.v, wj_dx.v);
  wj_dr_2.v = vec_mul(hjd_inv_2.v, wj_dx_2.v);
841

842
843
844
845
846
847
848
  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvx_2.v = vec_sub(vix.v, vjx_2.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvy_2.v = vec_sub(viy.v, vjy_2.v);
  dvz.v = vec_sub(viz.v, vjz.v);
  dvz_2.v = vec_sub(viz.v, vjz_2.v);
849
850

  /* Compute dv dot r. */
851
  dvdr.v = vec_fma(dvx.v, dx.v, vec_fma(dvy.v, dy.v, vec_mul(dvz.v, dz.v)));
James Willis's avatar
James Willis committed
852
853
  dvdr_2.v = vec_fma(dvx_2.v, dx_2.v,
                     vec_fma(dvy_2.v, dy_2.v, vec_mul(dvz_2.v, dz_2.v)));
854
855
856
857
858

  /* Compute the relative velocity. (This is 0 if the particles move away from
   * each other and negative otherwise) */
  omega_ij.v = vec_fmin(dvdr.v, vec_setzero());
  omega_ij_2.v = vec_fmin(dvdr_2.v, vec_setzero());
James Willis's avatar
James Willis committed
859
860
861
862
  mu_ij.v =
      vec_mul(fac_mu.v, vec_mul(ri.v, omega_ij.v)); /* This is 0 or negative */
  mu_ij_2.v = vec_mul(
      fac_mu.v, vec_mul(ri_2.v, omega_ij_2.v)); /* This is 0 or negative */
863
864

  /* Compute signal velocity */
865
866
  v_sig.v = vec_fnma(vec_set1(3.f), mu_ij.v, vec_add(ci.v, cj.v));
  v_sig_2.v = vec_fnma(vec_set1(3.f), mu_ij_2.v, vec_add(ci.v, cj_2.v));
867
868

  /* Now construct the full viscosity term */
869
870
871
  rho_ij.v = vec_mul(vec_set1(0.5f), vec_add(pirho.v, pjrho.v));
  rho_ij_2.v = vec_mul(vec_set1(0.5f), vec_add(pirho.v, pjrho_2.v));

James Willis's avatar
James Willis committed
872
873
874
875
876
877
878
  visc.v = vec_div(vec_mul(const_viscosity_alpha_fac.v,
                           vec_mul(v_sig.v, vec_mul(mu_ij.v, balsara.v))),
                   rho_ij.v);
  visc_2.v =
      vec_div(vec_mul(const_viscosity_alpha_fac.v,
                      vec_mul(v_sig_2.v, vec_mul(mu_ij_2.v, balsara_2.v))),
              rho_ij_2.v);
879
880

  /* Now, convolve with the kernel */
James Willis's avatar
James Willis committed
881
882
883
884
885
886
887
  visc_term.v =
      vec_mul(vec_set1(0.5f),
              vec_mul(visc.v, vec_mul(vec_add(wi_dr.v, wj_dr.v), ri.v)));
  visc_term_2.v = vec_mul(
      vec_set1(0.5f),
      vec_mul(visc_2.v, vec_mul(vec_add(wi_dr_2.v, wj_dr_2.v), ri_2.v)));

888
889
890
  vector grad_hi_mul_piPOrho2;
  grad_hi_mul_piPOrho2.v = vec_mul(grad_hi.v, piPOrho2.v);

891
  sph_term.v =
James Willis's avatar
James Willis committed
892
893
894
895
896
897
898
      vec_mul(vec_fma(grad_hi_mul_piPOrho2.v, wi_dr.v,
                      vec_mul(grad_hj.v, vec_mul(pjPOrho2.v, wj_dr.v))),
              ri.v);
  sph_term_2.v =
      vec_mul(vec_fma(grad_hi_mul_piPOrho2.v, wi_dr_2.v,
                      vec_mul(grad_hj_2.v, vec_mul(pjPOrho2_2.v, wj_dr_2.v))),
              ri_2.v);
899
900

  /* Eventually get the acceleration */
901
902
  acc.v = vec_add(visc_term.v, sph_term.v);
  acc_2.v = vec_add(visc_term_2.v, sph_term_2.v);
903
904

  /* Use the force, Luke! */
905
906
907
908
909
910
  piax.v = vec_mul(mj.v, vec_mul(dx.v, acc.v));
  piax_2.v = vec_mul(mj_2.v, vec_mul(dx_2.v, acc_2.v));
  piay.v = vec_mul(mj.v, vec_mul(dy.v, acc.v));
  piay_2.v = vec_mul(mj_2.v, vec_mul(dy_2.v, acc_2.v));
  piaz.v = vec_mul(mj.v, vec_mul(dz.v, acc.v));
  piaz_2.v = vec_mul(mj_2.v, vec_mul(dz_2.v, acc_2.v));
911
912

  /* Get the time derivative for h. */
James Willis's avatar
James Willis committed
913
914
915
916
917
  pih_dt.v =
      vec_div(vec_mul(mj.v, vec_mul(dvdr.v, vec_mul(ri.v, wi_dr.v))), pjrho.v);
  pih_dt_2.v =
      vec_div(vec_mul(mj_2.v, vec_mul(dvdr_2.v, vec_mul(ri_2.v, wi_dr_2.v))),