testRandom.c 10.8 KB
Newer Older
1 2 3
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (C) 2019 Matthieu Schaller (schaller@strw.leidenuniv.nl)
Folkert Nobels's avatar
Folkert Nobels committed
4
 *               2019 Folkert Nobels    (nobels@strw.leidenuniv.nl)
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

#include <fenv.h>

/* Local headers. */
#include "swift.h"

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/** 
 * @brief Compute the Pearson correlation coefficient for two sets of numbers
 *
 * The pearson correlation coefficient between two sets of numbers can be
 * calculated as:
 * 
 *           <x*y> - <x>*<y>
 * r_xy = ----------------------
 *         (var(x) * var(y))^.5
 *
 * In the case that both sets are purely uncorrelated the value of the 
 * Pearson correlation function is expected to be close to 0. In the case that 
 * there is positive correlation r_xy > 0 and in the case of negative 
 * correlation, the function has r_xy < 0.
 *
 * @param mean1 average of first series of numbers
 * @param mean2 average of second series of numbers
 * @param total12 sum of x_i * y_i of both series of numbers
 * @param var1 variance of the first series of numbers
 * @param var2 variance of the second series of numbers
 * @param number of elements in both series
 * */
51 52 53
double pearsonfunc(double mean1, double mean2, double total12, double var1, double var2, int counter) {
  
  const double mean12 = total12 / (double)counter;
54
  const double correlation = (mean12 - mean1 * mean2)/ sqrt(var1 * var2);
55
  return fabs(correlation); 
56 57
}

58 59 60 61 62 63 64 65 66 67
/**
 * @brief Test to check that the pseodo-random numbers in SWIFT are random
 * enough for our purpose.
 *
 * The test initializes with the current time and than creates 20 ID numbers
 * it runs the test using these 20 ID numbers. Using these 20 ID numbers it
 * Checks 4 different things: 
 * 1. The mean and variance are correct for random numbers generated by this
 *    ID number.
 * 2. The random numbers from this ID number do not cause correlation in time.
68 69
 *    Correlation is checked using the Pearson correlation coefficient which
 *    should be sufficiently close to zero.
70
 * 3. A small offset in ID number of 2, doesn't cause correlation between 
71 72
 *    the two sets of random numbers (again with the Pearson correlation 
 *    coefficient) and the mean and variance of this set is 
73 74
 *    also correct.
 * 4. Different physical processes in random.h are also uncorrelated and 
75 76 77 78 79
 *    produce the correct mean and variance as expected. Again the correlation
 *    is calculated using the Pearson correlation coefficient. 
 *
 * More information about the Pearson correlation coefficient can be found in 
 * the function pearsonfunc above this function.
80 81 82
 *
 * @param none
 */
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
int main(int argc, char* argv[]) {

  /* Initialize CPU frequency, this also starts time. */
  unsigned long long cpufreq = 0;
  clocks_set_cpufreq(cpufreq);

/* Choke on FPEs */
#ifdef HAVE_FE_ENABLE_EXCEPT
  feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif

  /* Get some randomness going */
  const int seed = time(NULL);
  message("Seed = %d", seed);
  srand(seed);

  /* Time-step size */
  const int time_bin = 29;

  /* Try a few different values for the ID */
  for (int i = 0; i < 20; ++i) {

    const long long id = rand() * (1LL << 31) + rand();
    const integertime_t increment = (1LL << time_bin);
107
    const long long idoffset = id + 2;
108 109 110 111 112 113

    message("Testing id=%lld time_bin=%d", id, time_bin);

    double total = 0., total2 = 0.;
    int count = 0;

114
    /* Pearson correlation variables for different times */
115 116
    double sum_previous_current = 0.;
    double previous = 0.;
117 118 119 120 121

    /* Pearson correlation for two different IDs */
    double pearsonIDs = 0.;
    double totalID = 0.;
    double total2ID = 0.;
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    /* Pearson correlation for different processes */
    double pearson_star_sf = 0.;
    double pearson_star_se = 0.;
    double pearson_star_bh = 0.;
    double pearson_sf_se = 0.;
    double pearson_sf_bh = 0.;
    double pearson_se_bh = 0.;

    /* Calculate the mean and <x^2> for these processes */
    double total_sf = 0.;
    double total_se = 0.;
    double total_bh = 0.;

    double total2_sf = 0.;
    double total2_se = 0.;
    double total2_bh = 0.;

140 141 142 143 144 145 146 147 148 149 150 151 152
    /* Check that the numbers are uniform over the full-range of useful
     * time-steps */
    for (integertime_t ti_current = 0LL; ti_current < max_nr_timesteps;
         ti_current += increment) {

      ti_current += increment;

      const double r =
          random_unit_interval(id, ti_current, random_number_star_formation);

      total += r;
      total2 += r * r;
      count++;
153

154 155
      /* Calculate for correlation between time.
       * For this we use the pearson correlation of time i and i-1 */
156 157
      sum_previous_current += r * previous;
      previous = r;
158

159 160 161 162
      /* Calculate if there is a correlation between different ids */
      const double r_2ndid = random_unit_interval(idoffset, ti_current,
                                                  random_number_star_formation);

163 164 165 166
      /* Pearson correlation for small different IDs */
      pearsonIDs += r * r_2ndid;
      totalID += r_2ndid;
      total2ID += r_2ndid * r_2ndid;
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

      /* Calculate random numbers for the different processes and check
       * that they are uncorrelated */
      
      const double r_sf = 
          random_unit_interval(id, ti_current, random_number_stellar_feedback);

      const double r_se = 
          random_unit_interval(id, ti_current, random_number_stellar_enrichment);

      const double r_bh = 
          random_unit_interval(id, ti_current, random_number_BH_feedback);

      /* Calculate the correlation between the different processes */
      total_sf += r_sf;
      total_se += r_se;
      total_bh += r_bh;

      total2_sf += r_sf * r_sf;
      total2_se += r_se * r_se;
      total2_bh += r_bh * r_bh;

      pearson_star_sf += r * r_sf;
      pearson_star_se += r * r_se;
      pearson_star_bh += r * r_bh;
      pearson_sf_se += r_sf * r_se;
      pearson_sf_bh += r_sf * r_bh;
      pearson_se_bh += r_se * r_bh;
195 196 197 198 199
    }

    const double mean = total / (double)count;
    const double var = total2 / (double)count - mean * mean;

200
    /* Pearson correlation calculation for different times */
201 202 203
    //const double mean_xy = sum_previous_current / ((double)count - 1.f);
    //const double correlation = (mean_xy - mean * mean) / var;
    const double correlation = pearsonfunc(mean,mean, sum_previous_current, var, var, count-1);
Folkert Nobels's avatar
Folkert Nobels committed
204

205
    /* Mean for different IDs */
206 207 208
    const double meanID = totalID / (double)count;
    const double varID = total2ID / (double)count - meanID * meanID;

209
    /* Pearson correlation between different IDs*/
210
    const double correlationID = pearsonfunc(mean, meanID, pearsonIDs, var, varID, count);
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    /* Mean and <x^2> for different processes */
    const double mean_sf = total_sf / (double)count;
    const double mean_se = total_se / (double)count;
    const double mean_bh = total_bh / (double)count;
    
    const double var_sf = total2_sf / (double)count - mean_sf * mean_sf;
    const double var_se = total2_se / (double)count - mean_se * mean_se;
    const double var_bh = total2_bh / (double)count - mean_bh * mean_bh;

    /* Correlation between different processes */
    const double corr_star_sf = pearsonfunc(mean,mean_sf,pearson_star_sf, var, var_sf, count);
    const double corr_star_se = pearsonfunc(mean,mean_se,pearson_star_se, var, var_se, count);
    const double corr_star_bh = pearsonfunc(mean,mean_bh,pearson_star_bh, var, var_bh, count);
    const double corr_sf_se = pearsonfunc(mean_sf,mean_se,pearson_sf_se, var_sf, var_se, count);
    const double corr_sf_bh = pearsonfunc(mean_sf,mean_bh,pearson_sf_bh, var_sf, var_bh, count);
    const double corr_se_bh = pearsonfunc(mean_se,mean_bh,pearson_se_bh, var_se, var_bh, count);
    
229 230
    /* Verify that the mean and variance match the expected values for a uniform
     * distribution */
231 232
    const double tolmean = 2e-4;
    const double tolvar = 1e-3;
233
    const double tolcorr = 4e-4;
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

    if ((fabs(mean - 0.5) / 0.5 > tolmean) ||
        (fabs(var - 1. / 12.) / (1. / 12.) > tolvar) ||
        (correlation > tolcorr) || (correlationID > tolcorr) ||
        (fabs(meanID - 0.5) / 0.5 > tolmean) ||
        (fabs(varID - 1. / 12.) / (1. / 12.) > tolvar) || 
        (corr_star_sf > tolcorr) || (corr_star_se > tolcorr) ||
        (corr_star_bh > tolcorr) || (corr_sf_se > tolcorr) ||
        (corr_sf_bh > tolcorr) || (corr_se_bh > tolcorr) || 
        (fabs(mean_sf - 0.5) / 0.5 > tolmean) ||
        (fabs(mean_se - 0.5) / 0.5 > tolmean) ||
        (fabs(mean_bh - 0.5) / 0.5 > tolmean) ||
        (fabs(var_sf - 1. / 12.) / (1. / 12.) > tolvar) || 
        (fabs(var_se - 1. / 12.) / (1. / 12.) > tolvar) || 
        (fabs(var_bh - 1. / 12.) / (1. / 12.) > tolvar)) {
249
      message("Test failed!");
250
      message("Global result:");
Folkert Nobels's avatar
Folkert Nobels committed
251
      message(
252 253
          "Result:    count=%d mean=%f var=%f, correlation=%f",
          count, mean, var, correlation);
Folkert Nobels's avatar
Folkert Nobels committed
254
      message(
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
          "Expected:  count=%d mean=%f var=%f, correlation=%f",
          count, 0.5f, 1. / 12., 0.);
      message("ID part");
      message("Result:     count%d mean=%f var=%f"
          " correlation=%f", count, meanID, varID, correlationID);
      message("Expected:   count%d mean=%f var=%f"
          " correlation=%f", count, .5f, 1. / 12., 0.);
      message("Different physical processes:");
      message("Means:    stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f", mean, mean_sf, mean_se,
          mean_bh);
      message("Expected: stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f", .5f, .5f, .5f, .5f);
      message("Var:      stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f", var, var_sf, var_se,
          var_bh);
      message("Expected: stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f", 1./12., 1./12., 1/12.,
          1./12.);
      message("Correlation: stars-sf=%f stars-se=%f stars-bh=%f"
          "sf-se=%f sf-bh=%f se-bh=%f", corr_star_sf, corr_star_se,
          corr_star_bh, corr_sf_se, corr_sf_bh, corr_se_bh);
      message("Expected:    stars-sf=%f stars-se=%f stars-bh=%f"
          "sf-se=%f sf-bh=%f se-bh=%f", 0., 0., 0., 0., 0., 0.);
279 280 281 282 283 284
      return 1;
    }
  }

  return 0;
}