testRandom.c 10.8 KB
Newer Older
1
2
3
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (C) 2019 Matthieu Schaller (schaller@strw.leidenuniv.nl)
Folkert Nobels's avatar
Folkert Nobels committed
4
 *               2019 Folkert Nobels    (nobels@strw.leidenuniv.nl)
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

#include <fenv.h>

/* Local headers. */
#include "swift.h"

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/** 
 * @brief Compute the Pearson correlation coefficient for two sets of numbers
 *
 * The pearson correlation coefficient between two sets of numbers can be
 * calculated as:
 * 
 *           <x*y> - <x>*<y>
 * r_xy = ----------------------
 *         (var(x) * var(y))^.5
 *
 * In the case that both sets are purely uncorrelated the value of the 
 * Pearson correlation function is expected to be close to 0. In the case that 
 * there is positive correlation r_xy > 0 and in the case of negative 
 * correlation, the function has r_xy < 0.
 *
 * @param mean1 average of first series of numbers
 * @param mean2 average of second series of numbers
 * @param total12 sum of x_i * y_i of both series of numbers
 * @param var1 variance of the first series of numbers
 * @param var2 variance of the second series of numbers
 * @param number of elements in both series
 * */
51
52
53
double pearsonfunc(double mean1, double mean2, double total12, double var1, double var2, int counter) {
  
  const double mean12 = total12 / (double)counter;
54
  const double correlation = (mean12 - mean1 * mean2)/ sqrt(var1 * var2);
55
  return fabs(correlation); 
56
57
}

58
59
60
61
62
63
64
65
66
67
/**
 * @brief Test to check that the pseodo-random numbers in SWIFT are random
 * enough for our purpose.
 *
 * The test initializes with the current time and than creates 20 ID numbers
 * it runs the test using these 20 ID numbers. Using these 20 ID numbers it
 * Checks 4 different things: 
 * 1. The mean and variance are correct for random numbers generated by this
 *    ID number.
 * 2. The random numbers from this ID number do not cause correlation in time.
68
69
 *    Correlation is checked using the Pearson correlation coefficient which
 *    should be sufficiently close to zero.
70
 * 3. A small offset in ID number of 2, doesn't cause correlation between 
71
72
 *    the two sets of random numbers (again with the Pearson correlation 
 *    coefficient) and the mean and variance of this set is 
73
74
 *    also correct.
 * 4. Different physical processes in random.h are also uncorrelated and 
75
76
77
78
79
 *    produce the correct mean and variance as expected. Again the correlation
 *    is calculated using the Pearson correlation coefficient. 
 *
 * More information about the Pearson correlation coefficient can be found in 
 * the function pearsonfunc above this function.
80
81
82
 *
 * @param none
 */
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
int main(int argc, char* argv[]) {

  /* Initialize CPU frequency, this also starts time. */
  unsigned long long cpufreq = 0;
  clocks_set_cpufreq(cpufreq);

/* Choke on FPEs */
#ifdef HAVE_FE_ENABLE_EXCEPT
  feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif

  /* Get some randomness going */
  const int seed = time(NULL);
  message("Seed = %d", seed);
  srand(seed);

  /* Time-step size */
  const int time_bin = 29;

  /* Try a few different values for the ID */
  for (int i = 0; i < 20; ++i) {

    const long long id = rand() * (1LL << 31) + rand();
    const integertime_t increment = (1LL << time_bin);
107
    const long long idoffset = id + 2;
108
109
110
111
112
113

    message("Testing id=%lld time_bin=%d", id, time_bin);

    double total = 0., total2 = 0.;
    int count = 0;

114
    /* Pearson correlation variables for different times */
115
116
    double sum_previous_current = 0.;
    double previous = 0.;
117
118
119
120
121

    /* Pearson correlation for two different IDs */
    double pearsonIDs = 0.;
    double totalID = 0.;
    double total2ID = 0.;
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    /* Pearson correlation for different processes */
    double pearson_star_sf = 0.;
    double pearson_star_se = 0.;
    double pearson_star_bh = 0.;
    double pearson_sf_se = 0.;
    double pearson_sf_bh = 0.;
    double pearson_se_bh = 0.;

    /* Calculate the mean and <x^2> for these processes */
    double total_sf = 0.;
    double total_se = 0.;
    double total_bh = 0.;

    double total2_sf = 0.;
    double total2_se = 0.;
    double total2_bh = 0.;

140
141
142
143
144
145
146
147
148
149
150
151
152
    /* Check that the numbers are uniform over the full-range of useful
     * time-steps */
    for (integertime_t ti_current = 0LL; ti_current < max_nr_timesteps;
         ti_current += increment) {

      ti_current += increment;

      const double r =
          random_unit_interval(id, ti_current, random_number_star_formation);

      total += r;
      total2 += r * r;
      count++;
153

154
155
      /* Calculate for correlation between time.
       * For this we use the pearson correlation of time i and i-1 */
156
157
      sum_previous_current += r * previous;
      previous = r;
158

159
160
161
162
      /* Calculate if there is a correlation between different ids */
      const double r_2ndid = random_unit_interval(idoffset, ti_current,
                                                  random_number_star_formation);

163
164
165
166
      /* Pearson correlation for small different IDs */
      pearsonIDs += r * r_2ndid;
      totalID += r_2ndid;
      total2ID += r_2ndid * r_2ndid;
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

      /* Calculate random numbers for the different processes and check
       * that they are uncorrelated */
      
      const double r_sf = 
          random_unit_interval(id, ti_current, random_number_stellar_feedback);

      const double r_se = 
          random_unit_interval(id, ti_current, random_number_stellar_enrichment);

      const double r_bh = 
          random_unit_interval(id, ti_current, random_number_BH_feedback);

      /* Calculate the correlation between the different processes */
      total_sf += r_sf;
      total_se += r_se;
      total_bh += r_bh;

      total2_sf += r_sf * r_sf;
      total2_se += r_se * r_se;
      total2_bh += r_bh * r_bh;

      pearson_star_sf += r * r_sf;
      pearson_star_se += r * r_se;
      pearson_star_bh += r * r_bh;
      pearson_sf_se += r_sf * r_se;
      pearson_sf_bh += r_sf * r_bh;
      pearson_se_bh += r_se * r_bh;
195
196
197
198
199
    }

    const double mean = total / (double)count;
    const double var = total2 / (double)count - mean * mean;

200
    /* Pearson correlation calculation for different times */
201
202
203
    //const double mean_xy = sum_previous_current / ((double)count - 1.f);
    //const double correlation = (mean_xy - mean * mean) / var;
    const double correlation = pearsonfunc(mean,mean, sum_previous_current, var, var, count-1);
Folkert Nobels's avatar
Folkert Nobels committed
204

205
    /* Mean for different IDs */
206
207
208
    const double meanID = totalID / (double)count;
    const double varID = total2ID / (double)count - meanID * meanID;

209
    /* Pearson correlation between different IDs*/
210
    const double correlationID = pearsonfunc(mean, meanID, pearsonIDs, var, varID, count);
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    /* Mean and <x^2> for different processes */
    const double mean_sf = total_sf / (double)count;
    const double mean_se = total_se / (double)count;
    const double mean_bh = total_bh / (double)count;
    
    const double var_sf = total2_sf / (double)count - mean_sf * mean_sf;
    const double var_se = total2_se / (double)count - mean_se * mean_se;
    const double var_bh = total2_bh / (double)count - mean_bh * mean_bh;

    /* Correlation between different processes */
    const double corr_star_sf = pearsonfunc(mean,mean_sf,pearson_star_sf, var, var_sf, count);
    const double corr_star_se = pearsonfunc(mean,mean_se,pearson_star_se, var, var_se, count);
    const double corr_star_bh = pearsonfunc(mean,mean_bh,pearson_star_bh, var, var_bh, count);
    const double corr_sf_se = pearsonfunc(mean_sf,mean_se,pearson_sf_se, var_sf, var_se, count);
    const double corr_sf_bh = pearsonfunc(mean_sf,mean_bh,pearson_sf_bh, var_sf, var_bh, count);
    const double corr_se_bh = pearsonfunc(mean_se,mean_bh,pearson_se_bh, var_se, var_bh, count);
    
229
230
    /* Verify that the mean and variance match the expected values for a uniform
     * distribution */
231
232
    const double tolmean = 2e-4;
    const double tolvar = 1e-3;
233
    const double tolcorr = 4e-4;
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

    if ((fabs(mean - 0.5) / 0.5 > tolmean) ||
        (fabs(var - 1. / 12.) / (1. / 12.) > tolvar) ||
        (correlation > tolcorr) || (correlationID > tolcorr) ||
        (fabs(meanID - 0.5) / 0.5 > tolmean) ||
        (fabs(varID - 1. / 12.) / (1. / 12.) > tolvar) || 
        (corr_star_sf > tolcorr) || (corr_star_se > tolcorr) ||
        (corr_star_bh > tolcorr) || (corr_sf_se > tolcorr) ||
        (corr_sf_bh > tolcorr) || (corr_se_bh > tolcorr) || 
        (fabs(mean_sf - 0.5) / 0.5 > tolmean) ||
        (fabs(mean_se - 0.5) / 0.5 > tolmean) ||
        (fabs(mean_bh - 0.5) / 0.5 > tolmean) ||
        (fabs(var_sf - 1. / 12.) / (1. / 12.) > tolvar) || 
        (fabs(var_se - 1. / 12.) / (1. / 12.) > tolvar) || 
        (fabs(var_bh - 1. / 12.) / (1. / 12.) > tolvar)) {
249
      message("Test failed!");
250
      message("Global result:");
Folkert Nobels's avatar
Folkert Nobels committed
251
      message(
252
253
          "Result:    count=%d mean=%f var=%f, correlation=%f",
          count, mean, var, correlation);
Folkert Nobels's avatar
Folkert Nobels committed
254
      message(
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
          "Expected:  count=%d mean=%f var=%f, correlation=%f",
          count, 0.5f, 1. / 12., 0.);
      message("ID part");
      message("Result:     count%d mean=%f var=%f"
          " correlation=%f", count, meanID, varID, correlationID);
      message("Expected:   count%d mean=%f var=%f"
          " correlation=%f", count, .5f, 1. / 12., 0.);
      message("Different physical processes:");
      message("Means:    stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f", mean, mean_sf, mean_se,
          mean_bh);
      message("Expected: stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f", .5f, .5f, .5f, .5f);
      message("Var:      stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f", var, var_sf, var_se,
          var_bh);
      message("Expected: stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f", 1./12., 1./12., 1/12.,
          1./12.);
      message("Correlation: stars-sf=%f stars-se=%f stars-bh=%f"
          "sf-se=%f sf-bh=%f se-bh=%f", corr_star_sf, corr_star_se,
          corr_star_bh, corr_sf_se, corr_sf_bh, corr_se_bh);
      message("Expected:    stars-sf=%f stars-se=%f stars-bh=%f"
          "sf-se=%f sf-bh=%f se-bh=%f", 0., 0., 0., 0., 0., 0.);
279
280
281
282
283
284
      return 1;
    }
  }

  return 0;
}