runner_doiact_grav.h 41.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2013 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
 *               2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/
#ifndef SWIFT_RUNNER_DOIACT_GRAV_H
#define SWIFT_RUNNER_DOIACT_GRAV_H

/* Includes. */
24
#include "active.h"
25
#include "cell.h"
26
#include "gravity.h"
27
#include "inline.h"
28
#include "part.h"
29
#include "timers.h"
30

Matthieu Schaller's avatar
Matthieu Schaller committed
31
32
33
34
35
36
37
38
/**
 * @brief Recursively propagate the multipoles down the tree by applying the
 * L2L and L2P kernels.
 *
 * @param r The #runner.
 * @param c The #cell we are working on.
 * @param timer Are we timing this ?
 */
39
40
static INLINE void runner_do_grav_down(struct runner *r, struct cell *c,
                                       int timer) {
41

42
  /* Some constants */
43
  const struct engine *e = r->e;
44
45

  /* Cell properties */
46
47
  struct gpart *gparts = c->gparts;
  const int gcount = c->gcount;
48

49
  TIMER_TIC;
50

51
52
#ifdef SWIFT_DEBUG_CHECKS
  if (c->ti_old_multipole != e->ti_current) error("c->multipole not drifted.");
53
54
  if (c->multipole->pot.ti_init != e->ti_current)
    error("c->field tensor not initialised");
55
56
#endif

57
  if (c->split) { /* Node case */
58

59
    /* Add the field-tensor to all the 8 progenitors */
60
61
62
    for (int k = 0; k < 8; ++k) {
      struct cell *cp = c->progeny[k];

63
      /* Do we have a progenitor with any active g-particles ? */
64
      if (cp != NULL && cell_is_active_gravity(cp, e)) {
65

66
67
68
#ifdef SWIFT_DEBUG_CHECKS
        if (cp->ti_old_multipole != e->ti_current)
          error("cp->multipole not drifted.");
69
70
        if (cp->multipole->pot.ti_init != e->ti_current)
          error("cp->field tensor not initialised");
71
#endif
72
        struct grav_tensor shifted_tensor;
73

74
75
        /* If the tensor received any contribution, push it down */
        if (c->multipole->pot.interacted) {
76

77
78
79
80
81
82
83
          /* Shift the field tensor */
          gravity_L2L(&shifted_tensor, &c->multipole->pot, cp->multipole->CoM,
                      c->multipole->CoM);

          /* Add it to this level's tensor */
          gravity_field_tensors_add(&cp->multipole->pot, &shifted_tensor);
        }
84

85
        /* Recurse */
86
        runner_do_grav_down(r, cp, 0);
87
88
89
      }
    }

90
  } else { /* Leaf case */
91

92
93
94
    /* We can abort early if no interactions via multipole happened */
    if (!c->multipole->pot.interacted) return;

95
96
    if (!cell_are_gpart_drifted(c, e)) error("Un-drifted gparts");

97
98
    /* Apply accelerations to the particles */
    for (int i = 0; i < gcount; ++i) {
99
100

      /* Get a handle on the gpart */
101
      struct gpart *gp = &gparts[i];
102
103

      /* Update if active */
104
105
106
107
108
109
      if (gpart_is_active(gp, e)) {

#ifdef SWIFT_DEBUG_CHECKS
        /* Check that particles have been drifted to the current time */
        if (gp->ti_drift != e->ti_current)
          error("gpart not drifted to current time");
110
111
        if (c->multipole->pot.ti_init != e->ti_current)
          error("c->field tensor not initialised");
112
113
#endif

114
        /* Apply the kernel */
115
        gravity_L2P(&c->multipole->pot, c->multipole->CoM, gp);
116
      }
117
    }
118
  }
119
120

  if (timer) TIMER_TOC(timer_dograv_down);
121
122
}

123
124
125
126
127
128
129
130
/**
 * @brief Computes the interaction of the field tensor in a cell with the
 * multipole of another cell.
 *
 * @param r The #runner.
 * @param ci The #cell with field tensor to interact.
 * @param cj The #cell with the multipole.
 */
131
132
133
static INLINE void runner_dopair_grav_mm(const struct runner *r,
                                         struct cell *restrict ci,
                                         struct cell *restrict cj) {
134

135
  /* Some constants */
136
  const struct engine *e = r->e;
137
138
139
  const struct space *s = e->s;
  const int periodic = s->periodic;
  const double dim[3] = {s->dim[0], s->dim[1], s->dim[2]};
140
  const struct gravity_props *props = e->gravity_properties;
141
142
  // const float a_smooth = e->gravity_properties->a_smooth;
  // const float rlr_inv = 1. / (a_smooth * ci->super->width[0]);
143
144
145

  TIMER_TIC;

146
  /* Anything to do here? */
147
  if (!cell_is_active_gravity(ci, e) || ci->nodeID != engine_rank) return;
148

149
150
151
  /* Short-cut to the multipole */
  const struct multipole *multi_j = &cj->multipole->m_pole;

152
#ifdef SWIFT_DEBUG_CHECKS
153
154
  if (ci == cj) error("Interacting a cell with itself using M2L");

Matthieu Schaller's avatar
Matthieu Schaller committed
155
156
  if (multi_j->num_gpart == 0)
    error("Multipole does not seem to have been set.");
157

158
159
  if (ci->multipole->pot.ti_init != e->ti_current)
    error("ci->grav tensor not initialised.");
160
#endif
161

162
  /* Do we need to drift the multipole ? */
163
164
165
166
167
168
  if (cj->ti_old_multipole != e->ti_current)
    error(
        "Undrifted multipole cj->ti_old_multipole=%lld cj->nodeID=%d "
        "ci->nodeID=%d "
        "e->ti_current=%lld",
        cj->ti_old_multipole, cj->nodeID, ci->nodeID, e->ti_current);
169
170

  /* Let's interact at this level */
171
  gravity_M2L(&ci->multipole->pot, multi_j, ci->multipole->CoM,
172
              cj->multipole->CoM, props, periodic, dim);
173
174
175
176

  TIMER_TOC(timer_dopair_grav_mm);
}

177
178
179
180
181
182
183
static INLINE void runner_dopair_grav_pp_full(const struct engine *e,
                                              struct gravity_cache *ci_cache,
                                              struct gravity_cache *cj_cache,
                                              int gcount_i, int gcount_j,
                                              int gcount_padded_j,
                                              struct gpart *restrict gparts_i,
                                              struct gpart *restrict gparts_j) {
Matthieu Schaller's avatar
Matthieu Schaller committed
184

185
  TIMER_TIC;
186

187
188
  /* Loop over all particles in ci... */
  for (int pid = 0; pid < gcount_i; pid++) {
189

190
191
    /* Skip inactive particles */
    if (!ci_cache->active[pid]) continue;
192

193
194
    /* Skip particle that can use the multipole */
    if (ci_cache->use_mpole[pid]) continue;
195

196
197
198
199
#ifdef SWIFT_DEBUG_CHECKS
    if (!gpart_is_active(&gparts_i[pid], e))
      error("Active particle went through the cache");
#endif
200

201
202
203
    const float x_i = ci_cache->x[pid];
    const float y_i = ci_cache->y[pid];
    const float z_i = ci_cache->z[pid];
204

205
206
207
208
209
    /* Some powers of the softening length */
    const float h_i = ci_cache->epsilon[pid];
    const float h2_i = h_i * h_i;
    const float h_inv_i = 1.f / h_i;
    const float h_inv3_i = h_inv_i * h_inv_i * h_inv_i;
210

211
212
    /* Local accumulators for the acceleration and potential */
    float a_x = 0.f, a_y = 0.f, a_z = 0.f, pot = 0.f;
213

214
    /* Make the compiler understand we are in happy vectorization land */
Matthieu Schaller's avatar
Matthieu Schaller committed
215
216
217
218
    swift_align_information(float, cj_cache->x, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(float, cj_cache->y, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(float, cj_cache->z, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(float, cj_cache->m, SWIFT_CACHE_ALIGNMENT);
219
    swift_assume_size(gcount_padded_j, VEC_SIZE);
220

221
222
    /* Loop over every particle in the other cell. */
    for (int pjd = 0; pjd < gcount_padded_j; pjd++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
223

224
225
226
227
228
      /* Get info about j */
      const float x_j = cj_cache->x[pjd];
      const float y_j = cj_cache->y[pjd];
      const float z_j = cj_cache->z[pjd];
      const float mass_j = cj_cache->m[pjd];
229

230
231
232
233
      /* Compute the pairwise (square) distance. */
      const float dx = x_i - x_j;
      const float dy = y_i - y_j;
      const float dz = z_i - z_j;
234
235
      const float r2 = dx * dx + dy * dy + dz * dz;

236
#ifdef SWIFT_DEBUG_CHECKS
237
238
      if (r2 == 0.f && h_i == 0.)
        error("Interacting particles with 0 distance and 0 softening.");
239

240
241
242
243
244
245
      /* Check that particles have been drifted to the current time */
      if (gparts_i[pid].ti_drift != e->ti_current)
        error("gpi not drifted to current time");
      if (pjd < gcount_j && gparts_j[pjd].ti_drift != e->ti_current)
        error("gpj not drifted to current time");
#endif
246

247
      /* Interact! */
248
249
250
      float f_ij, pot_ij;
      runner_iact_grav_pp_full(r2, h2_i, h_inv_i, h_inv3_i, mass_j, &f_ij,
                               &pot_ij);
251
252
253
254
255

      /* Store it back */
      a_x -= f_ij * dx;
      a_y -= f_ij * dy;
      a_z -= f_ij * dz;
256
      pot += pot_ij;
257
258

#ifdef SWIFT_DEBUG_CHECKS
259
260
      /* Update the interaction counter if it's not a padded gpart */
      if (pjd < gcount_j) gparts_i[pid].num_interacted++;
261
#endif
262
    }
263

264
265
266
267
    /* Store everything back in cache */
    ci_cache->a_x[pid] = a_x;
    ci_cache->a_y[pid] = a_y;
    ci_cache->a_z[pid] = a_z;
268
    ci_cache->pot[pid] = pot;
269
  }
270
271

  TIMER_TOC(timer_dopair_grav_pp);
272
}
273

274
275
276
277
278
static INLINE void runner_dopair_grav_pp_truncated(
    const struct engine *e, const float rlr_inv, struct gravity_cache *ci_cache,
    struct gravity_cache *cj_cache, int gcount_i, int gcount_j,
    int gcount_padded_j, struct gpart *restrict gparts_i,
    struct gpart *restrict gparts_j) {
279

280
  TIMER_TIC;
281

282
283
  /* Loop over all particles in ci... */
  for (int pid = 0; pid < gcount_i; pid++) {
284

285
286
    /* Skip inactive particles */
    if (!ci_cache->active[pid]) continue;
287

288
289
    /* Skip particle that can use the multipole */
    if (ci_cache->use_mpole[pid]) continue;
290
291

#ifdef SWIFT_DEBUG_CHECKS
292
293
    if (!gpart_is_active(&gparts_i[pid], e))
      error("Active particle went through the cache");
294
295
#endif

296
297
298
    const float x_i = ci_cache->x[pid];
    const float y_i = ci_cache->y[pid];
    const float z_i = ci_cache->z[pid];
299

300
301
302
303
304
    /* Some powers of the softening length */
    const float h_i = ci_cache->epsilon[pid];
    const float h2_i = h_i * h_i;
    const float h_inv_i = 1.f / h_i;
    const float h_inv3_i = h_inv_i * h_inv_i * h_inv_i;
305

306
307
    /* Local accumulators for the acceleration and potential */
    float a_x = 0.f, a_y = 0.f, a_z = 0.f, pot = 0.f;
308

309
    /* Make the compiler understand we are in happy vectorization land */
Matthieu Schaller's avatar
Matthieu Schaller committed
310
311
312
313
    swift_align_information(float, cj_cache->x, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(float, cj_cache->y, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(float, cj_cache->z, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(float, cj_cache->m, SWIFT_CACHE_ALIGNMENT);
314
    swift_assume_size(gcount_padded_j, VEC_SIZE);
315

316
317
    /* Loop over every particle in the other cell. */
    for (int pjd = 0; pjd < gcount_padded_j; pjd++) {
318

319
      /* Get info about j */
320
321
322
      const float x_j = cj_cache->x[pjd];
      const float y_j = cj_cache->y[pjd];
      const float z_j = cj_cache->z[pjd];
323
      const float mass_j = cj_cache->m[pjd];
Matthieu Schaller's avatar
Matthieu Schaller committed
324

325
326
327
328
      /* Compute the pairwise (square) distance. */
      const float dx = x_i - x_j;
      const float dy = y_i - y_j;
      const float dz = z_i - z_j;
329
330
      const float r2 = dx * dx + dy * dy + dz * dz;

331
332
#ifdef SWIFT_DEBUG_CHECKS
      if (r2 == 0.f) error("Interacting particles with 0 distance");
333

334
335
336
337
338
339
      /* Check that particles have been drifted to the current time */
      if (gparts_i[pid].ti_drift != e->ti_current)
        error("gpi not drifted to current time");
      if (pjd < gcount_j && gparts_j[pjd].ti_drift != e->ti_current)
        error("gpj not drifted to current time");
#endif
340

341
      /* Interact! */
342
      float f_ij, pot_ij;
343
      runner_iact_grav_pp_truncated(r2, h2_i, h_inv_i, h_inv3_i, mass_j,
344
                                    rlr_inv, &f_ij, &pot_ij);
345
346
347
348
349

      /* Store it back */
      a_x -= f_ij * dx;
      a_y -= f_ij * dy;
      a_z -= f_ij * dz;
350
      pot += pot_ij;
351
352

#ifdef SWIFT_DEBUG_CHECKS
353
354
      /* Update the interaction counter if it's not a padded gpart */
      if (pjd < gcount_j) gparts_i[pid].num_interacted++;
355
#endif
356
    }
357

358
359
360
361
    /* Store everything back in cache */
    ci_cache->a_x[pid] = a_x;
    ci_cache->a_y[pid] = a_y;
    ci_cache->a_z[pid] = a_z;
362
    ci_cache->pot[pid] = pot;
363
  }
364
365

  TIMER_TOC(timer_dopair_grav_pp);
366
}
367

368
369
370
371
372
373
static INLINE void runner_dopair_grav_pm(
    const struct engine *restrict e, struct gravity_cache *ci_cache,
    int gcount_i, int gcount_padded_i, struct gpart *restrict gparts_i,
    const float CoM_j[3], const struct multipole *restrict multi_j,
    struct cell *restrict cj) {

374
375
  TIMER_TIC;

376
  /* Make the compiler understand we are in happy vectorization land */
377
378
379
380
381
382
383
384
  swift_declare_aligned_ptr(float, x, ci_cache->x, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, y, ci_cache->y, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, z, ci_cache->z, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, epsilon, ci_cache->epsilon,
                            SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, a_x, ci_cache->a_x, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, a_y, ci_cache->a_y, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, a_z, ci_cache->a_z, SWIFT_CACHE_ALIGNMENT);
385
  swift_declare_aligned_ptr(float, pot, ci_cache->pot, SWIFT_CACHE_ALIGNMENT);
386
387
388
389
  swift_declare_aligned_ptr(int, active, ci_cache->active,
                            SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(int, use_mpole, ci_cache->use_mpole,
                            SWIFT_CACHE_ALIGNMENT);
390
  swift_assume_size(gcount_padded_i, VEC_SIZE);
391

392
393
  /* Loop over all particles in ci... */
  for (int pid = 0; pid < gcount_padded_i; pid++) {
394

395
    /* Skip inactive particles */
396
    if (!active[pid]) continue;
397

398
    /* Skip particle that cannot use the multipole */
399
    if (!use_mpole[pid]) continue;
400
401

#ifdef SWIFT_DEBUG_CHECKS
402
403
    if (pid < gcount_i && !gpart_is_active(&gparts_i[pid], e))
      error("Active particle went through the cache");
404
405
#endif

406
407
408
    const float x_i = x[pid];
    const float y_i = y[pid];
    const float z_i = z[pid];
409
410

    /* Some powers of the softening length */
411
    const float h_i = epsilon[pid];
412
413
414
415
416
417
418
    const float h_inv_i = 1.f / h_i;

    /* Distance to the Multipole */
    const float dx = x_i - CoM_j[0];
    const float dy = y_i - CoM_j[1];
    const float dz = z_i - CoM_j[2];
    const float r2 = dx * dx + dy * dy + dz * dz;
Matthieu Schaller's avatar
Matthieu Schaller committed
419

420
    /* Interact! */
421
422
423
    float f_x, f_y, f_z, pot_ij;
    runner_iact_grav_pm(dx, dy, dz, r2, h_i, h_inv_i, multi_j, &f_x, &f_y, &f_z,
                        &pot_ij);
424
425

    /* Store it back */
426
427
428
    a_x[pid] = f_x;
    a_y[pid] = f_y;
    a_z[pid] = f_z;
429
    pot[pid] = pot_ij;
430
431

#ifdef SWIFT_DEBUG_CHECKS
432
433
434
    /* Update the interaction counter */
    if (pid < gcount_i)
      gparts_i[pid].num_interacted += cj->multipole->m_pole.num_gpart;
435
436
#endif
  }
437
438

  TIMER_TOC(timer_dopair_grav_pm);
439
440
441
442
}

/**
 * @brief Computes the interaction of all the particles in a cell with all the
443
 * particles of another cell (switching function between full and truncated).
444
445
446
447
448
 *
 * @param r The #runner.
 * @param ci The first #cell.
 * @param cj The other #cell.
 */
449
450
static INLINE void runner_dopair_grav_pp(struct runner *r, struct cell *ci,
                                         struct cell *cj) {
451

452
453
454
455
456
  const struct engine *e = r->e;

  TIMER_TIC;

  /* Anything to do here? */
457
  if (!cell_is_active_gravity(ci, e) && !cell_is_active_gravity(cj, e)) return;
458
459
460
461
462
463
464
465
466

  /* Check that we are not doing something stupid */
  if (ci->split || cj->split) error("Running P-P on splitable cells");

  /* Let's start by drifting things */
  if (!cell_are_gpart_drifted(ci, e)) error("Un-drifted gparts");
  if (!cell_are_gpart_drifted(cj, e)) error("Un-drifted gparts");

  /* Recover some useful constants */
467
  struct space *s = e->s;
468
  const int periodic = s->periodic;
469
  const double cell_width = s->width[0];
470
471
  const double a_smooth = e->gravity_properties->a_smooth;
  const double r_cut_min = e->gravity_properties->r_cut_min;
472
  const double rlr = cell_width * a_smooth;
473
  const double min_trunc = rlr * r_cut_min;
474
475
476
477
478
479
  const float rlr_inv = 1. / rlr;

  /* Caches to play with */
  struct gravity_cache *const ci_cache = &r->ci_gravity_cache;
  struct gravity_cache *const cj_cache = &r->cj_gravity_cache;

480
481
482
483
484
  /* Get the distance vector between the pairs, wrapping. */
  double cell_shift[3];
  space_getsid(s, &ci, &cj, cell_shift);

  /* Record activity status */
485
486
  const int ci_active = cell_is_active_gravity(ci, e);
  const int cj_active = cell_is_active_gravity(cj, e);
487
488
489

  /* Do we need to drift the multipoles ? */
  if (cj_active && ci->ti_old_multipole != e->ti_current)
490
    error("Un-drifted multipole");
491
  if (ci_active && cj->ti_old_multipole != e->ti_current)
492
    error("Un-drifted multipole");
493
494
495
496
497

  /* Centre of the cell pair */
  const double loc[3] = {ci->loc[0],   // + 0. * ci->width[0],
                         ci->loc[1],   // + 0. * ci->width[1],
                         ci->loc[2]};  // + 0. * ci->width[2]};
498

499
500
501
502
503
504
505
506
507
508
509
510
  /* Shift to apply to the particles in each cell */
  const double shift_i[3] = {loc[0] + cell_shift[0], loc[1] + cell_shift[1],
                             loc[2] + cell_shift[2]};
  const double shift_j[3] = {loc[0], loc[1], loc[2]};

  /* Recover the multipole info and shift the CoM locations */
  const float rmax_i = ci->multipole->r_max;
  const float rmax_j = cj->multipole->r_max;
  const float rmax2_i = rmax_i * rmax_i;
  const float rmax2_j = rmax_j * rmax_j;
  const struct multipole *multi_i = &ci->multipole->m_pole;
  const struct multipole *multi_j = &cj->multipole->m_pole;
511
512
513
514
515
516
  const float CoM_i[3] = {(float)(ci->multipole->CoM[0] - shift_i[0]),
                          (float)(ci->multipole->CoM[1] - shift_i[1]),
                          (float)(ci->multipole->CoM[2] - shift_i[2])};
  const float CoM_j[3] = {(float)(cj->multipole->CoM[0] - shift_j[0]),
                          (float)(cj->multipole->CoM[1] - shift_j[1]),
                          (float)(cj->multipole->CoM[2] - shift_j[2])};
517
518

  /* Start by constructing particle caches */
519
520

  /* Computed the padded counts */
521
522
  const int gcount_i = ci->gcount;
  const int gcount_j = cj->gcount;
523
524
  const int gcount_padded_i = gcount_i - (gcount_i % VEC_SIZE) + VEC_SIZE;
  const int gcount_padded_j = gcount_j - (gcount_j % VEC_SIZE) + VEC_SIZE;
525

526
#ifdef SWIFT_DEBUG_CHECKS
527
  /* Check that we fit in cache */
Matthieu Schaller's avatar
Matthieu Schaller committed
528
529
530
  if (gcount_i > ci_cache->count || gcount_j > cj_cache->count)
    error("Not enough space in the caches! gcount_i=%d gcount_j=%d", gcount_i,
          gcount_j);
531
#endif
532

533
534
  /* Fill the caches */
  gravity_cache_populate(e->max_active_bin, ci_cache, ci->gparts, gcount_i,
535
536
                         gcount_padded_i, shift_i, CoM_j, rmax2_j, ci,
                         e->gravity_properties);
537
  gravity_cache_populate(e->max_active_bin, cj_cache, cj->gparts, gcount_j,
538
539
                         gcount_padded_j, shift_j, CoM_i, rmax2_i, cj,
                         e->gravity_properties);
540

541
542
  /* Can we use the Newtonian version or do we need the truncated one ? */
  if (!periodic) {
543

544
    /* Not periodic -> Can always use Newtonian potential */
Matthieu Schaller's avatar
Matthieu Schaller committed
545

546
547
    /* Let's updated the active cell(s) only */
    if (ci_active) {
548

549
550
551
      /* First the P2P */
      runner_dopair_grav_pp_full(e, ci_cache, cj_cache, gcount_i, gcount_j,
                                 gcount_padded_j, ci->gparts, cj->gparts);
552

553
554
555
      /* Then the M2P */
      runner_dopair_grav_pm(e, ci_cache, gcount_i, gcount_padded_i, ci->gparts,
                            CoM_j, multi_j, cj);
556
    }
557
558
559
560
561
562
563
564
    if (cj_active) {

      /* First the P2P */
      runner_dopair_grav_pp_full(e, cj_cache, ci_cache, gcount_j, gcount_i,
                                 gcount_padded_i, cj->gparts, ci->gparts);
      /* Then the M2P */
      runner_dopair_grav_pm(e, cj_cache, gcount_j, gcount_padded_j, cj->gparts,
                            CoM_i, multi_i, ci);
565
    }
566

567
  } else { /* Periodic BC */
568

569
570
571
572
    /* Get the relative distance between the CoMs */
    const double dx[3] = {CoM_j[0] - CoM_i[0], CoM_j[1] - CoM_i[1],
                          CoM_j[2] - CoM_i[2]};
    const double r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];
573
574

    /* Get the maximal distance between any two particles */
575
    const double max_r = sqrt(r2) + rmax_i + rmax_j;
576
577

    /* Do we need to use the truncated interactions ? */
578
579
580
581
582
    if (max_r > min_trunc) {

      /* Periodic but far-away cells must use the truncated potential */

      /* Let's updated the active cell(s) only */
583
584
585
      if (ci_active) {

        /* First the (truncated) P2P */
586
587
588
        runner_dopair_grav_pp_truncated(e, rlr_inv, ci_cache, cj_cache,
                                        gcount_i, gcount_j, gcount_padded_j,
                                        ci->gparts, cj->gparts);
589
590
591
592
593
594
595
596

        /* Then the M2P */
        runner_dopair_grav_pm(e, ci_cache, gcount_i, gcount_padded_i,
                              ci->gparts, CoM_j, multi_j, cj);
      }
      if (cj_active) {

        /* First the (truncated) P2P */
597
598
599
        runner_dopair_grav_pp_truncated(e, rlr_inv, cj_cache, ci_cache,
                                        gcount_j, gcount_i, gcount_padded_i,
                                        cj->gparts, ci->gparts);
600
601
602
603
604
605

        /* Then the M2P */
        runner_dopair_grav_pm(e, cj_cache, gcount_j, gcount_padded_j,
                              cj->gparts, CoM_i, multi_i, ci);
      }

606
607
608
609
610
    } else {

      /* Periodic but close-by cells can use the full Newtonian potential */

      /* Let's updated the active cell(s) only */
611
612
613
      if (ci_active) {

        /* First the (Newtonian) P2P */
614
615
        runner_dopair_grav_pp_full(e, ci_cache, cj_cache, gcount_i, gcount_j,
                                   gcount_padded_j, ci->gparts, cj->gparts);
616
617
618
619
620
621
622
623

        /* Then the M2P */
        runner_dopair_grav_pm(e, ci_cache, gcount_i, gcount_padded_i,
                              ci->gparts, CoM_j, multi_j, cj);
      }
      if (cj_active) {

        /* First the (Newtonian) P2P */
624
625
        runner_dopair_grav_pp_full(e, cj_cache, ci_cache, gcount_j, gcount_i,
                                   gcount_padded_i, cj->gparts, ci->gparts);
626
627
628
629
630

        /* Then the M2P */
        runner_dopair_grav_pm(e, cj_cache, gcount_j, gcount_padded_j,
                              cj->gparts, CoM_i, multi_i, ci);
      }
631
    }
632
  }
633

634
635
636
637
  /* Write back to the particles */
  if (ci_active) gravity_cache_write_back(ci_cache, ci->gparts, gcount_i);
  if (cj_active) gravity_cache_write_back(cj_cache, cj->gparts, gcount_j);

638
  TIMER_TOC(timer_dopair_grav_branch);
639
640
}

641
/**
642
643
 * @brief Computes the interaction of all the particles in a cell using the
 * full Newtonian potential.
644
645
 *
 * @param r The #runner.
Matthieu Schaller's avatar
Matthieu Schaller committed
646
 * @param c The #cell.
647
648
649
 *
 * @todo Use a local cache for the particles.
 */
650
651
static INLINE void runner_doself_grav_pp_full(struct runner *r,
                                              struct cell *c) {
652

653
654
655
656
657
658
659
  /* Some constants */
  const struct engine *const e = r->e;
  struct gravity_cache *const ci_cache = &r->ci_gravity_cache;

  /* Cell properties */
  const int gcount = c->gcount;
  struct gpart *restrict gparts = c->gparts;
660
  const int c_active = cell_is_active_gravity(c, e);
661
662
663
  const double loc[3] = {c->loc[0] + 0.5 * c->width[0],
                         c->loc[1] + 0.5 * c->width[1],
                         c->loc[2] + 0.5 * c->width[2]};
664
665
666
667

  /* Anything to do here ?*/
  if (!c_active) return;

668
#ifdef SWIFT_DEBUG_CHECKS
669
670
  /* Check that we fit in cache */
  if (gcount > ci_cache->count)
671
    error("Not enough space in the cache! gcount=%d", gcount);
672
#endif
673
674
675
676

  /* Computed the padded counts */
  const int gcount_padded = gcount - (gcount % VEC_SIZE) + VEC_SIZE;

677
  gravity_cache_populate_no_mpole(e->max_active_bin, ci_cache, gparts, gcount,
678
                                  gcount_padded, loc, c, e->gravity_properties);
679
680
681
682
683

  /* Ok... Here we go ! */

  /* Loop over all particles in ci... */
  for (int pid = 0; pid < gcount; pid++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
684

685
    /* Skip inactive particles */
686
    if (!ci_cache->active[pid]) continue;
Matthieu Schaller's avatar
Matthieu Schaller committed
687

688
689
690
    const float x_i = ci_cache->x[pid];
    const float y_i = ci_cache->y[pid];
    const float z_i = ci_cache->z[pid];
Matthieu Schaller's avatar
Matthieu Schaller committed
691

692
693
694
695
696
    /* Some powers of the softening length */
    const float h_i = ci_cache->epsilon[pid];
    const float h2_i = h_i * h_i;
    const float h_inv_i = 1.f / h_i;
    const float h_inv3_i = h_inv_i * h_inv_i * h_inv_i;
Matthieu Schaller's avatar
Matthieu Schaller committed
697

698
    /* Local accumulators for the acceleration */
699
    float a_x = 0.f, a_y = 0.f, a_z = 0.f, pot = 0.f;
Matthieu Schaller's avatar
Matthieu Schaller committed
700

701
    /* Make the compiler understand we are in happy vectorization land */
Matthieu Schaller's avatar
Matthieu Schaller committed
702
703
704
705
    swift_align_information(float, ci_cache->x, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(float, ci_cache->y, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(float, ci_cache->z, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(float, ci_cache->m, SWIFT_CACHE_ALIGNMENT);
706
    swift_assume_size(gcount_padded, VEC_SIZE);
Matthieu Schaller's avatar
Matthieu Schaller committed
707

708
709
    /* Loop over every other particle in the cell. */
    for (int pjd = 0; pjd < gcount_padded; pjd++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
710

711
      /* No self interaction */
Matthieu Schaller's avatar
Matthieu Schaller committed
712
      if (pid == pjd) continue;
713
714
715
716
717
718

      /* Get info about j */
      const float x_j = ci_cache->x[pjd];
      const float y_j = ci_cache->y[pjd];
      const float z_j = ci_cache->z[pjd];
      const float mass_j = ci_cache->m[pjd];
Matthieu Schaller's avatar
Matthieu Schaller committed
719

720
721
722
723
724
      /* Compute the pairwise (square) distance. */
      const float dx = x_i - x_j;
      const float dy = y_i - y_j;
      const float dz = z_i - z_j;
      const float r2 = dx * dx + dy * dy + dz * dz;
Matthieu Schaller's avatar
Matthieu Schaller committed
725

726
727
#ifdef SWIFT_DEBUG_CHECKS
      if (r2 == 0.f) error("Interacting particles with 0 distance");
Matthieu Schaller's avatar
Matthieu Schaller committed
728

729
730
      /* Check that particles have been drifted to the current time */
      if (gparts[pid].ti_drift != e->ti_current)
Matthieu Schaller's avatar
Matthieu Schaller committed
731
        error("gpi not drifted to current time");
732
      if (pjd < gcount && gparts[pjd].ti_drift != e->ti_current)
Matthieu Schaller's avatar
Matthieu Schaller committed
733
        error("gpj not drifted to current time");
734
#endif
Matthieu Schaller's avatar
Matthieu Schaller committed
735

736
      /* Interact! */
737
738
739
      float f_ij, pot_ij;
      runner_iact_grav_pp_full(r2, h2_i, h_inv_i, h_inv3_i, mass_j, &f_ij,
                               &pot_ij);
Matthieu Schaller's avatar
Matthieu Schaller committed
740

741
742
743
744
      /* Store it back */
      a_x -= f_ij * dx;
      a_y -= f_ij * dy;
      a_z -= f_ij * dz;
745
      pot += pot_ij;
Matthieu Schaller's avatar
Matthieu Schaller committed
746

747
748
749
750
751
#ifdef SWIFT_DEBUG_CHECKS
      /* Update the interaction counter if it's not a padded gpart */
      if (pjd < gcount) gparts[pid].num_interacted++;
#endif
    }
Matthieu Schaller's avatar
Matthieu Schaller committed
752

753
    /* Store everything back in cache */
754
755
756
    ci_cache->a_x[pid] = a_x;
    ci_cache->a_y[pid] = a_y;
    ci_cache->a_z[pid] = a_z;
757
    ci_cache->pot[pid] = pot;
758
759
  }

760
  /* Write back to the particles */
761
  gravity_cache_write_back(ci_cache, gparts, gcount);
762
763
764
765
766
767
768
769
770
771
772
}

/**
 * @brief Computes the interaction of all the particles in a cell using the
 * truncated Newtonian potential.
 *
 * @param r The #runner.
 * @param c The #cell.
 *
 * @todo Use a local cache for the particles.
 */
773
774
static INLINE void runner_doself_grav_pp_truncated(struct runner *r,
                                                   struct cell *c) {
775
776
777
778
779
780
781
782
783

  /* Some constants */
  const struct engine *const e = r->e;
  const struct space *s = e->s;
  const double cell_width = s->width[0];
  const double a_smooth = e->gravity_properties->a_smooth;
  const double rlr = cell_width * a_smooth;
  const float rlr_inv = 1. / rlr;

784
785
786
787
788
789
  /* Caches to play with */
  struct gravity_cache *const ci_cache = &r->ci_gravity_cache;

  /* Cell properties */
  const int gcount = c->gcount;
  struct gpart *restrict gparts = c->gparts;
790
  const int c_active = cell_is_active_gravity(c, e);
791
792
793
  const double loc[3] = {c->loc[0] + 0.5 * c->width[0],
                         c->loc[1] + 0.5 * c->width[1],
                         c->loc[2] + 0.5 * c->width[2]};
794
795
796
797

  /* Anything to do here ?*/
  if (!c_active) return;

798
#ifdef SWIFT_DEBUG_CHECKS
799
800
  /* Check that we fit in cache */
  if (gcount > ci_cache->count)
801
    error("Not enough space in the caches! gcount=%d", gcount);
802
#endif
803
804
805
806

  /* Computed the padded counts */
  const int gcount_padded = gcount - (gcount % VEC_SIZE) + VEC_SIZE;

807
  gravity_cache_populate_no_mpole(e->max_active_bin, ci_cache, gparts, gcount,
808
                                  gcount_padded, loc, c, e->gravity_properties);
809
810
811
812
813

  /* Ok... Here we go ! */

  /* Loop over all particles in ci... */
  for (int pid = 0; pid < gcount; pid++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
814

815
    /* Skip inactive particles */
816
    if (!ci_cache->active[pid]) continue;
Matthieu Schaller's avatar
Matthieu Schaller committed
817

818
819
820
    const float x_i = ci_cache->x[pid];
    const float y_i = ci_cache->y[pid];
    const float z_i = ci_cache->z[pid];
Matthieu Schaller's avatar
Matthieu Schaller committed
821

822
823
824
825
826
    /* Some powers of the softening length */
    const float h_i = ci_cache->epsilon[pid];
    const float h2_i = h_i * h_i;
    const float h_inv_i = 1.f / h_i;
    const float h_inv3_i = h_inv_i * h_inv_i * h_inv_i;
Matthieu Schaller's avatar
Matthieu Schaller committed
827

828
829
    /* Local accumulators for the acceleration and potential */
    float a_x = 0.f, a_y = 0.f, a_z = 0.f, pot = 0.f;
Matthieu Schaller's avatar
Matthieu Schaller committed
830

831
    /* Make the compiler understand we are in happy vectorization land */
Matthieu Schaller's avatar
Matthieu Schaller committed
832
833
834
835
    swift_align_information(float, ci_cache->x, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(float, ci_cache->y, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(float, ci_cache->z, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(float, ci_cache->m, SWIFT_CACHE_ALIGNMENT);
836
    swift_assume_size(gcount_padded, VEC_SIZE);
Matthieu Schaller's avatar
Matthieu Schaller committed
837

838
839
    /* Loop over every other particle in the cell. */
    for (int pjd = 0; pjd < gcount_padded; pjd++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
840

841
      /* No self interaction */
Matthieu Schaller's avatar
Matthieu Schaller committed
842
      if (pid == pjd) continue;
843
844
845
846
847
848

      /* Get info about j */
      const float x_j = ci_cache->x[pjd];
      const float y_j = ci_cache->y[pjd];
      const float z_j = ci_cache->z[pjd];
      const float mass_j = ci_cache->m[pjd];
Matthieu Schaller's avatar
Matthieu Schaller committed
849

850
851
852
853
854
      /* Compute the pairwise (square) distance. */
      const float dx = x_i - x_j;
      const float dy = y_i - y_j;
      const float dz = z_i - z_j;
      const float r2 = dx * dx + dy * dy + dz * dz;
Matthieu Schaller's avatar
Matthieu Schaller committed
855

856
857
#ifdef SWIFT_DEBUG_CHECKS
      if (r2 == 0.f) error("Interacting particles with 0 distance");
Matthieu Schaller's avatar
Matthieu Schaller committed
858

859
860
      /* Check that particles have been drifted to the current time */
      if (gparts[pid].ti_drift != e->ti_current)
Matthieu Schaller's avatar
Matthieu Schaller committed
861
        error("gpi not drifted to current time");
862
      if (pjd < gcount && gparts[pjd].ti_drift != e->ti_current)
Matthieu Schaller's avatar
Matthieu Schaller committed
863
        error("gpj not drifted to current time");
864
#endif
Matthieu Schaller's avatar
Matthieu Schaller committed
865

866
      /* Interact! */
867
      float f_ij, pot_ij;
868
      runner_iact_grav_pp_truncated(r2, h2_i, h_inv_i, h_inv3_i, mass_j,
869
                                    rlr_inv, &f_ij, &pot_ij);
870
871
872
873
874

      /* Store it back */
      a_x -= f_ij * dx;
      a_y -= f_ij * dy;
      a_z -= f_ij * dz;
875
      pot += pot_ij;
Matthieu Schaller's avatar
Matthieu Schaller committed
876

877
878
879
880
881
#ifdef SWIFT_DEBUG_CHECKS
      /* Update the interaction counter if it's not a padded gpart */
      if (pjd < gcount) gparts[pid].num_interacted++;
#endif
    }
Matthieu Schaller's avatar
Matthieu Schaller committed
882

883
    /* Store everything back in cache */
884
885
886
    ci_cache->a_x[pid] = a_x;
    ci_cache->a_y[pid] = a_y;
    ci_cache->a_z[pid] = a_z;
887
    ci_cache->pot[pid] = pot;
888
889
  }

890
  /* Write back to the particles */
891
  gravity_cache_write_back(ci_cache, gparts, gcount);
892
893
894
895
896
897
898
899
900
}

/**
 * @brief Computes the interaction of all the particles in a cell directly
 * (Switching function between truncated and full)
 *
 * @param r The #runner.
 * @param c The #cell.
 */
901
static INLINE void runner_doself_grav_pp(struct runner *r, struct cell *c) {
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918

  /* Some properties of the space */
  const struct engine *e = r->e;
  const struct space *s = e->s;
  const int periodic = s->periodic;
  const double cell_width = s->width[0];
  const double a_smooth = e->gravity_properties->a_smooth;
  const double r_cut_min = e->gravity_properties->r_cut_min;
  const double min_trunc = cell_width * r_cut_min * a_smooth<