hydro_iact.h 52.7 KB
Newer Older
1
2
/*******************************************************************************
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
5
 *
6
7
8
9
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
10
 *
11
12
13
14
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
15
 *
16
17
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18
 *
19
 ******************************************************************************/
20
21
#ifndef SWIFT_GADGET2_HYDRO_IACT_H
#define SWIFT_GADGET2_HYDRO_IACT_H
22
23

/**
24
 * @file Gadget2/hydro_iact.h
25
26
 * @brief SPH interaction functions following the Gadget-2 version of SPH.
 *
27
 * The interactions computed here are the ones presented in the Gadget-2 paper
28
29
 * Springel, V., MNRAS, Volume 364, Issue 4, pp. 1105-1134.
 * We use the same numerical coefficients as the Gadget-2 code. When used with
30
31
32
 * the Spline-3 kernel, the results should be equivalent to the ones obtained
 * with Gadget-2 up to the rounding errors and interactions missed by the
 * Gadget-2 tree-code neighbours search.
33
34
 */

35
#include "cache.h"
James Willis's avatar
James Willis committed
36
#include "minmax.h"
37

38
39
40
/**
 * @brief Density loop
 */
41
42
43
__attribute__((always_inline)) INLINE static void runner_iact_density(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

44
45
  float wi, wi_dx;
  float wj, wj_dx;
46
  float dv[3], curlvr[3];
47

48
  /* Get the masses. */
49
  const float mi = pi->mass;
50
51
52
53
54
55
56
57
58
59
60
61
62
  const float mj = pj->mass;

  /* Get r and r inverse. */
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Compute the kernel function for pi */
  const float hi_inv = 1.f / hi;
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);

  /* Compute contribution to the density */
  pi->rho += mj * wi;
63
  pi->density.rho_dh -= mj * (hydro_dimension * wi + ui * wi_dx);
64

65
66
67
68
69
70
71
72
73
74
75
  /* Compute contribution to the number of neighbours */
  pi->density.wcount += wi;
  pi->density.wcount_dh -= ui * wi_dx;

  /* Compute the kernel function for pj */
  const float hj_inv = 1.f / hj;
  const float uj = r * hj_inv;
  kernel_deval(uj, &wj, &wj_dx);

  /* Compute contribution to the density */
  pj->rho += mi * wj;
76
  pj->density.rho_dh -= mi * (hydro_dimension * wj + uj * wj_dx);
77

78
79
80
  /* Compute contribution to the number of neighbours */
  pj->density.wcount += wj;
  pj->density.wcount_dh -= uj * wj_dx;
81

82
83
  const float faci = mj * wi_dx * r_inv;
  const float facj = mi * wj_dx * r_inv;
84

85
86
87
88
  /* Compute dv dot r */
  dv[0] = pi->v[0] - pj->v[0];
  dv[1] = pi->v[1] - pj->v[1];
  dv[2] = pi->v[2] - pj->v[2];
89
90
  const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];

91
92
  pi->density.div_v -= faci * dvdr;
  pj->density.div_v -= facj * dvdr;
93
94
95
96
97
98

  /* Compute dv cross r */
  curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
  curlvr[1] = dv[2] * dx[0] - dv[0] * dx[2];
  curlvr[2] = dv[0] * dx[1] - dv[1] * dx[0];

99
100
101
  pi->density.rot_v[0] += faci * curlvr[0];
  pi->density.rot_v[1] += faci * curlvr[1];
  pi->density.rot_v[2] += faci * curlvr[2];
102

103
104
105
  pj->density.rot_v[0] += facj * curlvr[0];
  pj->density.rot_v[1] += facj * curlvr[1];
  pj->density.rot_v[2] += facj * curlvr[2];
106
107
}

108
109
110
111
112
113
/**
 * @brief Density loop (Vectorized version)
 */
__attribute__((always_inline)) INLINE static void runner_iact_vec_density(
    float *R2, float *Dx, float *Hi, float *Hj, struct part **pi,
    struct part **pj) {
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

#ifdef WITH_VECTORIZATION

  vector r, ri, r2, xi, xj, hi, hj, hi_inv, hj_inv, wi, wj, wi_dx, wj_dx;
  vector rhoi, rhoj, rhoi_dh, rhoj_dh, wcounti, wcountj, wcounti_dh, wcountj_dh;
  vector mi, mj;
  vector dx[3], dv[3];
  vector vi[3], vj[3];
  vector dvdr, div_vi, div_vj;
  vector curlvr[3], curl_vi[3], curl_vj[3];
  int k, j;

#if VEC_SIZE == 8
  /* Get the masses. */
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass,
                 pi[4]->mass, pi[5]->mass, pi[6]->mass, pi[7]->mass);
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass,
                 pj[4]->mass, pj[5]->mass, pj[6]->mass, pj[7]->mass);
  /* Get each velocity component. */
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k],
                      pi[4]->v[k], pi[5]->v[k], pi[6]->v[k], pi[7]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k],
                      pj[4]->v[k], pj[5]->v[k], pj[6]->v[k], pj[7]->v[k]);
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
139
140
  /* Get each component of particle separation.
   * (Dx={dx1,dy1,dz1,dx2,dy2,dz2,...,dxn,dyn,dzn})*/
141
142
143
144
145
146
147
148
149
150
151
152
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k], Dx[12 + k],
                      Dx[15 + k], Dx[18 + k], Dx[21 + k]);
#elif VEC_SIZE == 4
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass);
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass);
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k]);
153
#else
154
  error("Unknown vector size.");
155
156
157
158
#endif

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
159
  ri = vec_reciprocal_sqrt(r2);
160
161
162
  r.v = r2.v * ri.v;

  hi.v = vec_load(Hi);
163
  hi_inv = vec_reciprocal(hi);
164
165
166
  xi.v = r.v * hi_inv.v;

  hj.v = vec_load(Hj);
167
  hj_inv = vec_reciprocal(hj);
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
  xj.v = r.v * hj_inv.v;

  /* Compute the kernel function. */
  kernel_deval_vec(&xi, &wi, &wi_dx);
  kernel_deval_vec(&xj, &wj, &wj_dx);

  /* Compute dv. */
  dv[0].v = vi[0].v - vj[0].v;
  dv[1].v = vi[1].v - vj[1].v;
  dv[2].v = vi[2].v - vj[2].v;

  /* Compute dv dot r */
  dvdr.v = (dv[0].v * dx[0].v) + (dv[1].v * dx[1].v) + (dv[2].v * dx[2].v);
  dvdr.v = dvdr.v * ri.v;

  /* Compute dv cross r */
  curlvr[0].v = dv[1].v * dx[2].v - dv[2].v * dx[1].v;
  curlvr[1].v = dv[2].v * dx[0].v - dv[0].v * dx[2].v;
  curlvr[2].v = dv[0].v * dx[1].v - dv[1].v * dx[0].v;
  for (k = 0; k < 3; k++) curlvr[k].v *= ri.v;

  /* Compute density of pi. */
  rhoi.v = mj.v * wi.v;
191
  rhoi_dh.v = mj.v * (vec_set1(hydro_dimension) * wi.v + xi.v * wi_dx.v);
192
193
194
195
196
197
198
  wcounti.v = wi.v;
  wcounti_dh.v = xi.v * wi_dx.v;
  div_vi.v = mj.v * dvdr.v * wi_dx.v;
  for (k = 0; k < 3; k++) curl_vi[k].v = mj.v * curlvr[k].v * wi_dx.v;

  /* Compute density of pj. */
  rhoj.v = mi.v * wj.v;
199
  rhoj_dh.v = mi.v * (vec_set1(hydro_dimension) * wj.v + xj.v * wj_dx.v);
200
201
202
203
204
205
206
207
  wcountj.v = wj.v;
  wcountj_dh.v = xj.v * wj_dx.v;
  div_vj.v = mi.v * dvdr.v * wj_dx.v;
  for (k = 0; k < 3; k++) curl_vj[k].v = mi.v * curlvr[k].v * wj_dx.v;

  /* Update particles. */
  for (k = 0; k < VEC_SIZE; k++) {
    pi[k]->rho += rhoi.f[k];
208
    pi[k]->density.rho_dh -= rhoi_dh.f[k];
209
210
    pi[k]->density.wcount += wcounti.f[k];
    pi[k]->density.wcount_dh -= wcounti_dh.f[k];
211
    pi[k]->density.div_v -= div_vi.f[k];
212
213
    for (j = 0; j < 3; j++) pi[k]->density.rot_v[j] += curl_vi[j].f[k];
    pj[k]->rho += rhoj.f[k];
214
    pj[k]->density.rho_dh -= rhoj_dh.f[k];
215
216
    pj[k]->density.wcount += wcountj.f[k];
    pj[k]->density.wcount_dh -= wcountj_dh.f[k];
217
    pj[k]->density.div_v -= div_vj.f[k];
218
219
220
221
222
    for (j = 0; j < 3; j++) pj[k]->density.rot_v[j] += curl_vj[j].f[k];
  }

#else

Matthieu Schaller's avatar
Matthieu Schaller committed
223
224
  error(
      "The Gadget2 serial version of runner_iact_density was called when the "
225
      "vectorised version should have been used.");
226
227

#endif
228
229
}

230
231
232
/**
 * @brief Density loop (non-symmetric version)
 */
233
234
235
236
237
238
239
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_density(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

  float wi, wi_dx;
  float dv[3], curlvr[3];

  /* Get the masses. */
240
  const float mj = pj->mass;
241
242

  /* Get r and r inverse. */
243
244
  const float r = sqrtf(r2);
  const float ri = 1.0f / r;
245

246
  /* Compute the kernel function */
247
248
249
  const float hi_inv = 1.0f / hi;
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
250
251
252

  /* Compute contribution to the density */
  pi->rho += mj * wi;
253
  pi->density.rho_dh -= mj * (hydro_dimension * wi + ui * wi_dx);
254
255
256

  /* Compute contribution to the number of neighbours */
  pi->density.wcount += wi;
257
  pi->density.wcount_dh -= ui * wi_dx;
258

259
  const float fac = mj * wi_dx * ri;
260

261
262
263
264
265
  /* Compute dv dot r */
  dv[0] = pi->v[0] - pj->v[0];
  dv[1] = pi->v[1] - pj->v[1];
  dv[2] = pi->v[2] - pj->v[2];
  const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];
266
  pi->density.div_v -= fac * dvdr;
267

268
269
270
271
272
  /* Compute dv cross r */
  curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
  curlvr[1] = dv[2] * dx[0] - dv[0] * dx[2];
  curlvr[2] = dv[0] * dx[1] - dv[1] * dx[0];

273
274
275
  pi->density.rot_v[0] += fac * curlvr[0];
  pi->density.rot_v[1] += fac * curlvr[1];
  pi->density.rot_v[2] += fac * curlvr[2];
276
277
}

278
279
280
281
282
283
/**
 * @brief Density loop (non-symmetric vectorized version)
 */
__attribute__((always_inline)) INLINE static void
runner_iact_nonsym_vec_density(float *R2, float *Dx, float *Hi, float *Hj,
                               struct part **pi, struct part **pj) {
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

#ifdef WITH_VECTORIZATION

  vector r, ri, r2, xi, hi, hi_inv, wi, wi_dx;
  vector rhoi, rhoi_dh, wcounti, wcounti_dh, div_vi;
  vector mj;
  vector dx[3], dv[3];
  vector vi[3], vj[3];
  vector dvdr;
  vector curlvr[3], curl_vi[3];
  int k, j;

#if VEC_SIZE == 8
  /* Get the masses. */
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass,
                 pj[4]->mass, pj[5]->mass, pj[6]->mass, pj[7]->mass);
  /* Get each velocity component. */
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k],
                      pi[4]->v[k], pi[5]->v[k], pi[6]->v[k], pi[7]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k],
                      pj[4]->v[k], pj[5]->v[k], pj[6]->v[k], pj[7]->v[k]);
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
307
308
  /* Get each component of particle separation.
   * (Dx={dx1,dy1,dz1,dx2,dy2,dz2,...,dxn,dyn,dzn})*/
309
310
311
312
313
314
315
316
317
318
319
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k], Dx[12 + k],
                      Dx[15 + k], Dx[18 + k], Dx[21 + k]);
#elif VEC_SIZE == 4
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass);
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k]);
320
#else
321
  error("Unknown vector size.");
322
323
324
325
#endif

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
326
  ri = vec_reciprocal_sqrt(r2);
327
328
329
  r.v = r2.v * ri.v;

  hi.v = vec_load(Hi);
330
  hi_inv = vec_reciprocal(hi);
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
  xi.v = r.v * hi_inv.v;

  kernel_deval_vec(&xi, &wi, &wi_dx);

  /* Compute dv. */
  dv[0].v = vi[0].v - vj[0].v;
  dv[1].v = vi[1].v - vj[1].v;
  dv[2].v = vi[2].v - vj[2].v;

  /* Compute dv dot r */
  dvdr.v = (dv[0].v * dx[0].v) + (dv[1].v * dx[1].v) + (dv[2].v * dx[2].v);
  dvdr.v = dvdr.v * ri.v;

  /* Compute dv cross r */
  curlvr[0].v = dv[1].v * dx[2].v - dv[2].v * dx[1].v;
  curlvr[1].v = dv[2].v * dx[0].v - dv[0].v * dx[2].v;
  curlvr[2].v = dv[0].v * dx[1].v - dv[1].v * dx[0].v;
  for (k = 0; k < 3; k++) curlvr[k].v *= ri.v;

  /* Compute density of pi. */
  rhoi.v = mj.v * wi.v;
352
  rhoi_dh.v = mj.v * (vec_set1(hydro_dimension) * wi.v + xi.v * wi_dx.v);
353
354
355
356
357
358
359
360
  wcounti.v = wi.v;
  wcounti_dh.v = xi.v * wi_dx.v;
  div_vi.v = mj.v * dvdr.v * wi_dx.v;
  for (k = 0; k < 3; k++) curl_vi[k].v = mj.v * curlvr[k].v * wi_dx.v;

  /* Update particles. */
  for (k = 0; k < VEC_SIZE; k++) {
    pi[k]->rho += rhoi.f[k];
361
    pi[k]->density.rho_dh -= rhoi_dh.f[k];
362
363
    pi[k]->density.wcount += wcounti.f[k];
    pi[k]->density.wcount_dh -= wcounti_dh.f[k];
364
    pi[k]->density.div_v -= div_vi.f[k];
365
366
367
368
369
    for (j = 0; j < 3; j++) pi[k]->density.rot_v[j] += curl_vi[j].f[k];
  }

#else

Matthieu Schaller's avatar
Matthieu Schaller committed
370
371
  error(
      "The Gadget2 serial version of runner_iact_nonsym_density was called "
372
      "when the vectorised version should have been used.");
373
374

#endif
375
376
}

377
#ifdef WITH_VECTORIZATION
378
379
380
381
382

/**
 * @brief Density interaction computed using 1 vector
 * (non-symmetric vectorized version).
 */
383
__attribute__((always_inline)) INLINE static void
Matthieu Schaller's avatar
Matthieu Schaller committed
384
385
386
387
388
389
390
runner_iact_nonsym_1_vec_density(vector *r2, vector *dx, vector *dy, vector *dz,
                                 vector hi_inv, vector vix, vector viy,
                                 vector viz, float *Vjx, float *Vjy, float *Vjz,
                                 float *Mj, vector *rhoSum, vector *rho_dhSum,
                                 vector *wcountSum, vector *wcount_dhSum,
                                 vector *div_vSum, vector *curlvxSum,
                                 vector *curlvySum, vector *curlvzSum,
391
                                 mask_t mask) {
392
393
394
395
396
397
398

  vector r, ri, xi, wi, wi_dx;
  vector mj;
  vector dvx, dvy, dvz;
  vector vjx, vjy, vjz;
  vector dvdr;
  vector curlvrx, curlvry, curlvrz;
James Willis's avatar
James Willis committed
399

400
  /* Fill the vectors. */
401
402
403
404
  mj.v = vec_load(Mj);
  vjx.v = vec_load(Vjx);
  vjy.v = vec_load(Vjy);
  vjz.v = vec_load(Vjz);
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

  /* Get the radius and inverse radius. */
  ri = vec_reciprocal_sqrt(*r2);
  r.v = vec_mul(r2->v, ri.v);

  xi.v = vec_mul(r.v, hi_inv.v);

  /* Calculate the kernel for two particles. */
  kernel_deval_1_vec(&xi, &wi, &wi_dx);

  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvz.v = vec_sub(viz.v, vjz.v);

  /* Compute dv dot r */
  dvdr.v = vec_fma(dvx.v, dx->v, vec_fma(dvy.v, dy->v, vec_mul(dvz.v, dz->v)));
  dvdr.v = vec_mul(dvdr.v, ri.v);

424
425
426
427
428
429
430
431
432
433
434
  /* Compute dv cross r */
  curlvrx.v =
      vec_fma(dvy.v, dz->v, vec_mul(vec_set1(-1.0f), vec_mul(dvz.v, dy->v)));
  curlvry.v =
      vec_fma(dvz.v, dx->v, vec_mul(vec_set1(-1.0f), vec_mul(dvx.v, dz->v)));
  curlvrz.v =
      vec_fma(dvx.v, dy->v, vec_mul(vec_set1(-1.0f), vec_mul(dvy.v, dx->v)));
  curlvrx.v = vec_mul(curlvrx.v, ri.v);
  curlvry.v = vec_mul(curlvry.v, ri.v);
  curlvrz.v = vec_mul(curlvrz.v, ri.v);

435
  /* Mask updates to intermediate vector sums for particle pi. */
436
437
438
439
440
441
442
443
444
  rhoSum->v = vec_mask_add(rhoSum->v, vec_mul(mj.v, wi.v), mask);
  rho_dhSum->v = vec_mask_sub(rho_dhSum->v, vec_mul(mj.v, vec_fma(vec_set1(hydro_dimension), wi.v,
                                                vec_mul(xi.v, wi_dx.v))), mask);
  wcountSum->v = vec_mask_add(wcountSum->v, wi.v, mask);
  wcount_dhSum->v = vec_mask_sub(wcount_dhSum->v, vec_mul(xi.v, wi_dx.v), mask);
  div_vSum->v = vec_mask_sub(div_vSum->v, vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)), mask);
  curlvxSum->v = vec_mask_add(curlvxSum->v,vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)), mask);
  curlvySum->v = vec_mask_add(curlvySum->v,vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)), mask);
  curlvzSum->v = vec_mask_add(curlvzSum->v,vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)), mask);
445
446
}

447
/**
James Willis's avatar
James Willis committed
448
449
 * @brief Density interaction computed using 2 interleaved vectors
 * (non-symmetric vectorized version).
450
451
 */
__attribute__((always_inline)) INLINE static void
James Willis's avatar
James Willis committed
452
453
454
455
456
runner_iact_nonsym_2_vec_density(
    float *R2, float *Dx, float *Dy, float *Dz, vector hi_inv, vector vix,
    vector viy, vector viz, float *Vjx, float *Vjy, float *Vjz, float *Mj,
    vector *rhoSum, vector *rho_dhSum, vector *wcountSum, vector *wcount_dhSum,
    vector *div_vSum, vector *curlvxSum, vector *curlvySum, vector *curlvzSum,
457
    mask_t mask, mask_t mask2, short mask_cond) {
458
459
460
461
462
463
464
465
466
467
468
469
470
471

  vector r, ri, r2, xi, wi, wi_dx;
  vector mj;
  vector dx, dy, dz, dvx, dvy, dvz;
  vector vjx, vjy, vjz;
  vector dvdr;
  vector curlvrx, curlvry, curlvrz;
  vector r_2, ri2, r2_2, xi2, wi2, wi_dx2;
  vector mj2;
  vector dx2, dy2, dz2, dvx2, dvy2, dvz2;
  vector vjx2, vjy2, vjz2;
  vector dvdr2;
  vector curlvrx2, curlvry2, curlvrz2;

James Willis's avatar
James Willis committed
472
  /* Fill the vectors. */
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
  mj.v = vec_load(Mj);
  mj2.v = vec_load(&Mj[VEC_SIZE]);
  vjx.v = vec_load(Vjx);
  vjx2.v = vec_load(&Vjx[VEC_SIZE]);
  vjy.v = vec_load(Vjy);
  vjy2.v = vec_load(&Vjy[VEC_SIZE]);
  vjz.v = vec_load(Vjz);
  vjz2.v = vec_load(&Vjz[VEC_SIZE]);
  dx.v = vec_load(Dx);
  dx2.v = vec_load(&Dx[VEC_SIZE]);
  dy.v = vec_load(Dy);
  dy2.v = vec_load(&Dy[VEC_SIZE]);
  dz.v = vec_load(Dz);
  dz2.v = vec_load(&Dz[VEC_SIZE]);

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
  r2_2.v = vec_load(&R2[VEC_SIZE]);
491
492
  ri = vec_reciprocal_sqrt(r2);
  ri2 = vec_reciprocal_sqrt(r2_2);
493
494
495
496
497
498
  r.v = vec_mul(r2.v, ri.v);
  r_2.v = vec_mul(r2_2.v, ri2.v);

  xi.v = vec_mul(r.v, hi_inv.v);
  xi2.v = vec_mul(r_2.v, hi_inv.v);

James Willis's avatar
James Willis committed
499
  /* Calculate the kernel for two particles. */
James Willis's avatar
James Willis committed
500
  kernel_deval_2_vec(&xi, &wi, &wi_dx, &xi2, &wi2, &wi_dx2);
501
502
503
504
505
506
507
508
509
510
511

  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvx2.v = vec_sub(vix.v, vjx2.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvy2.v = vec_sub(viy.v, vjy2.v);
  dvz.v = vec_sub(viz.v, vjz.v);
  dvz2.v = vec_sub(viz.v, vjz2.v);

  /* Compute dv dot r */
  dvdr.v = vec_fma(dvx.v, dx.v, vec_fma(dvy.v, dy.v, vec_mul(dvz.v, dz.v)));
James Willis's avatar
James Willis committed
512
513
  dvdr2.v =
      vec_fma(dvx2.v, dx2.v, vec_fma(dvy2.v, dy2.v, vec_mul(dvz2.v, dz2.v)));
514
515
516
517
  dvdr.v = vec_mul(dvdr.v, ri.v);
  dvdr2.v = vec_mul(dvdr2.v, ri2.v);

  /* Compute dv cross r */
James Willis's avatar
James Willis committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
  curlvrx.v =
      vec_fma(dvy.v, dz.v, vec_mul(vec_set1(-1.0f), vec_mul(dvz.v, dy.v)));
  curlvrx2.v =
      vec_fma(dvy2.v, dz2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvz2.v, dy2.v)));
  curlvry.v =
      vec_fma(dvz.v, dx.v, vec_mul(vec_set1(-1.0f), vec_mul(dvx.v, dz.v)));
  curlvry2.v =
      vec_fma(dvz2.v, dx2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvx2.v, dz2.v)));
  curlvrz.v =
      vec_fma(dvx.v, dy.v, vec_mul(vec_set1(-1.0f), vec_mul(dvy.v, dx.v)));
  curlvrz2.v =
      vec_fma(dvx2.v, dy2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvy2.v, dx2.v)));
  curlvrx.v = vec_mul(curlvrx.v, ri.v);
  curlvrx2.v = vec_mul(curlvrx2.v, ri2.v);
  curlvry.v = vec_mul(curlvry.v, ri.v);
  curlvry2.v = vec_mul(curlvry2.v, ri2.v);
  curlvrz.v = vec_mul(curlvrz.v, ri.v);
  curlvrz2.v = vec_mul(curlvrz2.v, ri2.v);

/* Mask updates to intermediate vector sums for particle pi. */
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
  /* Mask only when needed. */
  if(mask_cond) {
    rhoSum->v = vec_mask_add(rhoSum->v, vec_mul(mj.v, wi.v), mask);
    rhoSum->v = vec_mask_add(rhoSum->v, vec_mul(mj2.v, wi2.v), mask2);
    rho_dhSum->v = vec_mask_sub(rho_dhSum->v, vec_mul(mj.v, vec_fma(vec_set1(hydro_dimension), wi.v,
            vec_mul(xi.v, wi_dx.v))), mask);
    rho_dhSum->v = vec_mask_sub(rho_dhSum->v, vec_mul(mj2.v, vec_fma(vec_set1(hydro_dimension), wi2.v,
            vec_mul(xi2.v, wi_dx2.v))), mask2);
    wcountSum->v = vec_mask_add(wcountSum->v, wi.v, mask);
    wcountSum->v = vec_mask_add(wcountSum->v, wi2.v, mask2);
    wcount_dhSum->v = vec_mask_sub(wcount_dhSum->v, vec_mul(xi.v, wi_dx.v), mask);
    wcount_dhSum->v = vec_mask_sub(wcount_dhSum->v, vec_mul(xi2.v, wi_dx2.v), mask2);
    div_vSum->v = vec_mask_sub(div_vSum->v, vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)), mask);
    div_vSum->v = vec_mask_sub(div_vSum->v, vec_mul(mj2.v, vec_mul(dvdr2.v, wi_dx2.v)), mask2);
    curlvxSum->v = vec_mask_add(curlvxSum->v,vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)), mask);
    curlvxSum->v = vec_mask_add(curlvxSum->v,vec_mul(mj2.v, vec_mul(curlvrx2.v, wi_dx2.v)), mask2);
    curlvySum->v = vec_mask_add(curlvySum->v,vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)), mask);
    curlvySum->v = vec_mask_add(curlvySum->v,vec_mul(mj2.v, vec_mul(curlvry2.v, wi_dx2.v)), mask2);
    curlvzSum->v = vec_mask_add(curlvzSum->v,vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)), mask);
    curlvzSum->v = vec_mask_add(curlvzSum->v,vec_mul(mj2.v, vec_mul(curlvrz2.v, wi_dx2.v)), mask2);
  }
  else {
    rhoSum->v += vec_mul(mj.v, wi.v);
    rhoSum->v += vec_mul(mj2.v, wi2.v);
    rho_dhSum->v -= vec_mul(mj.v, vec_fma(vec_set1(hydro_dimension), wi.v,
            vec_mul(xi.v, wi_dx.v)));
    rho_dhSum->v -= vec_mul(mj2.v, vec_fma(vec_set1(hydro_dimension), wi2.v,
            vec_mul(xi2.v, wi_dx2.v)));
    wcountSum->v += wi.v;
    wcountSum->v += wi2.v;
    wcount_dhSum->v -= vec_mul(xi.v, wi_dx.v);
    wcount_dhSum->v -= vec_mul(xi2.v, wi_dx2.v);
    div_vSum->v -= vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v));
    div_vSum->v -= vec_mul(mj2.v, vec_mul(dvdr2.v, wi_dx2.v));
    curlvxSum->v += vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v));
    curlvxSum->v += vec_mul(mj2.v, vec_mul(curlvrx2.v, wi_dx2.v));
    curlvySum->v += vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v));
    curlvySum->v += vec_mul(mj2.v, vec_mul(curlvry2.v, wi_dx2.v));
    curlvzSum->v += vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v));
    curlvzSum->v += vec_mul(mj2.v, vec_mul(curlvrz2.v, wi_dx2.v));
  }
579
}
James Willis's avatar
James Willis committed
580
#endif
581

582
583
584
/**
 * @brief Force loop
 */
585
586
587
__attribute__((always_inline)) INLINE static void runner_iact_force(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

588
589
590
  float wi, wj, wi_dx, wj_dx;

  const float fac_mu = 1.f; /* Will change with cosmological integration */
591

592
593
594
595
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Get some values in local variables. */
596
  const float mi = pi->mass;
597
598
599
600
601
602
  const float mj = pj->mass;
  const float rhoi = pi->rho;
  const float rhoj = pj->rho;

  /* Get the kernel for hi. */
  const float hi_inv = 1.0f / hi;
603
  const float hid_inv = pow_dimension_plus_one(hi_inv); /* 1/h^(d+1) */
604
605
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
606
  const float wi_dr = hid_inv * wi_dx;
607
608
609

  /* Get the kernel for hj. */
  const float hj_inv = 1.0f / hj;
610
  const float hjd_inv = pow_dimension_plus_one(hj_inv); /* 1/h^(d+1) */
611
612
  const float xj = r * hj_inv;
  kernel_deval(xj, &wj, &wj_dx);
613
  const float wj_dr = hjd_inv * wj_dx;
614

615
616
617
618
619
  /* Compute h-gradient terms */
  const float f_i = pi->force.f;
  const float f_j = pj->force.f;

  /* Compute pressure terms */
620
621
  const float P_over_rho2_i = pi->force.P_over_rho2;
  const float P_over_rho2_j = pj->force.P_over_rho2;
622
623

  /* Compute sound speeds */
624
625
  const float ci = pi->force.soundspeed;
  const float cj = pj->force.soundspeed;
626

627
  /* Compute dv dot r. */
628
629
630
  const float dvdr = (pi->v[0] - pj->v[0]) * dx[0] +
                     (pi->v[1] - pj->v[1]) * dx[1] +
                     (pi->v[2] - pj->v[2]) * dx[2];
631

632
  /* Balsara term */
633
634
  const float balsara_i = pi->force.balsara;
  const float balsara_j = pj->force.balsara;
Matthieu Schaller's avatar
Matthieu Schaller committed
635

636
  /* Are the particles moving towards each others ? */
637
  const float omega_ij = (dvdr < 0.f) ? dvdr : 0.f;
638
639
640
641
642
643
644
645
646
  const float mu_ij = fac_mu * r_inv * omega_ij; /* This is 0 or negative */

  /* Signal velocity */
  const float v_sig = ci + cj - 3.f * mu_ij;

  /* Now construct the full viscosity term */
  const float rho_ij = 0.5f * (rhoi + rhoj);
  const float visc = -0.25f * const_viscosity_alpha * v_sig * mu_ij *
                     (balsara_i + balsara_j) / rho_ij;
647
648

  /* Now, convolve with the kernel */
649
  const float visc_term = 0.5f * visc * (wi_dr + wj_dr) * r_inv;
650
  const float sph_term =
651
      (f_i * P_over_rho2_i * wi_dr + f_j * P_over_rho2_j * wj_dr) * r_inv;
652
653
654
655
656

  /* Eventually got the acceleration */
  const float acc = visc_term + sph_term;

  /* Use the force Luke ! */
657
658
659
  pi->a_hydro[0] -= mj * acc * dx[0];
  pi->a_hydro[1] -= mj * acc * dx[1];
  pi->a_hydro[2] -= mj * acc * dx[2];
660

661
662
663
  pj->a_hydro[0] += mi * acc * dx[0];
  pj->a_hydro[1] += mi * acc * dx[1];
  pj->a_hydro[2] += mi * acc * dx[2];
664

665
  /* Get the time derivative for h. */
666
667
  pi->force.h_dt -= mj * dvdr * r_inv / rhoj * wi_dr;
  pj->force.h_dt -= mi * dvdr * r_inv / rhoi * wj_dr;
668

669
  /* Update the signal velocity. */
670
671
  pi->force.v_sig = (pi->force.v_sig > v_sig) ? pi->force.v_sig : v_sig;
  pj->force.v_sig = (pj->force.v_sig > v_sig) ? pj->force.v_sig : v_sig;
672

673
  /* Change in entropy */
674
675
  pi->entropy_dt += mj * visc_term * dvdr;
  pj->entropy_dt += mi * visc_term * dvdr;
676
}
677

678
679
680
681
682
683
/**
 * @brief Force loop (Vectorized version)
 */
__attribute__((always_inline)) INLINE static void runner_iact_vec_force(
    float *R2, float *Dx, float *Hi, float *Hj, struct part **pi,
    struct part **pj) {
684
685
686
687
688
689

#ifdef WITH_VECTORIZATION

  vector r, r2, ri;
  vector xi, xj;
  vector hi, hj, hi_inv, hj_inv;
690
  vector hid_inv, hjd_inv;
691
  vector wi, wj, wi_dx, wj_dx, wi_dr, wj_dr, dvdr;
692
  vector piPOrho2, pjPOrho2, pirho, pjrho;
693
694
  vector mi, mj;
  vector f;
695
  vector grad_hi, grad_hj;
696
697
698
699
700
701
702
703
704
705
706
  vector dx[3];
  vector vi[3], vj[3];
  vector pia[3], pja[3];
  vector pih_dt, pjh_dt;
  vector ci, cj, v_sig;
  vector omega_ij, mu_ij, fac_mu, balsara;
  vector rho_ij, visc, visc_term, sph_term, acc, entropy_dt;
  int j, k;

  fac_mu.v = vec_set1(1.f); /* Will change with cosmological integration */

Matthieu Schaller's avatar
Matthieu Schaller committed
707
/* Load stuff. */
708
709
710
711
712
#if VEC_SIZE == 8
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass,
                 pi[4]->mass, pi[5]->mass, pi[6]->mass, pi[7]->mass);
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass,
                 pj[4]->mass, pj[5]->mass, pj[6]->mass, pj[7]->mass);
713
  piPOrho2.v = vec_set(pi[0]->force.P_over_rho2, pi[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
714
715
716
                       pi[2]->force.P_over_rho2, pi[3]->force.P_over_rho2,
                       pi[4]->force.P_over_rho2, pi[5]->force.P_over_rho2,
                       pi[6]->force.P_over_rho2, pi[7]->force.P_over_rho2);
717
  pjPOrho2.v = vec_set(pj[0]->force.P_over_rho2, pj[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
718
719
720
721
722
723
724
725
726
                       pj[2]->force.P_over_rho2, pj[3]->force.P_over_rho2,
                       pj[4]->force.P_over_rho2, pj[5]->force.P_over_rho2,
                       pj[6]->force.P_over_rho2, pj[7]->force.P_over_rho2);
  grad_hi.v =
      vec_set(pi[0]->force.f, pi[1]->force.f, pi[2]->force.f, pi[3]->force.f,
              pi[4]->force.f, pi[5]->force.f, pi[6]->force.f, pi[7]->force.f);
  grad_hj.v =
      vec_set(pj[0]->force.f, pj[1]->force.f, pj[2]->force.f, pj[3]->force.f,
              pj[4]->force.f, pj[5]->force.f, pj[6]->force.f, pj[7]->force.f);
727
728
729
730
  pirho.v = vec_set(pi[0]->rho, pi[1]->rho, pi[2]->rho, pi[3]->rho, pi[4]->rho,
                    pi[5]->rho, pi[6]->rho, pi[7]->rho);
  pjrho.v = vec_set(pj[0]->rho, pj[1]->rho, pj[2]->rho, pj[3]->rho, pj[4]->rho,
                    pj[5]->rho, pj[6]->rho, pj[7]->rho);
Matthieu Schaller's avatar
Matthieu Schaller committed
731
732
733
734
735
736
737
738
  ci.v = vec_set(pi[0]->force.soundspeed, pi[1]->force.soundspeed,
                 pi[2]->force.soundspeed, pi[3]->force.soundspeed,
                 pi[4]->force.soundspeed, pi[5]->force.soundspeed,
                 pi[6]->force.soundspeed, pi[7]->force.soundspeed);
  cj.v = vec_set(pj[0]->force.soundspeed, pj[1]->force.soundspeed,
                 pj[2]->force.soundspeed, pj[3]->force.soundspeed,
                 pj[4]->force.soundspeed, pj[5]->force.soundspeed,
                 pj[6]->force.soundspeed, pj[7]->force.soundspeed);
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k],
                      pi[4]->v[k], pi[5]->v[k], pi[6]->v[k], pi[7]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k],
                      pj[4]->v[k], pj[5]->v[k], pj[6]->v[k], pj[7]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k], Dx[12 + k],
                      Dx[15 + k], Dx[18 + k], Dx[21 + k]);
  balsara.v =
      vec_set(pi[0]->force.balsara, pi[1]->force.balsara, pi[2]->force.balsara,
              pi[3]->force.balsara, pi[4]->force.balsara, pi[5]->force.balsara,
              pi[6]->force.balsara, pi[7]->force.balsara) +
      vec_set(pj[0]->force.balsara, pj[1]->force.balsara, pj[2]->force.balsara,
              pj[3]->force.balsara, pj[4]->force.balsara, pj[5]->force.balsara,
              pj[6]->force.balsara, pj[7]->force.balsara);
#elif VEC_SIZE == 4
756
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass);
757
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass);
758
  piPOrho2.v = vec_set(pi[0]->force.P_over_rho2, pi[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
759
                       pi[2]->force.P_over_rho2, pi[3]->force.P_over_rho2);
760
  pjPOrho2.v = vec_set(pj[0]->force.P_over_rho2, pj[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
761
762
763
764
765
                       pj[2]->force.P_over_rho2, pj[3]->force.P_over_rho2);
  grad_hi.v =
      vec_set(pi[0]->force.f, pi[1]->force.f, pi[2]->force.f, pi[3]->force.f);
  grad_hj.v =
      vec_set(pj[0]->force.f, pj[1]->force.f, pj[2]->force.f, pj[3]->force.f);
766
767
  pirho.v = vec_set(pi[0]->rho, pi[1]->rho, pi[2]->rho, pi[3]->rho);
  pjrho.v = vec_set(pj[0]->rho, pj[1]->rho, pj[2]->rho, pj[3]->rho);
Matthieu Schaller's avatar
Matthieu Schaller committed
768
769
770
771
  ci.v = vec_set(pi[0]->force.soundspeed, pi[1]->force.soundspeed,
                 pi[2]->force.soundspeed, pi[3]->force.soundspeed);
  cj.v = vec_set(pj[0]->force.soundspeed, pj[1]->force.soundspeed,
                 pj[2]->force.soundspeed, pj[3]->force.soundspeed);
772
773
774
775
776
777
778
779
780
781
782
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k]);
  balsara.v = vec_set(pi[0]->force.balsara, pi[1]->force.balsara,
                      pi[2]->force.balsara, pi[3]->force.balsara) +
              vec_set(pj[0]->force.balsara, pj[1]->force.balsara,
                      pj[2]->force.balsara, pj[3]->force.balsara);
#else
783
  error("Unknown vector size.");
784
785
786
787
#endif

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
788
  ri = vec_reciprocal_sqrt(r2);
789
790
791
792
  r.v = r2.v * ri.v;

  /* Get the kernel for hi. */
  hi.v = vec_load(Hi);
793
  hi_inv = vec_reciprocal(hi);
794
  hid_inv = pow_dimension_plus_one_vec(hi_inv); /* 1/h^(d+1) */
795
796
  xi.v = r.v * hi_inv.v;
  kernel_deval_vec(&xi, &wi, &wi_dx);
797
  wi_dr.v = hid_inv.v * wi_dx.v;
798
799
800

  /* Get the kernel for hj. */
  hj.v = vec_load(Hj);
801
  hj_inv = vec_reciprocal(hj);
802
  hjd_inv = pow_dimension_plus_one_vec(hj_inv); /* 1/h^(d+1) */
803
804
  xj.v = r.v * hj_inv.v;
  kernel_deval_vec(&xj, &wj, &wj_dx);
805
  wj_dr.v = hjd_inv.v * wj_dx.v;
806
807
808
809

  /* Compute dv dot r. */
  dvdr.v = ((vi[0].v - vj[0].v) * dx[0].v) + ((vi[1].v - vj[1].v) * dx[1].v) +
           ((vi[2].v - vj[2].v) * dx[2].v);
Matthieu Schaller's avatar
Matthieu Schaller committed
810
  // dvdr.v = dvdr.v * ri.v;
811
812
813
814
815

  /* Compute the relative velocity. (This is 0 if the particles move away from
   * each other and negative otherwise) */
  omega_ij.v = vec_fmin(dvdr.v, vec_set1(0.0f));
  mu_ij.v = fac_mu.v * ri.v * omega_ij.v; /* This is 0 or negative */
Matthieu Schaller's avatar
Matthieu Schaller committed
816

817
818
  /* Compute signal velocity */
  v_sig.v = ci.v + cj.v - vec_set1(3.0f) * mu_ij.v;
Matthieu Schaller's avatar
Matthieu Schaller committed
819

820
821
  /* Now construct the full viscosity term */
  rho_ij.v = vec_set1(0.5f) * (pirho.v + pjrho.v);
Matthieu Schaller's avatar
Matthieu Schaller committed
822
823
  visc.v = vec_set1(-0.25f) * vec_set1(const_viscosity_alpha) * v_sig.v *
           mu_ij.v * balsara.v / rho_ij.v;
824
825
826

  /* Now, convolve with the kernel */
  visc_term.v = vec_set1(0.5f) * visc.v * (wi_dr.v + wj_dr.v) * ri.v;
James Willis's avatar
James Willis committed
827
828
829
  sph_term.v =
      (grad_hi.v * piPOrho2.v * wi_dr.v + grad_hj.v * pjPOrho2.v * wj_dr.v) *
      ri.v;
830
831
832

  /* Eventually get the acceleration */
  acc.v = visc_term.v + sph_term.v;
Matthieu Schaller's avatar
Matthieu Schaller committed
833

834
835
836
837
838
839
840
841
842
843
844
845
  /* Use the force, Luke! */
  for (k = 0; k < 3; k++) {
    f.v = dx[k].v * acc.v;
    pia[k].v = mj.v * f.v;
    pja[k].v = mi.v * f.v;
  }

  /* Get the time derivative for h. */
  pih_dt.v = mj.v * dvdr.v * ri.v / pjrho.v * wi_dr.v;
  pjh_dt.v = mi.v * dvdr.v * ri.v / pirho.v * wj_dr.v;

  /* Change in entropy */
846
  entropy_dt.v = visc_term.v * dvdr.v;
Matthieu Schaller's avatar
Matthieu Schaller committed
847

848
849
850
851
852
853
  /* Store the forces back on the particles. */
  for (k = 0; k < VEC_SIZE; k++) {
    for (j = 0; j < 3; j++) {
      pi[k]->a_hydro[j] -= pia[j].f[k];
      pj[k]->a_hydro[j] += pja[j].f[k];
    }
854
855
    pi[k]->force.h_dt -= pih_dt.f[k];
    pj[k]->force.h_dt -= pjh_dt.f[k];
856
857
    pi[k]->force.v_sig = max(pi[k]->force.v_sig, v_sig.f[k]);
    pj[k]->force.v_sig = max(pj[k]->force.v_sig, v_sig.f[k]);
858
    pi[k]->entropy_dt += entropy_dt.f[k] * mj.f[k];
859
    pj[k]->entropy_dt += entropy_dt.f[k] * mi.f[k];
860
861
  }

Matthieu Schaller's avatar
Matthieu Schaller committed
862
#else
863

Matthieu Schaller's avatar
Matthieu Schaller committed
864
865
  error(
      "The Gadget2 serial version of runner_iact_nonsym_force was called when "
866
      "the vectorised version should have been used.");
867
868

#endif
869
870
}

871
872
873
/**
 * @brief Force loop (non-symmetric version)
 */
874
875
876
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_force(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

877
878
879
  float wi, wj, wi_dx, wj_dx;

  const float fac_mu = 1.f; /* Will change with cosmological integration */
880

881
882
883
884
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Get some values in local variables. */
885
  // const float mi = pi->mass;
886
887
888
889
890
891
  const float mj = pj->mass;
  const float rhoi = pi->rho;
  const float rhoj = pj->rho;

  /* Get the kernel for hi. */
  const float hi_inv = 1.0f / hi;
892
  const float hid_inv = pow_dimension_plus_one(hi_inv); /* 1/h^(d+1) */
893
894
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
895
  const float wi_dr = hid_inv * wi_dx;
896
897
898

  /* Get the kernel for hj. */
  const float hj_inv = 1.0f / hj;
899
  const float hjd_inv = pow_dimension_plus_one(hj_inv); /* 1/h^(d+1) */
900
901
  const float xj = r * hj_inv;
  kernel_deval(xj, &wj, &wj_dx);
902
  const float wj_dr = hjd_inv * wj_dx;
903

904
905
906
907
908
  /* Compute h-gradient terms */
  const float f_i = pi->force.f;
  const float f_j = pj->force.f;

  /* Compute pressure terms */
909
910
  const float P_over_rho2_i = pi->force.P_over_rho2;
  const float P_over_rho2_j = pj->force.P_over_rho2;
911
912

  /* Compute sound speeds */
913
914
  const float ci = pi->force.soundspeed;
  const float cj = pj->force.soundspeed;
915

916
  /* Compute dv dot r. */
917
918
919
  const float dvdr = (pi->v[0] - pj->v[0]) * dx[0] +
                     (pi->v[1] - pj->v[1]) * dx[1] +
                     (pi->v[2] - pj->v[2]) * dx[2];
920

921
  /* Balsara term */
922
923
  const float balsara_i = pi->force.balsara;
  const float balsara_j = pj->force.balsara;
924
925

  /* Are the particles moving towards each others ? */
926
  const float omega_ij = (dvdr < 0.f) ? dvdr : 0.f;
927
928
929
930
931
932
933
934
935
  const float mu_ij = fac_mu * r_inv * omega_ij; /* This is 0 or negative */

  /* Signal velocity */
  const float v_sig = ci + cj - 3.f * mu_ij;

  /* Now construct the full viscosity term */
  const float rho_ij = 0.5f * (rhoi + rhoj);
  const float visc = -0.25f * const_viscosity_alpha * v_sig * mu_ij *
                     (balsara_i + balsara_j) / rho_ij;
936
937

  /* Now, convolve with the kernel */
938
  const float visc_term = 0.5f * visc * (wi_dr + wj_dr) * r_inv;
939
  const float sph_term =
940
      (f_i * P_over_rho2_i * wi_dr + f_j * P_over_rho2_j * wj_dr) * r_inv;
941
942
943

  /* Eventually got the acceleration */
  const float acc = visc_term + sph_term;
944

945
  /* Use the force Luke ! */
946
947
948
  pi->a_hydro[0] -= mj * acc * dx[0];
  pi->a_hydro[1] -= mj * acc * dx[1];
  pi->a_hydro[2] -= mj * acc * dx[2];
949

950
  /* Get the time derivative for h. */
951
  pi->force.h_dt -= mj * dvdr * r_inv / rhoj * wi_dr;
952

953
  /* Update the signal velocity. */
954
  pi->force.v_sig = (pi->force.v_sig > v_sig) ? pi->force.v_sig : v_sig;
955

956
  /* Change in entropy */
957
  pi->entropy_dt += mj * visc_term * dvdr;
958
}
959

960
961
962
963
964
965
/**
 * @brief Force loop (Vectorized non-symmetric version)
 */
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_vec_force(
    float *R2, float *Dx, float *Hi, float *Hj, struct part **pi,
    struct part **pj) {
966

Matthieu Schaller's avatar
Matthieu Schaller committed
967
#ifdef WITH_VECTORIZATION
968
969
970
971

  vector r, r2, ri;
  vector xi, xj;
  vector hi, hj, hi_inv, hj_inv;
972
  vector hid_inv, hjd_inv;
973
  vector wi, wj, wi_dx, wj_dx, wi_dr, wj_dr, dvdr;
974
  vector piPOrho2, pjPOrho2, pirho, pjrho;
975
976
  vector mj;
  vector f;
977
  vector grad_hi, grad_hj;
978
979
980
981
  vector dx[3];
  vector vi[3], vj[3];
  vector pia[3];
  vector pih_dt;
982
983
  vector ci, cj, v_sig;
  vector omega_ij, mu_ij, fac_mu, balsara;
984
985
986
987
988
  vector rho_ij, visc, visc_term, sph_term, acc, entropy_dt;
  int j, k;

  fac_mu.v = vec_set1(1.f); /* Will change with cosmological integration */

Matthieu Schaller's avatar
Matthieu Schaller committed
989
/* Load stuff. */
990
991
992
#if VEC_SIZE == 8
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass,
                 pj[4]->mass, pj[5]->mass, pj[6]->mass, pj[7]->mass);
993
  piPOrho2.v = vec_set(pi[0]->force.P_over_rho2, pi[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
994
995
996
                       pi[2]->force.P_over_rho2, pi[3]->force.P_over_rho2,
                       pi[4]->force.P_over_rho2, pi[5]->force.P_over_rho2,
                       pi[6]->force.P_over_rho2, pi[7]->force.P_over_rho2);