cell.c 16.5 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 * Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <float.h>
#include <limits.h>
#include <math.h>

32
33
34
35
36
/* MPI headers. */
#ifdef WITH_MPI
    #include <mpi.h>
#endif

37
38
39
40
41
/* Switch off timers. */
#ifdef TIMER
    #undef TIMER
#endif

42
/* Local headers. */
43
#include "const.h"
44
#include "atomic.h"
45
46
47
#include "cycle.h"
#include "lock.h"
#include "task.h"
48
#include "timers.h"
49
#include "part.h"
50
#include "space.h"
51
#include "multipole.h"
52
#include "cell.h"
53
54
#include "error.h"
#include "inline.h"
55

56
57
58
/* Global variables. */
int cell_next_tag = 0;

59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
 
int cell_getsize ( struct cell *c ) {

    int k, count = 1;
    
    /* Sum up the progeny if split. */
    if ( c->split )
        for ( k = 0 ; k < 8 ; k++ )
            if ( c->progeny[k] != NULL )
                count += cell_getsize( c->progeny[k] );
                
    /* Return the final count. */
    return count;

    }


/** 
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
 
92
int cell_unpack ( struct pcell *pc , struct cell *c , struct space *s ) {
93
94
95
96
97
98

    int k, count = 1;
    struct cell *temp;
    
    /* Unpack the current pcell. */
    c->h_max = pc->h_max;
99
100
    c->dt_min = FLT_MAX; // pc->dt_min;
    c->dt_max = FLT_MAX; // pc->dt_max;
101
    c->count = pc->count;
Pedro Gonnet's avatar
Pedro Gonnet committed
102
    c->tag = pc->tag;
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    
    /* Fill the progeny recursively, depth-first. */
    for ( k = 0 ; k < 8 ; k++ )
        if ( pc->progeny[k] >= 0 ) {
            temp = space_getcell( s );
            temp->count = 0;
            temp->loc[0] = c->loc[0];
            temp->loc[1] = c->loc[1];
            temp->loc[2] = c->loc[2];
            temp->h[0] = c->h[0]/2;
            temp->h[1] = c->h[1]/2;
            temp->h[2] = c->h[2]/2;
            temp->dmin = c->dmin/2;
            if ( k & 4 )
                temp->loc[0] += temp->h[0];
            if ( k & 2 )
                temp->loc[1] += temp->h[1];
            if ( k & 1 )
                temp->loc[2] += temp->h[2];
            temp->depth = c->depth + 1;
            temp->split = 0;
            temp->dx_max = 0.0;
            temp->nodeID = c->nodeID;
            temp->parent = c;
            c->progeny[k] = temp;
            c->split = 1;
129
            count += cell_unpack( &pc[ pc->progeny[k] ] , temp , s );
130
131
132
133
134
135
136
137
            }
            
    /* Return the total number of unpacked cells. */
    return count;

    }


138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/**
 * @brief Link the cells recursively to the given part array.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */

int cell_link ( struct cell *c , struct part *parts ) {

    int k, ind = 0;
    
    c->parts = parts;
    
    /* Fill the progeny recursively, depth-first. */
    if ( c->split )
        for ( k = 0 ; k < 8 ; k++ )
            if ( c->progeny[k] != NULL )
                ind += cell_link( c->progeny[k] , &parts[ind] );
            
    /* Return the total number of unpacked cells. */
    return c->count;

    }


165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
 
int cell_pack ( struct cell *c , struct pcell *pc ) {

    int k, count = 1;
    
    /* Start by packing the data of the current cell. */
    pc->h_max = c->h_max;
    pc->dt_min = c->dt_min;
    pc->dt_max = c->dt_max;
    pc->count = c->count;
184
    c->tag = pc->tag = atomic_inc(cell_next_tag) % cell_max_tag;
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    
    /* Fill in the progeny, depth-first recursion. */
    for ( k = 0 ; k < 8 ; k++ )
        if ( c->progeny[k] != NULL ) {
            pc->progeny[k] = count;
            count += cell_pack( c->progeny[k] , &pc[count] );
            }
        else
            pc->progeny[k] = -1;
            
    /* Return the number of packed cells used. */
    return count;

    }


201
202
203
204
205
206
207
208
209
210
211
212
/**
 * @brief Lock a cell and hold its parents.
 *
 * @param c The #cell.
 */
 
int cell_locktree( struct cell *c ) {

    struct cell *finger, *finger2;
    TIMER_TIC

    /* First of all, try to lock this cell. */
213
    if ( c->hold || lock_trylock( &c->lock ) != 0 ) {
214
        TIMER_TOC(timer_locktree);
215
216
217
218
219
220
221
222
223
224
225
        return 1;
        }
        
    /* Did somebody hold this cell in the meantime? */
    if ( c->hold ) {
        
        /* Unlock this cell. */
        if ( lock_unlock( &c->lock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
226
        TIMER_TOC(timer_locktree);
227
228
229
230
231
232
233
234
235
236
237
238
        return 1;
    
        }
        
    /* Climb up the tree and lock/hold/unlock. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent ) {
    
        /* Lock this cell. */
        if ( lock_trylock( &finger->lock ) != 0 )
            break;
            
        /* Increment the hold. */
239
        atomic_inc( &finger->hold );
240
241
242
243
244
245
246
247
248
        
        /* Unlock the cell. */
        if ( lock_unlock( &finger->lock ) != 0 )
            error( "Failed to unlock cell." );
    
        }
        
    /* If we reached the top of the tree, we're done. */
    if ( finger == NULL ) {
249
        TIMER_TOC(timer_locktree);
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        return 0;
        }
        
    /* Otherwise, we hit a snag. */
    else {
    
        /* Undo the holds up to finger. */
        for ( finger2 = c->parent ; finger2 != finger ; finger2 = finger2->parent )
            __sync_fetch_and_sub( &finger2->hold , 1 );
            
        /* Unlock this cell. */
        if ( lock_unlock( &c->lock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
265
        TIMER_TOC(timer_locktree);
266
267
268
269
270
271
272
        return 1;
    
        }

    }
    
    
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
int cell_glocktree( struct cell *c ) {

    struct cell *finger, *finger2;
    TIMER_TIC

    /* First of all, try to lock this cell. */
    if ( c->ghold || lock_trylock( &c->glock ) != 0 ) {
        TIMER_TOC(timer_locktree);
        return 1;
        }
        
    /* Did somebody hold this cell in the meantime? */
    if ( c->ghold ) {
        
        /* Unlock this cell. */
        if ( lock_unlock( &c->glock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
        TIMER_TOC(timer_locktree);
        return 1;
    
        }
        
    /* Climb up the tree and lock/hold/unlock. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent ) {
    
        /* Lock this cell. */
        if ( lock_trylock( &finger->glock ) != 0 )
            break;
            
        /* Increment the hold. */
        __sync_fetch_and_add( &finger->ghold , 1 );
        
        /* Unlock the cell. */
        if ( lock_unlock( &finger->glock ) != 0 )
            error( "Failed to unlock cell." );
    
        }
        
    /* If we reached the top of the tree, we're done. */
    if ( finger == NULL ) {
        TIMER_TOC(timer_locktree);
        return 0;
        }
        
    /* Otherwise, we hit a snag. */
    else {
    
        /* Undo the holds up to finger. */
        for ( finger2 = c->parent ; finger2 != finger ; finger2 = finger2->parent )
            __sync_fetch_and_sub( &finger2->ghold , 1 );
            
        /* Unlock this cell. */
        if ( lock_unlock( &c->glock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
        TIMER_TOC(timer_locktree);
        return 1;
    
        }

    }
    
    
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/**
 * @brief Unock a cell's parents.
 *
 * @param c The #cell.
 */
 
void cell_unlocktree( struct cell *c ) {

    struct cell *finger;
    TIMER_TIC

    /* First of all, try to unlock this cell. */
    if ( lock_unlock( &c->lock ) != 0 )
        error( "Failed to unlock cell." );
        
    /* Climb up the tree and unhold the parents. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent )
        __sync_fetch_and_sub( &finger->hold , 1 );
        
358
    TIMER_TOC(timer_locktree);
359
360
361
362
        
    }
    
    
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
void cell_gunlocktree( struct cell *c ) {

    struct cell *finger;
    TIMER_TIC

    /* First of all, try to unlock this cell. */
    if ( lock_unlock( &c->glock ) != 0 )
        error( "Failed to unlock cell." );
        
    /* Climb up the tree and unhold the parents. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent )
        __sync_fetch_and_sub( &finger->ghold , 1 );
        
    TIMER_TOC(timer_locktree);
        
    }
    
    
381
382
383
384
385
386
387
388
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
 */
 
void cell_split ( struct cell *c  ) {

389
    int i, j, k, count = c->count, gcount = c->gcount;
390
    struct part temp, *parts = c->parts;
391
    struct xpart xtemp, *xparts = c->xparts;
392
    struct gpart gtemp, *gparts = c->gparts;
393
394
395
    int left[8], right[8];
    double pivot[3];
    
396
    /* Init the pivots. */
397
398
399
400
    for ( k = 0 ; k < 3 ; k++ )
        pivot[k] = c->loc[k] + c->h[k]/2;
    
    /* Split along the x-axis. */
401
    i = 0; j = count - 1;
402
    while ( i <= j ) {
403
        while ( i <= count-1 && parts[i].x[0] <= pivot[0] )
404
405
406
407
408
            i += 1;
        while ( j >= 0 && parts[j].x[0] > pivot[0] )
            j -= 1;
        if ( i < j ) {
            temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
409
            xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
410
411
            }
        }
Pedro Gonnet's avatar
Pedro Gonnet committed
412
    /* for ( k = 0 ; k <= j ; k++ )
413
414
        if ( parts[k].x[0] > pivot[0] )
            error( "cell_split: sorting failed." );
415
    for ( k = i ; k < count ; k++ )
416
        if ( parts[k].x[0] < pivot[0] )
Pedro Gonnet's avatar
Pedro Gonnet committed
417
            error( "cell_split: sorting failed." ); */
418
    left[1] = i; right[1] = count - 1;
419
420
421
422
423
424
425
426
427
428
429
430
    left[0] = 0; right[0] = j;
    
    /* Split along the y axis, twice. */
    for ( k = 1 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && parts[i].x[1] <= pivot[1] )
                i += 1;
            while ( j >= left[k] && parts[j].x[1] > pivot[1] )
                j -= 1;
            if ( i < j ) {
                temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
431
                xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
432
433
                }
            }
Pedro Gonnet's avatar
Pedro Gonnet committed
434
        /* for ( int kk = left[k] ; kk <= j ; kk++ )
435
            if ( parts[kk].x[1] > pivot[1] ) {
436
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
437
438
                error( "sorting failed (left)." );
                }
Pedro Gonnet's avatar
Pedro Gonnet committed
439
        for ( int kk = i ; kk <= right[k] ; kk++ )
440
            if ( parts[kk].x[1] < pivot[1] )
Pedro Gonnet's avatar
Pedro Gonnet committed
441
                error( "sorting failed (right)." ); */
442
443
444
445
446
447
448
449
450
451
452
453
454
455
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }

    /* Split along the z axis, four times. */
    for ( k = 3 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && parts[i].x[2] <= pivot[2] )
                i += 1;
            while ( j >= left[k] && parts[j].x[2] > pivot[2] )
                j -= 1;
            if ( i < j ) {
                temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
456
                xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
457
458
                }
            }
Pedro Gonnet's avatar
Pedro Gonnet committed
459
        /* for ( int kk = left[k] ; kk <= j ; kk++ )
460
            if ( parts[kk].x[2] > pivot[2] ) {
461
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
462
463
                error( "sorting failed (left)." );
                }
Pedro Gonnet's avatar
Pedro Gonnet committed
464
        for ( int kk = i ; kk <= right[k] ; kk++ )
465
            if ( parts[kk].x[2] < pivot[2] ) {
466
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
467
                error( "sorting failed (right)." );
Pedro Gonnet's avatar
Pedro Gonnet committed
468
                } */
469
470
471
472
473
474
475
476
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }
        
    /* Store the counts and offsets. */
    for ( k = 0 ; k < 8 ; k++ ) {
        c->progeny[k]->count = right[k] - left[k] + 1;
        c->progeny[k]->parts = &c->parts[ left[k] ];
477
        c->progeny[k]->xparts = &c->xparts[ left[k] ];
478
479
        }
        
480
481
    /* Re-link the gparts. */
    for ( k = 0 ; k < count ; k++ )
482
483
        if ( parts[k].gpart != NULL )
            parts[k].gpart->part = &parts[k];
484
        
Pedro Gonnet's avatar
Pedro Gonnet committed
485
486
487
488
489
490
    /* Verify that _all_ the parts have been assigned to a cell. */
    /* for ( k = 1 ; k < 8 ; k++ )
        if ( &c->progeny[k-1]->parts[ c->progeny[k-1]->count ] != c->progeny[k]->parts )
            error( "Particle sorting failed (internal consistency)." );
    if ( c->progeny[0]->parts != c->parts )
        error( "Particle sorting failed (left edge)." );
491
    if ( &c->progeny[7]->parts[ c->progeny[7]->count ] != &c->parts[ count ] )
Pedro Gonnet's avatar
Pedro Gonnet committed
492
493
        error( "Particle sorting failed (right edge)." ); */
        
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
    /* Verify a few sub-cells. */
    /* for ( k = 0 ; k < c->progeny[0]->count ; k++ )
        if ( c->progeny[0]->parts[k].x[0] > pivot[0] ||
             c->progeny[0]->parts[k].x[1] > pivot[1] ||
             c->progeny[0]->parts[k].x[2] > pivot[2] )
            error( "Sorting failed (progeny=0)." );
    for ( k = 0 ; k < c->progeny[1]->count ; k++ )
        if ( c->progeny[1]->parts[k].x[0] > pivot[0] ||
             c->progeny[1]->parts[k].x[1] > pivot[1] ||
             c->progeny[1]->parts[k].x[2] <= pivot[2] )
            error( "Sorting failed (progeny=1)." );
    for ( k = 0 ; k < c->progeny[2]->count ; k++ )
        if ( c->progeny[2]->parts[k].x[0] > pivot[0] ||
             c->progeny[2]->parts[k].x[1] <= pivot[1] ||
             c->progeny[2]->parts[k].x[2] > pivot[2] )
            error( "Sorting failed (progeny=2)." ); */

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
    /* Now do the same song and dance for the gparts. */

    /* Split along the x-axis. */
    i = 0; j = gcount - 1;
    while ( i <= j ) {
        while ( i <= gcount-1 && gparts[i].x[0] <= pivot[0] )
            i += 1;
        while ( j >= 0 && gparts[j].x[0] > pivot[0] )
            j -= 1;
        if ( i < j ) {
            gtemp = gparts[i]; gparts[i] = gparts[j]; gparts[j] = gtemp;
            }
        }
    left[1] = i; right[1] = gcount - 1;
    left[0] = 0; right[0] = j;
    
    /* Split along the y axis, twice. */
    for ( k = 1 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && gparts[i].x[1] <= pivot[1] )
                i += 1;
            while ( j >= left[k] && gparts[j].x[1] > pivot[1] )
                j -= 1;
            if ( i < j ) {
                gtemp = gparts[i]; gparts[i] = gparts[j]; gparts[j] = gtemp;
                }
            }
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }

    /* Split along the z axis, four times. */
    for ( k = 3 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && gparts[i].x[2] <= pivot[2] )
                i += 1;
            while ( j >= left[k] && gparts[j].x[2] > pivot[2] )
                j -= 1;
            if ( i < j ) {
                gtemp = gparts[i]; gparts[i] = gparts[j]; gparts[j] = gtemp;
                }
            }
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }
        
    /* Store the counts and offsets. */
    for ( k = 0 ; k < 8 ; k++ ) {
        c->progeny[k]->gcount = right[k] - left[k] + 1;
        c->progeny[k]->gparts = &c->gparts[ left[k] ];
        }
        
    /* Re-link the parts. */
    for ( k = 0 ; k < gcount ; k++ )
        if ( gparts[k].id > 0 )
            gparts[k].part->gpart = &gparts[k];
        
570
571
572
    }