cell.c 172 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "chemistry.h"
53
#include "drift.h"
54
#include "engine.h"
55
#include "error.h"
56
#include "gravity.h"
57
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
58
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
59
#include "memswap.h"
60
#include "minmax.h"
61
#include "scheduler.h"
62
#include "space.h"
63
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
64
#include "stars.h"
65
#include "timers.h"
66
#include "tools.h"
67
#include "tracers.h"
68

69
70
71
/* Global variables. */
int cell_next_tag = 0;

72
73
74
75
76
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
77
int cell_getsize(struct cell *c) {
78

Pedro Gonnet's avatar
Pedro Gonnet committed
79
80
  /* Number of cells in this subtree. */
  int count = 1;
81

82
83
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
84
    for (int k = 0; k < 8; k++)
85
86
87
88
89
90
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

91
/**
92
 * @brief Link the cells recursively to the given #part array.
93
94
95
96
97
98
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
99
100
int cell_link_parts(struct cell *c, struct part *parts) {

101
#ifdef SWIFT_DEBUG_CHECKS
102
103
104
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

105
  if (c->hydro.parts != NULL)
106
107
108
    error("Linking parts into a cell that was already linked");
#endif

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
  c->hydro.parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->hydro.count;
}

/**
125
 * @brief Link the cells recursively to the given #gpart array.
126
127
 *
 * @param c The #cell.
128
 * @param gparts The #gpart array.
129
130
131
 *
 * @return The number of particles linked.
 */
132
int cell_link_gparts(struct cell *c, struct gpart *gparts) {
133
134
135
136
137

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

138
  if (c->grav.parts != NULL)
139
    error("Linking gparts into a cell that was already linked");
140
#endif
141

142
  c->grav.parts = gparts;
143
144
145
146
147
148
149
150
151
152
153

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
154
  return c->grav.count;
155
156
}

157
158
159
160
161
162
163
164
165
166
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {

167
168
169
170
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

171
  if (c->stars.parts != NULL)
172
173
174
    error("Linking sparts into a cell that was already linked");
#endif

175
  c->stars.parts = sparts;
176
177
178
179
180
181
182
183
184
185
186

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
187
  return c->stars.count;
188
189
}

190
191
192
193
194
195
196
197
198
199
/**
 * @brief Recurse down foreign cells until reaching one with hydro
 * tasks; then trigger the linking of the #part array from that
 * level.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
200
201
int cell_link_foreign_parts(struct cell *c, struct part *parts) {

202
203
#ifdef WITH_MPI

204
205
206
207
208
209
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
210
211
212
  struct link *l = c->mpi.recv;
  while (l != NULL && l->t->subtype != task_subtype_xv) l = l->next;
  if (l != NULL) {
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

    /* Recursively attach the parts */
    const int counts = cell_link_parts(c, parts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->hydro.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_parts(c->progeny[k], &parts[count]);
      }
    }
231
232
233
    return count;
  } else {
    return 0;
234
  }
235
236
237
238

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
239
240
}

241
242
243
244
245
246
247
248
249
250
/**
 * @brief Recurse down foreign cells until reaching one with gravity
 * tasks; then trigger the linking of the #gpart array from that
 * level.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
251
252
int cell_link_foreign_gparts(struct cell *c, struct gpart *gparts) {

253
254
#ifdef WITH_MPI

255
256
257
258
259
260
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
261
  if (c->mpi.grav.recv != NULL) {
262

263
    /* Recursively attach the gparts */
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    const int counts = cell_link_gparts(c, gparts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->grav.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_gparts(c->progeny[k], &gparts[count]);
      }
    }
280
281
282
    return count;
  } else {
    return 0;
283
  }
284
285
286
287

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
288
289
}

290
291
292
293
294
295
296
297
/**
 * @brief Recursively count the number of #part in foreign cells that
 * are in cells with hydro-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
298
299
int cell_count_parts_for_tasks(const struct cell *c) {

300
301
#ifdef WITH_MPI

302
303
304
305
306
307
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
308
309
310
  struct link *l = c->mpi.recv;
  while (l != NULL && l->t->subtype != task_subtype_xv) l = l->next;
  if (l != NULL) {
311
312
313
314
315
316
317
318
319
320
    return c->hydro.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_parts_for_tasks(c->progeny[k]);
      }
    }
321
322
323
    return count;
  } else {
    return 0;
324
  }
325
326
327
328

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
329
330
}

331
332
333
334
335
336
337
338
/**
 * @brief Recursively count the number of #gpart in foreign cells that
 * are in cells with gravity-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
339
340
int cell_count_gparts_for_tasks(const struct cell *c) {

341
342
#ifdef WITH_MPI

343
344
345
346
347
348
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
349
  if (c->mpi.grav.recv != NULL) {
350
351
352
353
354
355
356
357
358
359
    return c->grav.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_gparts_for_tasks(c->progeny[k]);
      }
    }
360
361
362
    return count;
  } else {
    return 0;
363
  }
364
365
366
367

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
368
369
}

370
371
372
373
374
375
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
376
377
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
378
379
380
 *
 * @return The number of packed cells.
 */
381
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
382
              const int with_gravity) {
383

384
385
#ifdef WITH_MPI

386
  /* Start by packing the data of the current cell. */
387
  pc->hydro.h_max = c->hydro.h_max;
388
  pc->stars.h_max = c->stars.h_max;
389
390
391
392
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
393
  pc->stars.ti_end_min = c->stars.ti_end_min;
394
  pc->stars.ti_end_max = c->stars.ti_end_max;
395
396
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
397
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
398
  pc->stars.ti_old_part = c->stars.ti_old_part;
399
  pc->hydro.count = c->hydro.count;
400
401
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
402
  pc->maxdepth = c->maxdepth;
403

404
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
405
  if (with_gravity) {
406
    const struct gravity_tensors *mp = c->grav.multipole;
407

408
409
410
411
412
413
414
415
416
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
417
418
  }

419
420
421
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
422
423

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
424
425
  int count = 1;
  for (int k = 0; k < 8; k++)
426
427
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
428
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
429
    } else {
430
      pc->progeny[k] = -1;
431
    }
432
433

  /* Return the number of packed cells used. */
434
  c->mpi.pcell_size = count;
435
  return count;
436
437
438
439
440

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
441
442
}

443
444
445
446
447
448
449
450
451
452
453
454
455
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {

#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
456
  tags[0] = c->mpi.tag;
457
458
459
460
461
462
463
464

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
465
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
466
467
468
469
470
471
472
473
474
475
476
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

477
478
479
480
481
482
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
483
484
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
485
486
487
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
488
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
489
                struct space *restrict s, const int with_gravity) {
490
491
492
493

#ifdef WITH_MPI

  /* Unpack the current pcell. */
494
  c->hydro.h_max = pc->hydro.h_max;
495
  c->stars.h_max = pc->stars.h_max;
496
497
498
499
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
500
  c->stars.ti_end_min = pc->stars.ti_end_min;
501
  c->stars.ti_end_max = pc->stars.ti_end_max;
502
503
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
504
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
505
  c->stars.ti_old_part = pc->stars.ti_old_part;
506
  c->hydro.count = pc->hydro.count;
507
508
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
509
510
  c->maxdepth = pc->maxdepth;

511
512
513
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
514

515
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
516
  if (with_gravity) {
517

518
    struct gravity_tensors *mp = c->grav.multipole;
519

520
521
522
523
524
525
526
527
528
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
529
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
530

531
532
533
534
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
535
  c->split = 0;
536
537
538
539
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
540
      temp->hydro.count = 0;
541
542
      temp->grav.count = 0;
      temp->stars.count = 0;
543
544
545
546
547
548
549
550
551
552
553
554
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
555
      temp->hydro.dx_max_part = 0.f;
556
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
557
      temp->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
558
      temp->stars.dx_max_sort = 0.f;
559
560
561
562
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
563
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
564
565
566
    }

  /* Return the total number of unpacked cells. */
567
  c->mpi.pcell_size = count;
568
569
570
571
572
573
574
575
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

576
577
578
579
580
581
582
583
584
585
586
587
588
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {

#ifdef WITH_MPI

  /* Unpack the current pcell. */
589
  c->mpi.tag = tags[0];
590
591
592
593
594
595
596
597
598
599
600

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
601
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
602
603
604
605
606
607
608
609
610
611
612
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

613
614
615
616
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
617
 * @param pcells (output) The end-of-timestep information we pack into
618
619
620
 *
 * @return The number of packed cells.
 */
621
622
int cell_pack_end_step_hydro(struct cell *restrict c,
                             struct pcell_step_hydro *restrict pcells) {
623

624
625
#ifdef WITH_MPI

626
  /* Pack this cell's data. */
627
628
629
  pcells[0].ti_end_min = c->hydro.ti_end_min;
  pcells[0].ti_end_max = c->hydro.ti_end_max;
  pcells[0].dx_max_part = c->hydro.dx_max_part;
630

631
632
633
634
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
635
      count += cell_pack_end_step_hydro(c->progeny[k], &pcells[count]);
636
637
638
639
    }

  /* Return the number of packed values. */
  return count;
640
641
642
643
644

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
645
646
}

647
648
649
650
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
651
 * @param pcells The end-of-timestep information to unpack
652
653
654
 *
 * @return The number of cells created.
 */
655
656
int cell_unpack_end_step_hydro(struct cell *restrict c,
                               struct pcell_step_hydro *restrict pcells) {
657

658
659
#ifdef WITH_MPI

660
  /* Unpack this cell's data. */
661
662
663
  c->hydro.ti_end_min = pcells[0].ti_end_min;
  c->hydro.ti_end_max = pcells[0].ti_end_max;
  c->hydro.dx_max_part = pcells[0].dx_max_part;
664

665
666
667
668
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
      count += cell_unpack_end_step_hydro(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_grav(struct cell *restrict c,
                            struct pcell_step_grav *restrict pcells) {

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->grav.ti_end_min;
  pcells[0].ti_end_max = c->grav.ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_grav(struct cell *restrict c,
                              struct pcell_step_grav *restrict pcells) {

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->grav.ti_end_min = pcells[0].ti_end_min;
  c->grav.ti_end_max = pcells[0].ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_stars(struct cell *restrict c,
                             struct pcell_step_stars *restrict pcells) {

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->stars.ti_end_min;
  pcells[0].ti_end_max = c->stars.ti_end_max;
  pcells[0].dx_max_part = c->stars.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_stars(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_stars(struct cell *restrict c,
                               struct pcell_step_stars *restrict pcells) {

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->stars.ti_end_min = pcells[0].ti_end_min;
  c->stars.ti_end_max = pcells[0].ti_end_max;
  c->stars.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_stars(c->progeny[k], &pcells[count]);
804
805
806
    }

  /* Return the number of packed values. */
807
  return count;
808
809
810
811
812

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
813
}
814

815
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
816
817
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
818
819
820
821
822
823
824
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
825
                         struct gravity_tensors *restrict pcells) {
826
827
828
829

#ifdef WITH_MPI

  /* Pack this cell's data. */
830
  pcells[0] = *c->grav.multipole;
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
857
                           struct gravity_tensors *restrict pcells) {
858
859
860
861

#ifdef WITH_MPI

  /* Unpack this cell's data. */
862
  *c->grav.multipole = pcells[0];
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

880
/**
881
 * @brief Lock a cell for access to its array of #part and hold its parents.
882
883
 *
 * @param c The #cell.
884
 * @return 0 on success, 1 on failure
885
 */
886
887
888
889
890
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
891
  if (c->hydro.hold || lock_trylock(&c->hydro.lock) != 0) {
892
893
894
895
896
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
897
  if (c->hydro.hold) {
898
899

    /* Unlock this cell. */
900
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
901
902
903
904
905
906
907

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
908
  struct cell *finger;
909
910
911
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
912
    if (lock_trylock(&finger->hydro.lock) != 0) break;
913
914

    /* Increment the hold. */
915
    atomic_inc(&finger->hydro.hold);
916
917

    /* Unlock the cell. */
918
    if (lock_unlock(&finger->hydro.lock) != 0) error("Failed to unlock cell.");
919
920
921
922
923
924
925
926
927
928
929
930
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
931
932
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
933
      atomic_dec(&finger2->hydro.hold);
934
935

    /* Unlock this cell. */
936
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
937
938
939
940
941
942
943

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

944
945
946
947
948
949
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
950
951
952
953
954
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
955
  if (c->grav.phold || lock_trylock(&c->grav.plock) != 0) {
956
957
958
959
960
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
961
  if (c->grav.phold) {
962
963

    /* Unlock this cell. */
964
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
965
966
967
968
969
970
971

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
972
  struct cell *finger;
973
974
975
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
976
    if (lock_trylock(&finger->grav.plock) != 0) break;
977
978

    /* Increment the hold. */
979
    atomic_inc(&finger->grav.phold);
980
981

    /* Unlock the cell. */
982
    if (lock_unlock(&finger->grav.plock) != 0) error("Failed to unlock cell.");
983
984
985
986
987
988
989
990
991
992
993
994
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
995
996
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
997
      atomic_dec(&finger2->grav.phold);
998
999

    /* Unlock this cell. */
1000
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1001
1002
1003
1004
1005
1006

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
1007

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
1019
  if (c->grav.mhold || lock_trylock(&c->grav.mlock) != 0) {
1020
1021
1022
1023
1024
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1025
  if (c->grav.mhold) {
1026
1027

    /* Unlock this cell. */
1028
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
1040
    if (lock_trylock(&finger->grav.mlock) != 0) break;
1041
1042

    /* Increment the hold. */
1043
    atomic_inc(&finger->grav.mhold);
1044
1045

    /* Unlock the cell. */
1046
    if (lock_unlock(&finger->grav.mlock) != 0) error("Failed to unlock cell.");
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1061
      atomic_dec(&finger2->grav.mhold);
1062
1063

    /* Unlock this cell. */
1064
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1065
1066
1067
1068
1069
1070
1071

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
1083
  if (c->stars.hold || lock_trylock(&c->stars.lock) != 0) {
1084
1085
1086
1087
1088
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1089
  if (c->stars.hold) {
1090
1091

    /* Unlock this cell. */
1092
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
1104
    if (lock_trylock(&finger->stars.lock) != 0) break;
1105
1106

    /* Increment the hold. */
1107
    atomic_inc(&finger->stars.hold);
1108
1109

    /* Unlock the cell. */
1110
    if (lock_unlock(&finger->stars.lock) != 0) error("Failed to unlock cell.");
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1125
      atomic_dec(&finger2->stars.hold);
1126
1127

    /* Unlock this cell. */
1128
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1129
1130
1131
1132
1133
1134
1135

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1136
/**
1137
 * @brief Unlock a cell's parents for access to #part array.
1138
1139
1140
 *
 * @param c The #cell.
 */
1141
1142
1143
1144
1145
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
1146
  if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1147
1148

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1149
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1150
    atomic_dec(&finger->hydro.hold);
1151
1152
1153
1154

  TIMER_TOC(timer_locktree);
}

1155
1156
1157
1158
1159
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
1160
1161
1162
1163
1164
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
1165
  if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1166
1167

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1168
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1169
    atomic_dec(&finger->grav.phold);
1170
1171
1172
1173

  TIMER_TOC(timer_locktree);
}

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
/**
 * @brief Unlock a cell's parents for access to its #multipole.
 *
 * @param c The #cell.
 */
void cell_munlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
1184
  if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1185
1186
1187

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1188
    atomic_dec(&finger->grav.mhold);
1189
1190
1191
1192

  TIMER_TOC(timer_locktree);
}

1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
1203
  if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1204
1205
1206

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1207
    atomic_dec(&finger->stars.hold);
1208
1209
1210
1211

  TIMER_TOC(timer_locktree);
}

1212
1213
1214
1215
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
1216
 * @param parts_offset Offset of the cell parts array relative to the
1217
 *        space's parts array, i.e. c->hydro.parts - s->parts.
1218
 * @param sparts_offset Offset of the cell sparts array relative to the
1219
1220
 *        space's sparts array, i.e. c->stars.parts - s->stars.parts.
 * @param buff A buffer with at least max(c->hydro.count, c->grav.count)
1221
 * entries, used for sorting indices.
1222
1223
1224
 * @param sbuff A buffer with at least max(c->stars.count, c->grav.count)
 * entries, used for sorting indices for the sparts.
 * @param gbuff A buffer with at least max(c->hydro.count, c->grav.count)
1225
 * entries, used for sorting indices for the gparts.
1226
 */
1227
1228
void cell_split(struct cell *c, ptrdiff_t parts_offset, ptrdiff_t sparts_offset,
                struct cell_buff *buff, struct cell_buff *sbuff,
1229
                struct cell_buff *gbuff) {
1230

1231
1232
  const int count = c->hydro.count, gcount = c->grav.count,
            scount = c->stars.count;
1233
1234
  struct part *parts = c->hydro.parts;
  struct xpart *xparts = c->hydro.xparts;
1235
1236
  struct gpart *gparts = c->grav.parts;
  struct spart *sparts = c->stars.parts;
1237
1238
1239
1240
1241
1242
  const double pivot[3] = {c->loc[0] + c->width[0] / 2,
                           c->loc[1] + c->width[1] / 2,
                           c->loc[2] + c->width[2] / 2};
  int bucket_count[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  int bucket_offset[9];

1243
1244
1245
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the buffs are OK. */
  for (int k = 0; k < count; k++) {
1246
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
1247
        buff[k].x[2] != parts[k].x[2])
1248
1249
      error("Inconsistent buff contents.");
  }
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
  for (int k = 0; k < gcount; k++) {
    if (gbuff[k].x[0] != gparts[k].x[0] || gbuff[k].x[1] != gparts[k].x[1] ||
        gbuff[k].x[2] != gparts[k].x[2])
      error("Inconsistent gbuff contents.");
  }
  for (int k = 0; k < scount; k++) {
    if (sbuff[k].x[0] != sparts[k].x[0] || sbuff[k].x[1] != sparts[k].x[1] ||
        sbuff[k].x[2] != sparts[k].x[2])
      error("Inconsistent sbuff contents.");
  }