engine.c 72.5 KB
Newer Older
Pedro Gonnet's avatar
Pedro Gonnet committed
1
/*******************************************************************************
2
 * This file is part of SWIFT.
Pedro Gonnet's avatar
Pedro Gonnet committed
3
 * Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
5
6
7
8
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
9
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
10
11
12
13
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
14
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
15
16
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
18
19
20
21
22
23
24
25
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <stdio.h>
#include <stdlib.h>
26
#include <unistd.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
27
28
29
30
31
32
33
34
#include <string.h>
#include <pthread.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <omp.h>
#include <sched.h>

35
36
/* MPI headers. */
#ifdef WITH_MPI
37
#include <mpi.h>
38
39
#endif

40
41
/* METIS headers. */
#ifdef HAVE_METIS
42
#include <metis.h>
43
44
#endif

Pedro Gonnet's avatar
Pedro Gonnet committed
45
/* Local headers. */
46
#include "const.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
47
#include "cycle.h"
48
#include "atomic.h"
49
#include "timers.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
50
#include "const.h"
51
#include "vector.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
52
53
#include "lock.h"
#include "task.h"
54
#include "debug.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
55
#include "space.h"
56
#include "multipole.h"
57
#include "cell.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
58
#include "queue.h"
59
#include "scheduler.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
60
61
#include "engine.h"
#include "runner.h"
62
#include "proxy.h"
63
#include "error.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
64

65
66
67
68
69
70
#ifdef LEGACY_GADGET2_SPH
#include "runner_iact_legacy.h"
#else
#include "runner_iact.h"
#endif

Pedro Gonnet's avatar
Pedro Gonnet committed
71
/* Convert cell location to ID. */
72
73
#define cell_getid(cdim, i, j, k) \
  ((int)(k) + (cdim)[2] * ((int)(j) + (cdim)[1] * (int)(i)))
Pedro Gonnet's avatar
Pedro Gonnet committed
74

75
76
77
/** The rank of the engine as a global variable (for messages). */
int engine_rank;

78
79
80
81
82
83
/**
 * @brief Check if a single particle is OK.
 *
 * @return Zero if all checks passed, non-zero otherwise.
 */
int engine_check_part(struct part *p) {
84
  if (p == NULL || p->mass == 0.0f || p->h == 0.0f) {
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    message("Bad particle data.");
    printParticle_single(p);
    return 1;
  } else if (p->x[0] == 0.0 && p->x[1] == 0.0 && p->x[2] == 0.0) {
    message("Bad particle location.");
    printParticle_single(p);
    return 1;
  } else {
    return 0;
  }
}

/**
 * @brief Check if a cell's data is reasonable, also check if its particles
 *        are OK.
 *
 * @return Zero if all checks passed, non-zero otherwise.
 */

void engine_check_cell(struct cell *c, void *data) {
  /* Check the cell data. */
  if (c->count == 0) {
    print_cell(c);
    error("Empty cell.");
  }
110

111
112
113
114
115
116
117
  /* Check the particles. */
  for (int k = 0; k < c->count; k++) {
    if (engine_check_part(&c->parts[k])) {
      print_cell(c);
      error("Bad particle in cell.");
    }
  }
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
  /* Check that the progeny, if any, contain all the particles. */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += c->progeny[k]->count;
      }
    }
    if (count != c->count) {
      print_cell(c);
      error("Progeny cell counts don't add up.");
    }
  }
}

/**
 * @brief Runs a series of checks to make sure we have no bad particles.
 */
137

138
139
140
141
142
143
144
145
void engine_check(struct engine *e) {
  /* Check all particles directly. */
  struct space *s = e->s;
  for (int k = 0; k < s->nr_parts; k++) {
    if (engine_check_part(&s->parts[k])) {
      error("Bad particle s->parts[%i], aborting.", k);
    }
  }
146

147
148
149
150
  /* Check each cell in the space. */
  space_map_cells_post(s, 1, &engine_check_cell, NULL);
}

151
152
153
154
155
156
157
158
159
160
/**
 * @brief Link a density/force task to a cell.
 *
 * @param e The #engine.
 * @param l The #link.
 * @param t The #task.
 *
 * @return The new #link pointer.
 */

161
struct link *engine_addlink(struct engine *e, struct link *l, struct task *t) {
162

163
164
165
166
167
  struct link *res = &e->links[atomic_inc(&e->nr_links)];
  res->next = l;
  res->t = t;
  return res;
}
168
169
170
171
172
173
174
175

/**
 * @brief Generate the ghost and kick tasks for a hierarchy of cells.
 *
 * @param e The #engine.
 * @param c The #cell.
 * @param super The super #cell.
 */
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

void engine_mkghosts(struct engine *e, struct cell *c, struct cell *super) {

  int k;
  struct scheduler *s = &e->sched;

  /* Am I the super-cell? */
  if (super == NULL && c->nr_tasks > 0) {

    /* Remember me. */
    super = c;

    /* Local tasks only... */
    if (c->nodeID == e->nodeID) {

      /* Generate the ghost task. */
      c->ghost = scheduler_addtask(s, task_type_ghost, task_subtype_none, 0, 0,
                                   c, NULL, 0);

      /* Add the kick2 task. */
      c->kick2 = scheduler_addtask(s, task_type_kick2, task_subtype_none, 0, 0,
                                   c, NULL, 0);

      /* Add the kick1 task if needed. */
      if (!(e->policy & engine_policy_fixdt))
        c->kick1 = scheduler_addtask(s, task_type_kick1, task_subtype_none, 0,
                                     0, c, NULL, 0);
203
    }
204
  }
205

206
207
208
209
210
211
212
213
  /* Set the super-cell. */
  c->super = super;

  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) engine_mkghosts(e, c->progeny[k], super);
}
214

215
216
217
218
219
220
221
/**
 * @brief Redistribute the particles amongst the nodes accorind
 *      to their cell's node IDs.
 *
 * @param e The #engine.
 */

222
void engine_redistribute(struct engine *e) {
223

224
#ifdef WITH_MPI
225

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
  int i, j, k, cid;
  int nr_nodes = e->nr_nodes, nodeID = e->nodeID;
  struct space *s = e->s;
  int my_cells = 0;
  int *cdim = s->cdim;
  struct cell *cells = s->cells;
  int nr_cells = s->nr_cells;

  /* Start by sorting the particles according to their nodes and
     getting the counts. */
  int *counts, *dest;
  struct part *parts = s->parts;
  double ih[3], dim[3];
  ih[0] = s->ih[0];
  ih[1] = s->ih[1];
  ih[2] = s->ih[2];
  dim[0] = s->dim[0];
  dim[1] = s->dim[1];
  dim[2] = s->dim[2];
  if ((counts = (int *)malloc(sizeof(int) *nr_nodes *nr_nodes)) == NULL ||
      (dest = (int *)malloc(sizeof(int) * s->nr_parts)) == NULL)
    error("Failed to allocate count and dest buffers.");
  bzero(counts, sizeof(int) * nr_nodes * nr_nodes);
  for (k = 0; k < s->nr_parts; k++) {
    for (j = 0; j < 3; j++) {
      if (parts[k].x[j] < 0.0)
        parts[k].x[j] += dim[j];
      else if (parts[k].x[j] >= dim[j])
        parts[k].x[j] -= dim[j];
    }
    cid = cell_getid(cdim, parts[k].x[0] * ih[0], parts[k].x[1] * ih[1],
                     parts[k].x[2] * ih[2]);
    dest[k] = cells[cid].nodeID;
    counts[nodeID * nr_nodes + dest[k]] += 1;
  }
  parts_sort(s->parts, s->xparts, dest, s->nr_parts, 0, nr_nodes - 1);

  /* Get all the counts from all the nodes. */
  if (MPI_Allreduce(MPI_IN_PLACE, counts, nr_nodes * nr_nodes, MPI_INT, MPI_SUM,
                    MPI_COMM_WORLD) != MPI_SUCCESS)
    error("Failed to allreduce particle transfer counts.");

  /* Get the new number of parts for this node, be generous in allocating. */
  int nr_parts = 0;
  for (k = 0; k < nr_nodes; k++) nr_parts += counts[k * nr_nodes + nodeID];
  struct part *parts_new;
  struct xpart *xparts_new, *xparts = s->xparts;
  if (posix_memalign((void **)&parts_new, part_align,
                     sizeof(struct part) * nr_parts * 1.2) != 0 ||
      posix_memalign((void **)&xparts_new, part_align,
                     sizeof(struct xpart) * nr_parts * 1.2) != 0)
    error("Failed to allocate new part data.");

  /* Emit the sends and recvs for the particle data. */
  MPI_Request *reqs;
  if ((reqs = (MPI_Request *)malloc(sizeof(MPI_Request) * 4 * nr_nodes)) ==
      NULL)
    error("Failed to allocate MPI request list.");
  for (k = 0; k < 4 * nr_nodes; k++) reqs[k] = MPI_REQUEST_NULL;
  for (i = 0, j = 0, k = 0; k < nr_nodes; k++) {
    if (k == nodeID && counts[nodeID * nr_nodes + k] > 0) {
      memcpy(&parts_new[j], &parts[i],
             sizeof(struct part) * counts[k * nr_nodes + nodeID]);
      memcpy(&xparts_new[j], &xparts[i],
             sizeof(struct xpart) * counts[k * nr_nodes + nodeID]);
      i += counts[nodeID * nr_nodes + k];
      j += counts[k * nr_nodes + nodeID];
    }
    if (k != nodeID && counts[nodeID * nr_nodes + k] > 0) {
      if (MPI_Isend(&parts[i],
                    sizeof(struct part) * counts[nodeID * nr_nodes + k],
                    MPI_BYTE, k, 2 * (nodeID * nr_nodes + k) + 0,
                    MPI_COMM_WORLD, &reqs[4 * k]) != MPI_SUCCESS)
        error("Failed to isend parts to node %i.", k);
      if (MPI_Isend(&xparts[i],
                    sizeof(struct xpart) * counts[nodeID * nr_nodes + k],
                    MPI_BYTE, k, 2 * (nodeID * nr_nodes + k) + 1,
                    MPI_COMM_WORLD, &reqs[4 * k + 1]) != MPI_SUCCESS)
        error("Failed to isend xparts to node %i.", k);
      i += counts[nodeID * nr_nodes + k];
    }
    if (k != nodeID && counts[k * nr_nodes + nodeID] > 0) {
      if (MPI_Irecv(&parts_new[j],
                    sizeof(struct part) * counts[k * nr_nodes + nodeID],
                    MPI_BYTE, k, 2 * (k * nr_nodes + nodeID) + 0,
                    MPI_COMM_WORLD, &reqs[4 * k + 2]) != MPI_SUCCESS)
        error("Failed to emit irecv of parts from node %i.", k);
      if (MPI_Irecv(&xparts_new[j],
                    sizeof(struct xpart) * counts[k * nr_nodes + nodeID],
                    MPI_BYTE, k, 2 * (k * nr_nodes + nodeID) + 1,
                    MPI_COMM_WORLD, &reqs[4 * k + 3]) != MPI_SUCCESS)
        error("Failed to emit irecv of parts from node %i.", k);
      j += counts[k * nr_nodes + nodeID];
    }
  }
321

322
323
324
325
326
327
328
329
330
  /* Wait for all the sends and recvs to tumble in. */
  MPI_Status stats[4 * nr_nodes];
  int res;
  if ((res = MPI_Waitall(4 * nr_nodes, reqs, stats)) != MPI_SUCCESS) {
    for (k = 0; k < 4 * nr_nodes; k++) {
      char buff[MPI_MAX_ERROR_STRING];
      int res;
      MPI_Error_string(stats[k].MPI_ERROR, buff, &res);
      message("request %i has error '%s'.", k, buff);
331
    }
332
333
    error("Failed during waitall for part data.");
  }
334

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
  /* Verify that all parts are in the right place. */
  /* for ( k = 0 ; k < nr_parts ; k++ ) {
      cid = cell_getid( cdim , parts_new[k].x[0]*ih[0] , parts_new[k].x[1]*ih[1]
     , parts_new[k].x[2]*ih[2] );
      if ( cells[ cid ].nodeID != nodeID )
          error( "Received particle (%i) that does not belong here (nodeID=%i)."
     , k , cells[ cid ].nodeID );
      } */

  /* Set the new part data, free the old. */
  free(parts);
  free(xparts);
  s->parts = parts_new;
  s->xparts = xparts_new;
  s->nr_parts = nr_parts;
  s->size_parts = 1.2 * nr_parts;

  /* Be verbose about what just happened. */
  for (k = 0; k < nr_cells; k++)
    if (cells[k].nodeID == nodeID) my_cells += 1;
  message("node %i now has %i parts in %i cells.", nodeID, nr_parts, my_cells);

  /* Clean up other stuff. */
  free(reqs);
  free(counts);
  free(dest);

#else
  error("SWIFT was not compiled with MPI and METIS support.");
#endif
}
366

367
/**
368
 * @brief Repartition the cells amongst the nodes.
369
370
371
 *
 * @param e The #engine.
 */
372
373

void engine_repartition(struct engine *e) {
374
375
376

#if defined(WITH_MPI) && defined(HAVE_METIS)

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
  int i, j, k, l, cid, cjd, ii, jj, kk, res;
  idx_t *inds, *nodeIDs;
  idx_t *weights_v, *weights_e;
  struct space *s = e->s;
  int nr_cells = s->nr_cells, my_cells = 0;
  struct cell *cells = s->cells;
  int ind[3], *cdim = s->cdim;
  struct task *t, *tasks = e->sched.tasks;
  struct cell *ci, *cj;
  int nr_nodes = e->nr_nodes, nodeID = e->nodeID;
  float wscale = 1e-3, vscale = 1e-3, wscale_buff;
  idx_t wtot = 0;
  const idx_t wmax = 1e9 / e->nr_nodes;

  /* Clear the repartition flag. */
  e->forcerepart = 0;

  /* Allocate the inds and weights. */
  if ((inds = (idx_t *)malloc(sizeof(idx_t) * 26 *nr_cells)) == NULL ||
      (weights_v = (idx_t *)malloc(sizeof(idx_t) *nr_cells)) == NULL ||
      (weights_e = (idx_t *)malloc(sizeof(idx_t) * 26 *nr_cells)) == NULL ||
      (nodeIDs = (idx_t *)malloc(sizeof(idx_t) * nr_cells)) == NULL)
    error("Failed to allocate inds and weights arrays.");

  /* Fill the inds array. */
  for (cid = 0; cid < nr_cells; cid++) {
    ind[0] = cells[cid].loc[0] / s->cells[cid].h[0] + 0.5;
    ind[1] = cells[cid].loc[1] / s->cells[cid].h[1] + 0.5;
    ind[2] = cells[cid].loc[2] / s->cells[cid].h[2] + 0.5;
    l = 0;
    for (i = -1; i <= 1; i++) {
      ii = ind[0] + i;
      if (ii < 0)
        ii += cdim[0];
      else if (ii >= cdim[0])
        ii -= cdim[0];
      for (j = -1; j <= 1; j++) {
        jj = ind[1] + j;
        if (jj < 0)
          jj += cdim[1];
        else if (jj >= cdim[1])
          jj -= cdim[1];
        for (k = -1; k <= 1; k++) {
          kk = ind[2] + k;
          if (kk < 0)
            kk += cdim[2];
          else if (kk >= cdim[2])
            kk -= cdim[2];
          if (i || j || k) {
            inds[cid * 26 + l] = cell_getid(cdim, ii, jj, kk);
            l += 1;
          }
429
        }
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
      }
    }
  }

  /* Init the weights arrays. */
  bzero(weights_e, sizeof(idx_t) * 26 * nr_cells);
  bzero(weights_v, sizeof(idx_t) * nr_cells);

  /* Loop over the tasks... */
  for (j = 0; j < e->sched.nr_tasks; j++) {

    /* Get a pointer to the kth task. */
    t = &tasks[j];

    /* Skip un-interesting tasks. */
    if (t->type != task_type_self && t->type != task_type_pair &&
        t->type != task_type_sub && t->type != task_type_ghost &&
        t->type != task_type_kick1 && t->type != task_type_kick2)
      continue;

    /* Get the task weight. */
    idx_t w = (t->toc - t->tic) * wscale;
    if (w < 0) error("Bad task weight (%i).", w);

    /* Do we need to re-scale? */
    wtot += w;
    while (wtot > wmax) {
      wscale /= 2;
      wtot /= 2;
      w /= 2;
      for (k = 0; k < 26 * nr_cells; k++) weights_e[k] *= 0.5;
      for (k = 0; k < nr_cells; k++) weights_v[k] *= 0.5;
462
    }
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

    /* Get the top-level cells involved. */
    for (ci = t->ci; ci->parent != NULL; ci = ci->parent)
      ;
    if (t->cj != NULL)
      for (cj = t->cj; cj->parent != NULL; cj = cj->parent)
        ;
    else
      cj = NULL;

    /* Get the cell IDs. */
    cid = ci - cells;

    /* Different weights for different tasks. */
    if (t->type == task_type_ghost || t->type == task_type_kick1 ||
        t->type == task_type_kick2) {

      /* Particle updates add only to vertex weight. */
      weights_v[cid] += w;

    }

    /* Self interaction? */
    else if ((t->type == task_type_self && ci->nodeID == nodeID) ||
             (t->type == task_type_sub && cj == NULL && ci->nodeID == nodeID)) {

      /* Self interactions add only to vertex weight. */
      weights_v[cid] += w;

492
    }
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

    /* Pair? */
    else if (t->type == task_type_pair ||
             (t->type == task_type_sub && cj != NULL)) {

      /* In-cell pair? */
      if (ci == cj) {

        /* Add weight to vertex for ci. */
        weights_v[cid] += w;

      }

      /* Distinct cells with local ci? */
      else if (ci->nodeID == nodeID) {

        /* Index of the jth cell. */
        cjd = cj - cells;

        /* Add half of weight to each cell. */
        if (ci->nodeID == nodeID) weights_v[cid] += 0.5 * w;
        if (cj->nodeID == nodeID) weights_v[cjd] += 0.5 * w;

        /* Add Weight to edge. */
        for (k = 26 * cid; inds[k] != cjd; k++)
          ;
        weights_e[k] += w;
        for (k = 26 * cjd; inds[k] != cid; k++)
          ;
        weights_e[k] += w;
      }
    }
  }

  /* Get the minimum scaling and re-scale if necessary. */
  if ((res = MPI_Allreduce(&wscale, &wscale_buff, 1, MPI_FLOAT, MPI_MIN,
                           MPI_COMM_WORLD)) != MPI_SUCCESS) {
    char buff[MPI_MAX_ERROR_STRING];
    MPI_Error_string(res, buff, &i);
    error("Failed to allreduce the weight scales (%s).", buff);
  }
  if (wscale_buff != wscale) {
    float scale = wscale_buff / wscale;
    for (k = 0; k < 26 * nr_cells; k++) weights_e[k] *= scale;
    for (k = 0; k < nr_cells; k++) weights_v[k] *= scale;
  }

/* Merge the weights arrays accross all nodes. */
#if IDXTYPEWIDTH == 32
  if ((res = MPI_Reduce((nodeID == 0) ? MPI_IN_PLACE : weights_v, weights_v,
                        nr_cells, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD)) !=
      MPI_SUCCESS) {
545
#else
546
547
548
  if ((res = MPI_Reduce((nodeID == 0) ? MPI_IN_PLACE : weights_v, weights_v,
                        nr_cells, MPI_LONG_LONG_INT, MPI_SUM, 0,
                        MPI_COMM_WORLD)) != MPI_SUCCESS) {
549
#endif
550
551
552
553
554
555
556
557
    char buff[MPI_MAX_ERROR_STRING];
    MPI_Error_string(res, buff, &i);
    error("Failed to allreduce vertex weights (%s).", buff);
  }
#if IDXTYPEWIDTH == 32
  if (MPI_Reduce((nodeID == 0) ? MPI_IN_PLACE : weights_e, weights_e,
                 26 * nr_cells, MPI_INT, MPI_SUM, 0,
                 MPI_COMM_WORLD) != MPI_SUCCESS)
558
#else
559
560
561
  if (MPI_Reduce((nodeID == 0) ? MPI_IN_PLACE : weights_e, weights_e,
                 26 * nr_cells, MPI_LONG_LONG_INT, MPI_SUM, 0,
                 MPI_COMM_WORLD) != MPI_SUCCESS)
562
#endif
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    error("Failed to allreduce edge weights.");

  /* As of here, only one node needs to compute the partition. */
  if (nodeID == 0) {

    /* Check that the edge weights are fully symmetric. */
    /* for ( cid = 0 ; cid < nr_cells ; cid++ )
        for ( k = 0 ; k < 26 ; k++ ) {
            cjd = inds[ cid*26 + k ];
            for ( j = 26*cjd ; inds[j] != cid ; j++ );
            if ( weights_e[ cid*26+k ] != weights_e[ j ] )
                error( "Unsymmetric edge weights detected (%i vs %i)." ,
       weights_e[ cid*26+k ] , weights_e[ j ] );
            } */
    /* int w_min = weights_e[0], w_max = weights_e[0], w_tot = weights_e[0];
    for ( k = 1 ; k < 26*nr_cells ; k++ ) {
        w_tot += weights_e[k];
        if ( weights_e[k] < w_min )
            w_min = weights_e[k];
        else if ( weights_e[k] > w_max )
            w_max = weights_e[k];
584
        }
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
    message( "edge weights in [ %i , %i ], tot=%i." , w_min , w_max , w_tot );
    w_min = weights_e[0], w_max = weights_e[0]; w_tot = weights_v[0];
    for ( k = 1 ; k < nr_cells ; k++ ) {
        w_tot += weights_v[k];
        if ( weights_v[k] < w_min )
            w_min = weights_v[k];
        else if ( weights_v[k] > w_max )
            w_max = weights_v[k];
        }
    message( "vertex weights in [ %i , %i ], tot=%i." , w_min , w_max , w_tot );
    */

    /* Make sure there are no zero weights. */
    for (k = 0; k < 26 * nr_cells; k++)
      if (weights_e[k] == 0) weights_e[k] = 1;
    for (k = 0; k < nr_cells; k++)
      if ((weights_v[k] *= vscale) == 0) weights_v[k] = 1;

    /* Allocate and fill the connection array. */
    idx_t *offsets;
    if ((offsets = (idx_t *)malloc(sizeof(idx_t) * (nr_cells + 1))) == NULL)
      error("Failed to allocate offsets buffer.");
    offsets[0] = 0;
    for (k = 0; k < nr_cells; k++) offsets[k + 1] = offsets[k] + 26;

    /* Set the METIS options. +1 to keep the GCC sanitizer happy. */
    idx_t options[METIS_NOPTIONS + 1];
    METIS_SetDefaultOptions(options);
    options[METIS_OPTION_OBJTYPE] = METIS_OBJTYPE_CUT;
    options[METIS_OPTION_NUMBERING] = 0;
    options[METIS_OPTION_CONTIG] = 1;
    options[METIS_OPTION_NCUTS] = 10;
    options[METIS_OPTION_NITER] = 20;
    // options[ METIS_OPTION_UFACTOR ] = 1;

    /* Set the initial partition, although this is probably ignored. */
    for (k = 0; k < nr_cells; k++) nodeIDs[k] = cells[k].nodeID;

    /* Call METIS. */
    idx_t one = 1, idx_nr_cells = nr_cells, idx_nr_nodes = nr_nodes;
    idx_t objval;
    if (METIS_PartGraphRecursive(&idx_nr_cells, &one, offsets, inds, weights_v,
                                 NULL, weights_e, &idx_nr_nodes, NULL, NULL,
                                 options, &objval, nodeIDs) != METIS_OK)
      error("Call to METIS_PartGraphKway failed.");

    /* Dump the 3d array of cell IDs. */
    /* printf( "engine_repartition: nodeIDs = reshape( [" );
    for ( i = 0 ; i < cdim[0]*cdim[1]*cdim[2] ; i++ )
        printf( "%i " , (int)nodeIDs[ i ] );
    printf("] ,%i,%i,%i);\n",cdim[0],cdim[1],cdim[2]); */
  }

/* Broadcast the result of the partition. */
#if IDXTYPEWIDTH == 32
  if (MPI_Bcast(nodeIDs, nr_cells, MPI_INT, 0, MPI_COMM_WORLD) != MPI_SUCCESS)
    error("Failed to bcast the node IDs.");
642
#else
643
644
645
  if (MPI_Bcast(nodeIDs, nr_cells, MPI_LONG_LONG_INT, 0, MPI_COMM_WORLD) !=
      MPI_SUCCESS)
    error("Failed to bcast the node IDs.");
646
#endif
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

  /* Set the cell nodeIDs and clear any non-local parts. */
  for (k = 0; k < nr_cells; k++) {
    cells[k].nodeID = nodeIDs[k];
    if (nodeIDs[k] == nodeID) my_cells += 1;
  }

  /* Clean up. */
  free(inds);
  free(weights_v);
  free(weights_e);
  free(nodeIDs);

  /* Now comes the tricky part: Exchange particles between all nodes.
     This is done in two steps, first allreducing a matrix of
     how many particles go from where to where, then re-allocating
     the parts array, and emiting the sends and receives.
     Finally, the space, tasks, and proxies need to be rebuilt. */

  /* Redistribute the particles between the nodes. */
  engine_redistribute(e);

  /* Make the proxies. */
  engine_makeproxies(e);

  /* Tell the engine it should re-build whenever possible */
  e->forcerebuild = 1;

675
#else
676
  error("SWIFT was not compiled with MPI and METIS support.");
677
#endif
678
}
679

680
681
682
683
684
685
686
687
688
/**
 * @brief Add up/down gravity tasks to a cell hierarchy.
 *
 * @param e The #engine.
 * @param c The #cell
 * @param up The upward gravity #task.
 * @param down The downward gravity #task.
 */

689
690
void engine_addtasks_grav(struct engine *e, struct cell *c, struct task *up,
                          struct task *down) {
691

692
693
694
695
696
697
698
699
700
701
  /* Link the tasks to this cell. */
  c->grav_up = up;
  c->grav_down = down;

  /* Recurse? */
  if (c->split)
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL)
        engine_addtasks_grav(e, c->progeny[k], up, down);
}
702

703
704
705
706
/**
 * @brief Add send tasks to a hierarchy of cells.
 *
 * @param e The #engine.
707
708
 * @param ci The sending #cell.
 * @param cj The receiving #cell
709
710
 */

711
void engine_addtasks_send(struct engine *e, struct cell *ci, struct cell *cj) {
712

713
714
715
  int k;
  struct link *l = NULL;
  struct scheduler *s = &e->sched;
716

717
718
719
720
721
  /* Check if any of the density tasks are for the target node. */
  for (l = ci->density; l != NULL; l = l->next)
    if (l->t->ci->nodeID == cj->nodeID ||
        (l->t->cj != NULL && l->t->cj->nodeID == cj->nodeID))
      break;
722

723
724
  /* If so, attach send tasks. */
  if (l != NULL) {
725

726
727
728
729
730
731
732
    /* Create the tasks. */
    struct task *t_xv =
        scheduler_addtask(&e->sched, task_type_send, task_subtype_none,
                          2 * ci->tag, 0, ci, cj, 0);
    struct task *t_rho =
        scheduler_addtask(&e->sched, task_type_send, task_subtype_none,
                          2 * ci->tag + 1, 0, ci, cj, 0);
733

734
735
    /* The send_rho task depends on the cell's ghost task. */
    scheduler_addunlock(s, ci->super->ghost, t_rho);
736

737
738
    /* The send_rho task should unlock the super-cell's kick2 task. */
    scheduler_addunlock(s, t_rho, ci->super->kick2);
739

740
741
    /* The send_xv task should unlock the super-cell's ghost task. */
    scheduler_addunlock(s, t_xv, ci->super->ghost);
742

743
  }
744

745
746
747
748
749
  /* Recurse? */
  else if (ci->split)
    for (k = 0; k < 8; k++)
      if (ci->progeny[k] != NULL) engine_addtasks_send(e, ci->progeny[k], cj);
}
750
751
752
753
754
755
756
757
758
759

/**
 * @brief Add recv tasks to a hierarchy of cells.
 *
 * @param e The #engine.
 * @param c The #cell.
 * @param t_xv The recv_xv #task, if it has already been created.
 * @param t_rho The recv_rho #task, if it has already been created.
 */

760
761
void engine_addtasks_recv(struct engine *e, struct cell *c, struct task *t_xv,
                          struct task *t_rho) {
762

763
764
  int k;
  struct scheduler *s = &e->sched;
765

766
767
  /* Do we need to construct a recv task? */
  if (t_xv == NULL && c->nr_density > 0) {
768

769
770
771
772
773
774
775
776
    /* Create the tasks. */
    t_xv = c->recv_xv =
        scheduler_addtask(&e->sched, task_type_recv, task_subtype_none,
                          2 * c->tag, 0, c, NULL, 0);
    t_rho = c->recv_rho =
        scheduler_addtask(&e->sched, task_type_recv, task_subtype_none,
                          2 * c->tag + 1, 0, c, NULL, 0);
  }
777

778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
  /* Add dependencies. */
  for (struct link *l = c->density; l != NULL; l = l->next) {
    scheduler_addunlock(s, t_xv, l->t);
    scheduler_addunlock(s, l->t, t_rho);
  }
  for (struct link *l = c->force; l != NULL; l = l->next)
    scheduler_addunlock(s, t_rho, l->t);
  if (c->sorts != NULL) scheduler_addunlock(s, t_xv, c->sorts);

  /* Recurse? */
  if (c->split)
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL)
        engine_addtasks_recv(e, c->progeny[k], t_xv, t_rho);
}
793
794
795
796
797
798

/**
 * @brief Exchange cell structures with other nodes.
 *
 * @param e The #engine.
 */
799
800

void engine_exchange_cells(struct engine *e) {
801
802
803

#ifdef WITH_MPI

804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
  int j, k, pid, count = 0;
  struct pcell *pcells;
  struct space *s = e->s;
  struct cell *cells = s->cells;
  int nr_cells = s->nr_cells;
  int nr_proxies = e->nr_proxies;
  int offset[nr_cells];
  MPI_Request reqs_in[engine_maxproxies];
  MPI_Request reqs_out[engine_maxproxies];
  MPI_Status status;
  struct part *parts = &s->parts[s->nr_parts];

  /* Run through the cells and get the size of the ones that will be sent off.
   */
  for (k = 0; k < nr_cells; k++) {
    offset[k] = count;
    if (cells[k].sendto)
      count += (cells[k].pcell_size = cell_getsize(&cells[k]));
  }
823

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
  /* Allocate the pcells. */
  if ((pcells = (struct pcell *)malloc(sizeof(struct pcell) * count)) == NULL)
    error("Failed to allocate pcell buffer.");

  /* Pack the cells. */
  cell_next_tag = 0;
  for (k = 0; k < nr_cells; k++)
    if (cells[k].sendto) {
      cell_pack(&cells[k], &pcells[offset[k]]);
      cells[k].pcell = &pcells[offset[k]];
    }

  /* Launch the proxies. */
  for (k = 0; k < nr_proxies; k++) {
    proxy_cells_exch1(&e->proxies[k]);
    reqs_in[k] = e->proxies[k].req_cells_count_in;
    reqs_out[k] = e->proxies[k].req_cells_count_out;
  }

  /* Wait for each count to come in and start the recv. */
  for (k = 0; k < nr_proxies; k++) {
    if (MPI_Waitany(nr_proxies, reqs_in, &pid, &status) != MPI_SUCCESS ||
        pid == MPI_UNDEFINED)
      error("MPI_Waitany failed.");
    // message( "request from proxy %i has arrived." , pid );
    proxy_cells_exch2(&e->proxies[pid]);
  }

  /* Wait for all the sends to have finnished too. */
  if (MPI_Waitall(nr_proxies, reqs_out, MPI_STATUSES_IGNORE) != MPI_SUCCESS)
    error("MPI_Waitall on sends failed.");

  /* Set the requests for the cells. */
  for (k = 0; k < nr_proxies; k++) {
    reqs_in[k] = e->proxies[k].req_cells_in;
    reqs_out[k] = e->proxies[k].req_cells_out;
  }

  /* Wait for each pcell array to come in from the proxies. */
  for (k = 0; k < nr_proxies; k++) {
    if (MPI_Waitany(nr_proxies, reqs_in, &pid, &status) != MPI_SUCCESS ||
        pid == MPI_UNDEFINED)
      error("MPI_Waitany failed.");
    // message( "cell data from proxy %i has arrived." , pid );
    for (count = 0, j = 0; j < e->proxies[pid].nr_cells_in; j++)
      count += cell_unpack(&e->proxies[pid].pcells_in[count],
                           e->proxies[pid].cells_in[j], e->s);
  }

  /* Wait for all the sends to have finnished too. */
  if (MPI_Waitall(nr_proxies, reqs_out, MPI_STATUSES_IGNORE) != MPI_SUCCESS)
    error("MPI_Waitall on sends failed.");

  /* Count the number of particles we need to import and re-allocate
     the buffer if needed. */
  for (count = 0, k = 0; k < nr_proxies; k++)
    for (j = 0; j < e->proxies[k].nr_cells_in; j++)
      count += e->proxies[k].cells_in[j]->count;
  if (count > s->size_parts_foreign) {
    if (s->parts_foreign != NULL) free(s->parts_foreign);
    s->size_parts_foreign = 1.1 * count;
    if (posix_memalign((void **)&s->parts_foreign, part_align,
                       sizeof(struct part) * s->size_parts_foreign) != 0)
      error("Failed to allocate foreign part data.");
  }
889

890
891
892
893
894
895
  /* Unpack the cells and link to the particle data. */
  parts = s->parts_foreign;
  for (k = 0; k < nr_proxies; k++) {
    for (count = 0, j = 0; j < e->proxies[k].nr_cells_in; j++) {
      count += cell_link(e->proxies[k].cells_in[j], parts);
      parts = &parts[e->proxies[k].cells_in[j]->count];
896
    }
897
898
899
900
901
902
903
904
905
  }
  s->nr_parts_foreign = parts - s->parts_foreign;

  /* Is the parts buffer large enough? */
  if (s->nr_parts_foreign > s->size_parts_foreign)
    error("Foreign parts buffer too small.");

  /* Free the pcell buffer. */
  free(pcells);
906

907
908
909
910
#else
  error("SWIFT was not compiled with MPI support.");
#endif
}
911
912
913
914
915

/**
 * @brief Exchange straying parts with other nodes.
 *
 * @param e The #engine.
916
917
 * @param offset The index in the parts array as of which the foreign parts
 *reside.
918
919
920
921
922
 * @param ind The ID of the foreign #cell.
 * @param N The number of stray parts.
 *
 * @return The number of arrived parts copied to parts and xparts.
 */
923
924

int engine_exchange_strays(struct engine *e, int offset, int *ind, int N) {
925
926
927

#ifdef WITH_MPI

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
  int k, pid, count = 0, nr_in = 0, nr_out = 0;
  MPI_Request reqs_in[2 * engine_maxproxies];
  MPI_Request reqs_out[2 * engine_maxproxies];
  MPI_Status status;
  struct proxy *p;
  struct space *s = e->s;

  /* Re-set the proxies. */
  for (k = 0; k < e->nr_proxies; k++) e->proxies[k].nr_parts_out = 0;

  /* Put the parts into the corresponding proxies. */
  for (k = 0; k < N; k++) {
    int node_id = e->s->cells[ind[k]].nodeID;
    if (node_id < 0 || node_id >= e->nr_nodes)
      error("Bad node ID %i.", node_id);
    pid = e->proxy_ind[node_id];
    if (pid < 0)
      error(
          "Do not have a proxy for the requested nodeID %i for part with "
          "id=%llu, x=[%e,%e,%e].",
          node_id, s->parts[offset + k].id, s->parts[offset + k].x[0],
          s->parts[offset + k].x[1], s->parts[offset + k].x[2]);
    proxy_parts_load(&e->proxies[pid], &s->parts[offset + k],
                     &s->xparts[offset + k], 1);
  }

  /* Launch the proxies. */
  for (k = 0; k < e->nr_proxies; k++) {
    proxy_parts_exch1(&e->proxies[k]);
    reqs_in[k] = e->proxies[k].req_parts_count_in;
    reqs_out[k] = e->proxies[k].req_parts_count_out;
  }

  /* Wait for each count to come in and start the recv. */
  for (k = 0; k < e->nr_proxies; k++) {
    if (MPI_Waitany(e->nr_proxies, reqs_in, &pid, &status) != MPI_SUCCESS ||
        pid == MPI_UNDEFINED)
      error("MPI_Waitany failed.");
    // message( "request from proxy %i has arrived." , pid );
    proxy_parts_exch2(&e->proxies[pid]);
  }
969

970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
  /* Wait for all the sends to have finnished too. */
  if (MPI_Waitall(e->nr_proxies, reqs_out, MPI_STATUSES_IGNORE) != MPI_SUCCESS)
    error("MPI_Waitall on sends failed.");

  /* Count the total number of incomming particles and make sure we have
     enough space to accommodate them. */
  int count_in = 0;
  for (k = 0; k < e->nr_proxies; k++) count_in += e->proxies[k].nr_parts_in;
  message("sent out %i particles, got %i back.", N, count_in);
  if (offset + count_in > s->size_parts) {
    s->size_parts = (offset + count_in) * 1.05;
    struct part *parts_new;
    struct xpart *xparts_new;
    if (posix_memalign((void **)&parts_new, part_align,
                       sizeof(struct part) * s->size_parts) != 0 ||
        posix_memalign((void **)&xparts_new, part_align,
                       sizeof(struct xpart) * s->size_parts) != 0)
      error("Failed to allocate new part data.");
    memcpy(parts_new, s->parts, sizeof(struct part) * offset);
    memcpy(xparts_new, s->xparts, sizeof(struct xpart) * offset);
    free(s->parts);
    free(s->xparts);
    s->parts = parts_new;
    s->xparts = xparts_new;
  }

  /* Collect the requests for the particle data from the proxies. */
  for (k = 0; k < e->nr_proxies; k++) {
    if (e->proxies[k].nr_parts_in > 0) {
      reqs_in[2 * k] = e->proxies[k].req_parts_in;
      reqs_in[2 * k + 1] = e->proxies[k].req_xparts_in;