space.c 36.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program.  If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
19
20
21
22
23
24
25
26

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
27
#include <string.h>
28
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
29

30
31
/* MPI headers. */
#ifdef WITH_MPI
32
#include <mpi.h>
33
34
#endif

35
36
37
/* This object's header. */
#include "space.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
38
/* Local headers. */
39
#include "atomic.h"
40
#include "engine.h"
41
#include "error.h"
42
43
#include "kernel.h"
#include "lock.h"
44
#include "minmax.h"
45
#include "runner.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
46

47
48
49
/* Shared sort structure. */
struct parallel_sort space_sort_struct;

Pedro Gonnet's avatar
Pedro Gonnet committed
50
51
/* Split size. */
int space_splitsize = space_splitsize_default;
52
int space_subsize = space_subsize_default;
53
int space_maxsize = space_maxsize_default;
Pedro Gonnet's avatar
Pedro Gonnet committed
54
55
56

/* Map shift vector to sortlist. */
const int sortlistID[27] = {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    /* ( -1 , -1 , -1 ) */ 0,
    /* ( -1 , -1 ,  0 ) */ 1,
    /* ( -1 , -1 ,  1 ) */ 2,
    /* ( -1 ,  0 , -1 ) */ 3,
    /* ( -1 ,  0 ,  0 ) */ 4,
    /* ( -1 ,  0 ,  1 ) */ 5,
    /* ( -1 ,  1 , -1 ) */ 6,
    /* ( -1 ,  1 ,  0 ) */ 7,
    /* ( -1 ,  1 ,  1 ) */ 8,
    /* (  0 , -1 , -1 ) */ 9,
    /* (  0 , -1 ,  0 ) */ 10,
    /* (  0 , -1 ,  1 ) */ 11,
    /* (  0 ,  0 , -1 ) */ 12,
    /* (  0 ,  0 ,  0 ) */ 0,
    /* (  0 ,  0 ,  1 ) */ 12,
    /* (  0 ,  1 , -1 ) */ 11,
    /* (  0 ,  1 ,  0 ) */ 10,
    /* (  0 ,  1 ,  1 ) */ 9,
    /* (  1 , -1 , -1 ) */ 8,
    /* (  1 , -1 ,  0 ) */ 7,
    /* (  1 , -1 ,  1 ) */ 6,
    /* (  1 ,  0 , -1 ) */ 5,
    /* (  1 ,  0 ,  0 ) */ 4,
    /* (  1 ,  0 ,  1 ) */ 3,
    /* (  1 ,  1 , -1 ) */ 2,
    /* (  1 ,  1 ,  0 ) */ 1,
    /* (  1 ,  1 ,  1 ) */ 0};

85
86
87
88
89
90
91
92
93
94
95
96
/**
 * @brief Get the shift-id of the given pair of cells, swapping them
 *      if need be.
 *
 * @param s The space
 * @param ci Pointer to first #cell.
 * @param cj Pointer second #cell.
 * @param shift Vector from ci to cj.
 *
 * @return The shift ID and set shift, may or may not swap ci and cj.
 */

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
int space_getsid(struct space *s, struct cell **ci, struct cell **cj,
                 double *shift) {

  int k, sid = 0, periodic = s->periodic;
  struct cell *temp;
  double dx[3];

  /* Get the relative distance between the pairs, wrapping. */
  for (k = 0; k < 3; k++) {
    dx[k] = (*cj)->loc[k] - (*ci)->loc[k];
    if (periodic && dx[k] < -s->dim[k] / 2)
      shift[k] = s->dim[k];
    else if (periodic && dx[k] > s->dim[k] / 2)
      shift[k] = -s->dim[k];
    else
      shift[k] = 0.0;
    dx[k] += shift[k];
  }

  /* Get the sorting index. */
  for (k = 0; k < 3; k++)
    sid = 3 * sid + ((dx[k] < 0.0) ? 0 : ((dx[k] > 0.0) ? 2 : 1));

  /* Switch the cells around? */
  if (runner_flip[sid]) {
    temp = *ci;
    *ci = *cj;
    *cj = temp;
    for (k = 0; k < 3; k++) shift[k] = -shift[k];
  }
  sid = sortlistID[sid];

  /* Return the sort ID. */
  return sid;
}
132

133
/**
134
 * @brief Recursively dismantle a cell tree.
135
136
 *
 */
137
138
139
140
141
142
143
144
145
146
147
148
149
150

void space_rebuild_recycle(struct space *s, struct cell *c) {

  int k;

  if (c->split)
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) {
        space_rebuild_recycle(s, c->progeny[k]);
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      }
}

151
/**
152
 * @brief Re-build the cell grid.
153
 *
154
155
 * @param s The #space.
 * @param cell_max Maximum cell edge length.
156
 * @param verbose Print messages to stdout or not.
157
 */
158

159
void space_regrid(struct space *s, double cell_max, int verbose) {
160
161

  float h_max = s->cell_min / kernel_gamma / space_stretch, dmin;
Pedro Gonnet's avatar
Pedro Gonnet committed
162
163
  int i, j, k, cdim[3];
  const size_t nr_parts = s->nr_parts;
164
  struct cell *restrict c;
165
  ticks tic = getticks();
166
167
168
169
170
171

  /* Run through the parts and get the current h_max. */
  // tic = getticks();
  if (s->cells != NULL) {
    for (k = 0; k < s->nr_cells; k++) {
      if (s->cells[k].h_max > h_max) h_max = s->cells[k].h_max;
172
    }
173
174
175
176
177
178
179
180
181
182
183
184
185
186
  } else {
    for (k = 0; k < nr_parts; k++) {
      if (s->parts[k].h > h_max) h_max = s->parts[k].h;
    }
    s->h_max = h_max;
  }

/* If we are running in parallel, make sure everybody agrees on
   how large the largest cell should be. */
#ifdef WITH_MPI
  {
    float buff;
    if (MPI_Allreduce(&h_max, &buff, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD) !=
        MPI_SUCCESS)
187
      error("Failed to aggregate the rebuild flag across nodes.");
188
189
190
    h_max = buff;
  }
#endif
191
  if (verbose) message("h_max is %.3e (cell_max=%.3e).", h_max, cell_max);
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

  /* Get the new putative cell dimensions. */
  for (k = 0; k < 3; k++)
    cdim[k] =
        floor(s->dim[k] / fmax(h_max * kernel_gamma * space_stretch, cell_max));

  /* Check if we have enough cells for periodicity. */
  if (s->periodic && (cdim[0] < 3 || cdim[1] < 3 || cdim[2] < 3))
    error(
        "Must have at least 3 cells in each spatial dimension when periodicity "
        "is switched on.");

/* In MPI-Land, we're not allowed to change the top-level cell size. */
#ifdef WITH_MPI
  if (cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2])
    error("Root-level change of cell size not allowed.");
#endif

  /* Do we need to re-build the upper-level cells? */
  // tic = getticks();
  if (s->cells == NULL || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] ||
      cdim[2] < s->cdim[2]) {

    /* Free the old cells, if they were allocated. */
    if (s->cells != NULL) {
      for (k = 0; k < s->nr_cells; k++) {
        space_rebuild_recycle(s, &s->cells[k]);
        if (s->cells[k].sort != NULL) free(s->cells[k].sort);
      }
      free(s->cells);
      s->maxdepth = 0;
    }

    /* Set the new cell dimensions only if smaller. */
    for (k = 0; k < 3; k++) {
      s->cdim[k] = cdim[k];
      s->h[k] = s->dim[k] / cdim[k];
      s->ih[k] = 1.0 / s->h[k];
    }
    dmin = fminf(s->h[0], fminf(s->h[1], s->h[2]));

    /* Allocate the highest level of cells. */
    s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2];
    if (posix_memalign((void *)&s->cells, 64,
                       s->nr_cells * sizeof(struct cell)) != 0)
      error("Failed to allocate cells.");
    bzero(s->cells, s->nr_cells * sizeof(struct cell));
    for (k = 0; k < s->nr_cells; k++)
      if (lock_init(&s->cells[k].lock) != 0) error("Failed to init spinlock.");

    /* Set the cell location and sizes. */
    for (i = 0; i < cdim[0]; i++)
      for (j = 0; j < cdim[1]; j++)
        for (k = 0; k < cdim[2]; k++) {
          c = &s->cells[cell_getid(cdim, i, j, k)];
          c->loc[0] = i * s->h[0];
          c->loc[1] = j * s->h[1];
          c->loc[2] = k * s->h[2];
          c->h[0] = s->h[0];
          c->h[1] = s->h[1];
          c->h[2] = s->h[2];
          c->dmin = dmin;
          c->depth = 0;
          c->count = 0;
          c->gcount = 0;
          c->super = c;
          lock_init(&c->lock);
Pedro Gonnet's avatar
Pedro Gonnet committed
259
        }
260
261

    /* Be verbose about the change. */
262
263
264
    if (verbose)
      message("set cell dimensions to [ %i %i %i ].", cdim[0], cdim[1],
              cdim[2]);
265
266
267
    fflush(stdout);

  } /* re-build upper-level cells? */
268
269
  // message( "rebuilding upper-level cells took %.3f %s." ,
  // clocks_from_ticks(double)(getticks() - tic), clocks_getunit());
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

  /* Otherwise, just clean up the cells. */
  else {

    /* Free the old cells, if they were allocated. */
    for (k = 0; k < s->nr_cells; k++) {
      space_rebuild_recycle(s, &s->cells[k]);
      s->cells[k].sorts = NULL;
      s->cells[k].nr_tasks = 0;
      s->cells[k].nr_density = 0;
      s->cells[k].nr_force = 0;
      s->cells[k].density = NULL;
      s->cells[k].force = NULL;
      s->cells[k].dx_max = 0.0f;
      s->cells[k].sorted = 0;
      s->cells[k].count = 0;
      s->cells[k].gcount = 0;
Matthieu Schaller's avatar
Matthieu Schaller committed
287
      s->cells[k].init = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
288
      s->cells[k].ghost = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
289
290
      s->cells[k].drift = NULL;
      s->cells[k].kick = NULL;
291
      s->cells[k].super = &s->cells[k];
292
    }
293
294
    s->maxdepth = 0;
  }
295
296
297
298

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
299
}
300
301
302
303
304
305

/**
 * @brief Re-build the cells as well as the tasks.
 *
 * @param s The #space in which to update the cells.
 * @param cell_max Maximal cell size.
306
 * @param verbose Print messages to stdout or not
307
308
 *
 */
309

310
void space_rebuild(struct space *s, double cell_max, int verbose) {
311

312
  int j, k, cdim[3], nr_parts = s->nr_parts, nr_gparts = s->nr_gparts;
313
  struct cell *restrict c, *restrict cells;
314
  struct part *restrict p;
315
  size_t *ind;
316
  double ih[3], dim[3];
317
  ticks tic = getticks();
318
319
320
321
322

  /* Be verbose about this. */
  // message( "re)building space..." ); fflush(stdout);

  /* Re-grid if necessary, or just re-set the cell data. */
323
  space_regrid(s, cell_max, verbose);
324
325
326
327
  cells = s->cells;

  /* Run through the particles and get their cell index. */
  // tic = getticks();
328
329
  const size_t ind_size = s->size_parts;
  if ((ind = (size_t *)malloc(sizeof(size_t) * ind_size)) == NULL)
330
331
332
333
334
335
336
337
338
339
    error("Failed to allocate temporary particle indices.");
  ih[0] = s->ih[0];
  ih[1] = s->ih[1];
  ih[2] = s->ih[2];
  dim[0] = s->dim[0];
  dim[1] = s->dim[1];
  dim[2] = s->dim[2];
  cdim[0] = s->cdim[0];
  cdim[1] = s->cdim[1];
  cdim[2] = s->cdim[2];
340
  for (k = 0; k < nr_parts; k++) {
341
    p = &s->parts[k];
342
343
344
345
346
    for (j = 0; j < 3; j++)
      if (p->x[j] < 0.0)
        p->x[j] += dim[j];
      else if (p->x[j] >= dim[j])
        p->x[j] -= dim[j];
347
    ind[k] =
348
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
349
    cells[ind[k]].count++;
350
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
351
352
// message( "getting particle indices took %.3f %s." ,
// clocks_from_ticks(getticks() - tic), clocks_getunit()):
353
354
355
356

#ifdef WITH_MPI
  /* Move non-local parts to the end of the list. */
  int nodeID = s->e->nodeID;
357
358
359
360
  for (k = 0; k < nr_parts; k++)
    if (cells[ind[k]].nodeID != nodeID) {
      cells[ind[k]].count -= 1;
      nr_parts -= 1;
361
362
363
364
365
366
      struct part tp = s->parts[k];
      s->parts[k] = s->parts[nr_parts];
      s->parts[nr_parts] = tp;
      struct xpart txp = s->xparts[k];
      s->xparts[k] = s->xparts[nr_parts];
      s->xparts[nr_parts] = txp;
367
368
369
      int t = ind[k];
      ind[k] = ind[nr_parts];
      ind[nr_parts] = t;
370
371
    }

372
373
374
  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
  s->nr_parts =
375
376
      nr_parts + engine_exchange_strays(s->e, nr_parts, &ind[nr_parts],
                                        s->nr_parts - nr_parts);
377
378

  /* Re-allocate the index array if needed.. */
379
  if (s->nr_parts > ind_size) {
380
381
    size_t *ind_new;
    if ((ind_new = (size_t *)malloc(sizeof(size_t) * s->nr_parts)) == NULL)
382
      error("Failed to allocate temporary particle indices.");
383
    memcpy(ind_new, ind, sizeof(size_t) * nr_parts);
384
385
    free(ind);
    ind = ind_new;
386
387
388
  }

  /* Assign each particle to its cell. */
389
  for (k = nr_parts; k < s->nr_parts; k++) {
390
    p = &s->parts[k];
391
    ind[k] =
392
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
393
394
395
396
    cells[ind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
397
  }
398
  nr_parts = s->nr_parts;
399
400
401
#endif

  /* Sort the parts according to their cells. */
402
  space_parts_sort(s, ind, nr_parts, 0, s->nr_cells - 1, verbose);
403
404

  /* Re-link the gparts. */
405
  for (k = 0; k < nr_parts; k++)
406
    if (s->parts[k].gpart != NULL) s->parts[k].gpart->part = &s->parts[k];
407

408
  /* Verify space_sort_struct. */
409
  /* for ( k = 1 ; k < nr_parts ; k++ ) {
410
      if ( ind[k-1] > ind[k] ) {
411
412
          error( "Sort failed!" );
          }
413
      else if ( ind[k] != cell_getid( cdim , parts[k].x[0]*ih[0] ,
414
415
416
417
418
     parts[k].x[1]*ih[1] , parts[k].x[2]*ih[2] ) )
          error( "Incorrect indices!" );
      } */

  /* We no longer need the indices as of here. */
419
  free(ind);
420
421
422

  /* Run through the gravity particles and get their cell index. */
  // tic = getticks();
423
  if ((ind = (size_t *)malloc(sizeof(size_t) * s->size_gparts)) == NULL)
424
425
    error("Failed to allocate temporary particle indices.");
  for (k = 0; k < nr_gparts; k++) {
426
    struct gpart *gp = &s->gparts[k];
427
428
429
430
431
    for (j = 0; j < 3; j++)
      if (gp->x[j] < 0.0)
        gp->x[j] += dim[j];
      else if (gp->x[j] >= dim[j])
        gp->x[j] -= dim[j];
432
    ind[k] =
433
        cell_getid(cdim, gp->x[0] * ih[0], gp->x[1] * ih[1], gp->x[2] * ih[2]);
434
    cells[ind[k]].gcount++;
435
  }
436
  // message( "getting particle indices took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
437
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
438
439
440
441

  /* TODO: Here we should exchange the gparts as well! */

  /* Sort the parts according to their cells. */
442
  space_gparts_sort(s->gparts, ind, nr_gparts, 0, s->nr_cells - 1);
443
444
445

  /* Re-link the parts. */
  for (k = 0; k < nr_gparts; k++)
446
    if (s->gparts[k].id > 0) s->gparts[k].part->gpart = &s->gparts[k];
447
448

  /* We no longer need the indices as of here. */
449
  free(ind);
450
451
452

  /* Hook the cells up to the parts. */
  // tic = getticks();
453
454
455
  struct part *finger = s->parts;
  struct xpart *xfinger = s->xparts;
  struct gpart *gfinger = s->gparts;
456
457
458
459
460
461
462
463
464
  for (k = 0; k < s->nr_cells; k++) {
    c = &cells[k];
    c->parts = finger;
    c->xparts = xfinger;
    c->gparts = gfinger;
    finger = &finger[c->count];
    xfinger = &xfinger[c->count];
    gfinger = &gfinger[c->gcount];
  }
465
  // message( "hooking up cells took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
466
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
467
468
469

  /* At this point, we have the upper-level cells, old or new. Now make
     sure that the parts in each cell are ok. */
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
  space_split(s, cells, verbose);

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
}

/**
 * @brief Split particles between cells of a hierarchy
 *
 * @param s The #space.
 * @param cells The cell hierarchy
 * @param verbose Are we talkative ?
 */
void space_split(struct space *s, struct cell *cells, int verbose) {

  ticks tic = getticks();

  for (int k = 0; k < s->nr_cells; k++)
489
490
    scheduler_addtask(&s->e->sched, task_type_split_cell, task_subtype_none, k,
                      0, &cells[k], NULL, 0);
491
  engine_launch(s->e, s->e->nr_threads, 1 << task_type_split_cell, 0);
492

493
494
495
  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
496
}
497

498
/**
499
500
 * @brief Sort the particles and condensed particles according to the given
 *indices.
501
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
502
 * @param s The #space.
503
504
505
506
 * @param ind The indices with respect to which the parts are sorted.
 * @param N The number of parts
 * @param min Lowest index.
 * @param max highest index.
507
 * @param verbose Are we talkative ?
508
 */
509

510
void space_parts_sort(struct space *s, size_t *ind, size_t N, int min, int max,
511
512
513
514
515
                      int verbose) {

  ticks tic = getticks();

  /*Populate the global parallel_sort structure with the input data */
516
517
518
  space_sort_struct.parts = s->parts;
  space_sort_struct.xparts = s->xparts;
  space_sort_struct.ind = ind;
519
  space_sort_struct.stack_size = 2 * (max - min + 1) + 10 + s->e->nr_threads;
520
521
522
523
524
525
  if ((space_sort_struct.stack = malloc(sizeof(struct qstack) *
                                        space_sort_struct.stack_size)) == NULL)
    error("Failed to allocate sorting stack.");
  for (int i = 0; i < space_sort_struct.stack_size; i++)
    space_sort_struct.stack[i].ready = 0;

526
  /* Add the first interval. */
527
528
529
530
531
532
533
534
535
  space_sort_struct.stack[0].i = 0;
  space_sort_struct.stack[0].j = N - 1;
  space_sort_struct.stack[0].min = min;
  space_sort_struct.stack[0].max = max;
  space_sort_struct.stack[0].ready = 1;
  space_sort_struct.first = 0;
  space_sort_struct.last = 1;
  space_sort_struct.waiting = 1;

536
  /* Launch the sorting tasks. */
537
  engine_launch(s->e, s->e->nr_threads, (1 << task_type_psort), 0);
538
539

  /* Verify space_sort_struct. */
540
  /* for (int i = 1; i < N; i++)
541
    if (ind[i - 1] > ind[i])
542
543
      error("Sorting failed (ind[%i]=%i,ind[%i]=%i), min=%i, max=%i.", i - 1,
  ind[i - 1], i,
544
545
            ind[i], min, max);
  message("Sorting succeeded."); */
546

547
  /* Clean up. */
548
  free(space_sort_struct.stack);
549
550
551
552

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
553
}
554

555
void space_do_parts_sort() {
556

557
  /* Pointers to the sorting data. */
558
  size_t *ind = space_sort_struct.ind;
559
560
  struct part *parts = space_sort_struct.parts;
  struct xpart *xparts = space_sort_struct.xparts;
561

562
  /* Main loop. */
563
  while (space_sort_struct.waiting) {
564

565
    /* Grab an interval off the queue. */
566
567
    int qid =
        atomic_inc(&space_sort_struct.first) % space_sort_struct.stack_size;
568

569
    /* Wait for the entry to be ready, or for the sorting do be done. */
570
571
    while (!space_sort_struct.stack[qid].ready)
      if (!space_sort_struct.waiting) return;
572

573
    /* Get the stack entry. */
574
575
    ptrdiff_t i = space_sort_struct.stack[qid].i;
    ptrdiff_t j = space_sort_struct.stack[qid].j;
576
577
    int min = space_sort_struct.stack[qid].min;
    int max = space_sort_struct.stack[qid].max;
578
    space_sort_struct.stack[qid].ready = 0;
579

580
581
    /* Loop over sub-intervals. */
    while (1) {
582

583
      /* Bring beer. */
584
      const int pivot = (min + max) / 2;
585
586
      /* message("Working on interval [%i,%i] with min=%i, max=%i, pivot=%i.",
              i, j, min, max, pivot); */
587
588

      /* One pass of QuickSort's partitioning. */
589
590
      ptrdiff_t ii = i;
      ptrdiff_t jj = j;
591
592
593
594
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
595
          size_t temp_i = ind[ii];
596
597
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
598
          struct part temp_p = parts[ii];
599
600
          parts[ii] = parts[jj];
          parts[jj] = temp_p;
601
          struct xpart temp_xp = xparts[ii];
602
603
604
605
          xparts[ii] = xparts[jj];
          xparts[jj] = temp_xp;
        }
      }
606

607
      /* Verify space_sort_struct. */
608
609
610
611
612
613
614
615
616
617
618
619
      /* for (int k = i; k <= jj; k++)
        if (ind[k] > pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (<=pivot).");
        }
      for (int k = jj + 1; k <= j; k++)
        if (ind[k] <= pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (>pivot).");
        } */
620
621
622
623
624
625

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
626
627
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
628
629
          while (space_sort_struct.stack[qid].ready)
            ;
630
631
632
633
634
635
636
          space_sort_struct.stack[qid].i = i;
          space_sort_struct.stack[qid].j = jj;
          space_sort_struct.stack[qid].min = min;
          space_sort_struct.stack[qid].max = pivot;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
637
          space_sort_struct.stack[qid].ready = 1;
638
        }
639

640
641
642
643
644
645
646
647
648
649
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;

      } else {

        /* Recurse on the right? */
650
        if (pivot + 1 < max) {
651
652
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
653
654
          while (space_sort_struct.stack[qid].ready)
            ;
655
656
657
658
659
660
661
          space_sort_struct.stack[qid].i = jj + 1;
          space_sort_struct.stack[qid].j = j;
          space_sort_struct.stack[qid].min = pivot + 1;
          space_sort_struct.stack[qid].max = max;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
662
          space_sort_struct.stack[qid].ready = 1;
663
        }
664

665
666
667
668
669
670
671
        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }
672

673
674
    } /* loop over sub-intervals. */

675
    atomic_dec(&space_sort_struct.waiting);
676
677

  } /* main loop. */
678
679
}

680
void space_gparts_sort(struct gpart *gparts, size_t *ind, size_t N, int min,
681
                       int max) {
682
683

  struct qstack {
684
685
    volatile size_t i, j;
    volatile int min, max;
686
687
688
689
690
691
692
    volatile int ready;
  };
  struct qstack *qstack;
  int qstack_size = 2 * (max - min) + 10;
  volatile unsigned int first, last, waiting;

  int pivot;
693
  ptrdiff_t i, ii, j, jj, temp_i;
694
  int qid;
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
  struct gpart temp_p;

  /* for ( int k = 0 ; k < N ; k++ )
      if ( ind[k] > max || ind[k] < min )
          error( "ind[%i]=%i is not in [%i,%i]." , k , ind[k] , min , max ); */

  /* Allocate the stack. */
  if ((qstack = malloc(sizeof(struct qstack) * qstack_size)) == NULL)
    error("Failed to allocate qstack.");

  /* Init the interval stack. */
  qstack[0].i = 0;
  qstack[0].j = N - 1;
  qstack[0].min = min;
  qstack[0].max = max;
  qstack[0].ready = 1;
  for (i = 1; i < qstack_size; i++) qstack[i].ready = 0;
  first = 0;
  last = 1;
  waiting = 1;

716
717
  /* Main loop. */
  while (waiting > 0) {
718

719
720
    /* Grab an interval off the queue. */
    qid = (first++) % qstack_size;
721

722
723
724
725
726
727
728
729
730
    /* Get the stack entry. */
    i = qstack[qid].i;
    j = qstack[qid].j;
    min = qstack[qid].min;
    max = qstack[qid].max;
    qstack[qid].ready = 0;

    /* Loop over sub-intervals. */
    while (1) {
731

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
      /* Bring beer. */
      pivot = (min + max) / 2;

      /* One pass of QuickSort's partitioning. */
      ii = i;
      jj = j;
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
          temp_i = ind[ii];
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
          temp_p = gparts[ii];
          gparts[ii] = gparts[jj];
          gparts[jj] = temp_p;
        }
      }
750

751
      /* Verify space_sort_struct. */
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
      /* for ( int k = i ; k <= jj ; k++ )
         if ( ind[k] > pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (<=pivot)." );
         }
         for ( int k = jj+1 ; k <= j ; k++ )
         if ( ind[k] <= pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (>pivot)." );
         } */

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          qid = (last++) % qstack_size;
          qstack[qid].i = i;
          qstack[qid].j = jj;
          qstack[qid].min = min;
          qstack[qid].max = pivot;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }
778

779
780
781
782
783
784
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;
785

786
787
788
      } else {

        /* Recurse on the right? */
789
        if (pivot + 1 < max) {
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
          qid = (last++) % qstack_size;
          qstack[qid].i = jj + 1;
          qstack[qid].j = j;
          qstack[qid].min = pivot + 1;
          qstack[qid].max = max;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }

    } /* loop over sub-intervals. */

    waiting--;

  } /* main loop. */
812

813
  /* Verify space_sort_struct. */
814
815
816
817
818
819
820
821
  /* for ( i = 1 ; i < N ; i++ )
      if ( ind[i-1] > ind[i] )
          error( "Sorting failed (ind[%i]=%i,ind[%i]=%i)." , i-1 , ind[i-1] , i
     , ind[i] ); */

  /* Clean up. */
  free(qstack);
}
822

Pedro Gonnet's avatar
Pedro Gonnet committed
823
/**
824
 * @brief Mapping function to free the sorted indices buffers.
Pedro Gonnet's avatar
Pedro Gonnet committed
825
826
 */

827
void space_map_clearsort(struct cell *c, void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
828

829
830
831
832
833
  if (c->sort != NULL) {
    free(c->sort);
    c->sort = NULL;
  }
}
Pedro Gonnet's avatar
Pedro Gonnet committed
834

835
836
837
/**
 * @brief Map a function to all particles in a cell recursively.
 *
838
 * @param c The #cell we are working in.
839
840
841
842
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */

Pedro Gonnet's avatar
Pedro Gonnet committed
843
844
845
846
static void rec_map_parts(struct cell *c,
                          void (*fun)(struct part *p, struct cell *c,
                                      void *data),
                          void *data) {
847
848
849
850
851
852

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
853

854
855
856
857
858
859
  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts(c->progeny[k], fun, data);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
860
/**
861
 * @brief Map a function to all particles in a space.
Pedro Gonnet's avatar
Pedro Gonnet committed
862
863
 *
 * @param s The #space we are working in.
864
865
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
866
867
 */

868
869
870
void space_map_parts(struct space *s,
                     void (*fun)(struct part *p, struct cell *c, void *data),
                     void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
871

872
873
  int cid = 0;

874
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
875
876
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts(&s->cells[cid], fun, data);
877
}
878

879
880
881
882
883
884
885
886
/**
 * @brief Map a function to all particles in a cell recursively.
 *
 * @param c The #cell we are working in.
 * @param fun Function pointer to apply on the cells.
 */

static void rec_map_parts_xparts(struct cell *c,
887
888
                                 void (*fun)(struct part *p, struct xpart *xp,
                                             struct cell *c)) {
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], &c->xparts[k], c);

  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts_xparts(c->progeny[k], fun);
}

/**
 * @brief Map a function to all particles (#part and #xpart) in a space.
 *
 * @param s The #space we are working in.
 * @param fun Function pointer to apply on the particles in the cells.
 */

void space_map_parts_xparts(struct space *s,
910
911
                            void (*fun)(struct part *p, struct xpart *xp,
                                        struct cell *c)) {
912
913
914
915
916
917
918
919

  int cid = 0;

  /* Call the recursive function on all higher-level cells. */
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts_xparts(&s->cells[cid], fun);
}

920
921
922
/**
 * @brief Map a function to all particles in a cell recursively.
 *
923
 * @param c The #cell we are working in.
924
925
926
927
 * @param full Map to all cells, including cells with sub-cells.
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */
928

Pedro Gonnet's avatar
Pedro Gonnet committed
929
930
931
static void rec_map_cells_post(struct cell *c, int full,
                               void (*fun)(struct cell *c, void *data),
                               void *data) {
932

933
934
935
936
937
  int k;

  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
938
939
940
      if (c->progeny[k] != NULL)
        rec_map_cells_post(c->progeny[k], full, fun, data);

941
942
  /* No progeny? */
  if (full || !c->split) fun(c, data);
943
}
Pedro Gonnet's avatar
Pedro Gonnet committed
944
945

/**
946
 * @brief Map a function to all particles in a aspace.
Pedro Gonnet's avatar
Pedro Gonnet committed
947
948
 *
 * @param s The #space we are working in.
949
 * @param full Map to all cells, including cells with sub-cells.
950
951
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
952
 */
953

954
void space_map_cells_post(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
955
                          void (*fun)(struct cell *c, void *data), void *data) {
956

957
  int cid = 0;
958

959
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
960
961
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_post(&s->cells[cid], full, fun, data);
962
}
963

Pedro Gonnet's avatar
Pedro Gonnet committed
964
965
966
static void rec_map_cells_pre(struct cell *c, int full,
                              void (*fun)(struct cell *c, void *data),
                              void *data) {
967

968
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
969

970
971
  /* No progeny? */
  if (full || !c->split) fun(c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
972

973
974
975
  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
976
977
      if (c->progeny[k] != NULL)
        rec_map_cells_pre(c->progeny[k], full, fun, data);
978
}
Pedro Gonnet's avatar
Pedro Gonnet committed
979

980
981
982
983
984
985
986
987
/**
 * @brief Calls function fun on the cells in the space s
 *
 * @param s The #space
 * @param full If true calls the function on all cells and not just on leaves
 * @param fun The function to call.
 * @param data Additional data passed to fun() when called
 */
988
void space_map_cells_pre(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
989
                         void (*fun)(struct cell *c, void *data), void *data) {
990

991
  int cid = 0;
992
993

  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
994
995
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_pre(&s->cells[cid], full, fun, data);
996
}
Pedro Gonnet's avatar
Pedro Gonnet committed
997
998
999
1000
1001
1002
1003

/**
 * @brief Split cells that contain too many particles.
 *
 * @param s The #space we are working in.
 * @param c The #cell under consideration.
 */
1004

1005
void space_do_split(struct space *s, struct cell *c) {
1006
1007

  int k, count = c->count, gcount = c->gcount, maxdepth = 0;
1008
1009
  float h, h_max = 0.0f;
  int ti_end_min = max_nr_timesteps, ti_end_max = 0, ti_end;
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
  struct cell *temp;
  struct part *p, *parts = c->parts;
  struct xpart *xp, *xparts = c->xparts;

  /* Check the depth. */
  if (c->depth > s->maxdepth) s->maxdepth = c->depth;

  /* Split or let it be? */
  if (count > space_splitsize || gcount > space_splitsize) {

    /* No longer just a leaf. */
    c->split = 1;

    /* Create the cell's progeny. */
    for (k = 0; k < 8; k++) {
      temp = space_getcell(s);
      temp->count = 0;
      temp->gcount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->h[0] = c->h[0] / 2;
      temp->h[1] = c->h[1] / 2;
      temp->h[2] = c->h[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->h[0];
      if (k & 2) temp->loc[1] += temp->h[1];
      if (k & 1) temp->loc[2] += temp->h[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->h_max = 0.0;
      temp->dx_max = 0.0;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
    }

    /* Split the cell data. */
    cell_split(c);

    /* Remove any progeny with zero parts. */
    for (k = 0; k < 8; k++)
      if (c->progeny[k]->count == 0 && c->progeny[k]->gcount == 0) {
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      } else {
1056
        space_do_split(s, c->progeny[k]);
1057
        h_max = fmaxf(h_max, c->progeny[k]->h_max);
1058
1059
        ti_end_min = min(ti_end_min, c->progeny[k]->ti_end_min);
        ti_end_max = max(ti_end_max, c->progeny[k]->ti_end_max);
1060
1061
1062
1063
1064
1065
        if (c->progeny[k]->maxdepth > maxdepth)
          maxdepth = c->progeny[k]->maxdepth;
      }

    /* Set the values for this cell. */
    c->h_max = h_max;
1066
1067
    c->ti_end_min = ti_end_min;
    c->ti_end_max = ti_end_max;
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
    c->maxdepth = maxdepth;

  }

  /* Otherwise, collect the data for this cell. */
  else {

    /* Clear the progeny. */
    bzero(c->progeny, sizeof(struct cell *) * 8);
    c->split = 0;
    c->maxdepth = c->depth;

    /* Get dt_min/dt_max. */

    for (k = 0; k < count; k++) {
      p = &parts[k];
      xp = &xparts[k];
      xp->x_old[0] = p->x[0];
      xp->x_old[1] = p->x[1];
      xp->x_old[2] = p->x[2];
      h = p->h;
1089
      ti_end = p->ti_end;
1090
      if (h > h_max) h_max = h;
1091
1092
      if (ti_end < ti_end_min) ti_end_min = ti_end;
      if (ti_end > ti_end_max) ti_end_max = ti_end;
1093
    }
1094
    c->h_max = h_max;
1095
1096
    c->ti_end_min = ti_end_min;
    c->ti_end_max = ti_end_max;
1097
  }
1098

1099
  /* Set ownership according to the start of the parts array. */
1100
1101
  c->owner = ((c->parts - s->parts) % s->nr_parts) * s->nr_queues / s->nr_parts;
}
1102

Pedro Gonnet's avatar
Pedro Gonnet committed
1103
1104
1105
1106
1107
1108
1109
/**
 * @brief Return a used cell to the cell buffer.
 *
 * @param s The #space.
 * @param c The #cell.
 */

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
void space_recycle(struct space *s, struct cell *c) {

  /* Lock the space. */
  lock_lock(&s->lock);

  /* Clear the cell. */
  if (lock_destroy(&c->lock) != 0) error("Failed to destroy spinlock.");

  /* Clear this cell's sort arrays. */
  if (c->sort != NULL) free(c->sort);

  /* Clear the cell data. */
  bzero(c, sizeof(struct cell));

  /* Hook this cell into the buffer. */
  c->next = s->cells_new;
  s->cells_new = c;
  s->tot_cells -= 1;

  /* Unlock the space. */
  lock_unlock_blind(&s->lock);
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1132
1133
1134
1135
1136
1137
1138

/**
 * @brief Get a new empty cell.
 *
 * @param s The #space.
 */

1139
struct cell *space_getcell(struct space *s) {
Pedro Gonnet's avatar
Pedro Gonnet committed
1140

1141
1142
  struct cell *c;
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
1143

1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
  /* Lock the space. */
  lock_lock(&s->lock);

  /* Is the buffer empty? */
  if (s->cells_new == NULL) {
    if (posix_memalign((void *)&s->cells_new, 64,
                       space_cellallocchunk * sizeof(struct cell)) != 0)
      error("Failed to allocate more cells.");
    bzero(s->cells_new, space_cellallocchunk * sizeof(struct cell));
    for (k = 0; k < space_cellallocchunk - 1; k++)
      s->cells_new[k].next = &s->cells_new[k + 1];
    s->cells_new[space_cellallocchunk - 1].next = NULL;
  }

  /* Pick off the next cell. */
  c = s->cells_new;
  s->cells_new = c->next;
  s->tot_cells += 1;
Pedro Gonnet's avatar
Pedro Gonnet committed
1162

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
  /* Unlock the space. */
  lock_unlock_blind(&s->lock);

  /* Init some things in the cell. */
  bzero(c, sizeof(struct cell));
  c->nodeID = -1;
  if (lock_init(&c->lock) != 0 || lock_init(&c->glock) != 0)
    error("Failed to initialize cell spinlocks.");

  return c;
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1174
1175
1176
1177

/**
 * @brief Split the space into cells given the array of particles.
 *