cell.c 16.4 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 * Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <float.h>
#include <limits.h>
#include <math.h>

32
33
34
35
36
/* MPI headers. */
#ifdef WITH_MPI
    #include <mpi.h>
#endif

37
38
39
40
41
/* Switch off timers. */
#ifdef TIMER
    #undef TIMER
#endif

42
/* Local headers. */
43
#include "const.h"
44
45
46
#include "cycle.h"
#include "lock.h"
#include "task.h"
47
#include "timers.h"
48
#include "part.h"
49
#include "space.h"
50
#include "multipole.h"
51
#include "cell.h"
52
53
#include "error.h"
#include "inline.h"
54
55


56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
 
int cell_getsize ( struct cell *c ) {

    int k, count = 1;
    
    /* Sum up the progeny if split. */
    if ( c->split )
        for ( k = 0 ; k < 8 ; k++ )
            if ( c->progeny[k] != NULL )
                count += cell_getsize( c->progeny[k] );
                
    /* Return the final count. */
    return count;

    }


/** 
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
 
88
int cell_unpack ( struct pcell *pc , struct cell *c , struct space *s ) {
89
90
91
92
93
94

    int k, count = 1;
    struct cell *temp;
    
    /* Unpack the current pcell. */
    c->h_max = pc->h_max;
95
96
    c->dt_min = FLT_MAX; // pc->dt_min;
    c->dt_max = FLT_MAX; // pc->dt_max;
97
    c->count = pc->count;
Pedro Gonnet's avatar
Pedro Gonnet committed
98
    c->tag = pc->tag;
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    
    /* Fill the progeny recursively, depth-first. */
    for ( k = 0 ; k < 8 ; k++ )
        if ( pc->progeny[k] >= 0 ) {
            temp = space_getcell( s );
            temp->count = 0;
            temp->loc[0] = c->loc[0];
            temp->loc[1] = c->loc[1];
            temp->loc[2] = c->loc[2];
            temp->h[0] = c->h[0]/2;
            temp->h[1] = c->h[1]/2;
            temp->h[2] = c->h[2]/2;
            temp->dmin = c->dmin/2;
            if ( k & 4 )
                temp->loc[0] += temp->h[0];
            if ( k & 2 )
                temp->loc[1] += temp->h[1];
            if ( k & 1 )
                temp->loc[2] += temp->h[2];
            temp->depth = c->depth + 1;
            temp->split = 0;
            temp->dx_max = 0.0;
            temp->nodeID = c->nodeID;
            temp->parent = c;
            c->progeny[k] = temp;
            c->split = 1;
125
            count += cell_unpack( &pc[ pc->progeny[k] ] , temp , s );
126
127
128
129
130
131
132
133
            }
            
    /* Return the total number of unpacked cells. */
    return count;

    }


134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/**
 * @brief Link the cells recursively to the given part array.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */

int cell_link ( struct cell *c , struct part *parts ) {

    int k, ind = 0;
    
    c->parts = parts;
    
    /* Fill the progeny recursively, depth-first. */
    if ( c->split )
        for ( k = 0 ; k < 8 ; k++ )
            if ( c->progeny[k] != NULL )
                ind += cell_link( c->progeny[k] , &parts[ind] );
            
    /* Return the total number of unpacked cells. */
    return c->count;

    }


161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
 
int cell_pack ( struct cell *c , struct pcell *pc ) {

    int k, count = 1;
    
    /* Start by packing the data of the current cell. */
    pc->h_max = c->h_max;
    pc->dt_min = c->dt_min;
    pc->dt_max = c->dt_max;
    pc->count = c->count;
180
    c->tag = pc->tag = ( ((long long int)c) / sizeof(struct cell) ) % (1 << 30);
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    
    /* Fill in the progeny, depth-first recursion. */
    for ( k = 0 ; k < 8 ; k++ )
        if ( c->progeny[k] != NULL ) {
            pc->progeny[k] = count;
            count += cell_pack( c->progeny[k] , &pc[count] );
            }
        else
            pc->progeny[k] = -1;
            
    /* Return the number of packed cells used. */
    return count;

    }


197
198
199
200
201
202
203
204
205
206
207
208
/**
 * @brief Lock a cell and hold its parents.
 *
 * @param c The #cell.
 */
 
int cell_locktree( struct cell *c ) {

    struct cell *finger, *finger2;
    TIMER_TIC

    /* First of all, try to lock this cell. */
209
    if ( c->hold || lock_trylock( &c->lock ) != 0 ) {
210
        TIMER_TOC(timer_locktree);
211
212
213
214
215
216
217
218
219
220
221
        return 1;
        }
        
    /* Did somebody hold this cell in the meantime? */
    if ( c->hold ) {
        
        /* Unlock this cell. */
        if ( lock_unlock( &c->lock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
222
        TIMER_TOC(timer_locktree);
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        return 1;
    
        }
        
    /* Climb up the tree and lock/hold/unlock. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent ) {
    
        /* Lock this cell. */
        if ( lock_trylock( &finger->lock ) != 0 )
            break;
            
        /* Increment the hold. */
        __sync_fetch_and_add( &finger->hold , 1 );
        
        /* Unlock the cell. */
        if ( lock_unlock( &finger->lock ) != 0 )
            error( "Failed to unlock cell." );
    
        }
        
    /* If we reached the top of the tree, we're done. */
    if ( finger == NULL ) {
245
        TIMER_TOC(timer_locktree);
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
        return 0;
        }
        
    /* Otherwise, we hit a snag. */
    else {
    
        /* Undo the holds up to finger. */
        for ( finger2 = c->parent ; finger2 != finger ; finger2 = finger2->parent )
            __sync_fetch_and_sub( &finger2->hold , 1 );
            
        /* Unlock this cell. */
        if ( lock_unlock( &c->lock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
261
        TIMER_TOC(timer_locktree);
262
263
264
265
266
267
268
        return 1;
    
        }

    }
    
    
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
int cell_glocktree( struct cell *c ) {

    struct cell *finger, *finger2;
    TIMER_TIC

    /* First of all, try to lock this cell. */
    if ( c->ghold || lock_trylock( &c->glock ) != 0 ) {
        TIMER_TOC(timer_locktree);
        return 1;
        }
        
    /* Did somebody hold this cell in the meantime? */
    if ( c->ghold ) {
        
        /* Unlock this cell. */
        if ( lock_unlock( &c->glock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
        TIMER_TOC(timer_locktree);
        return 1;
    
        }
        
    /* Climb up the tree and lock/hold/unlock. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent ) {
    
        /* Lock this cell. */
        if ( lock_trylock( &finger->glock ) != 0 )
            break;
            
        /* Increment the hold. */
        __sync_fetch_and_add( &finger->ghold , 1 );
        
        /* Unlock the cell. */
        if ( lock_unlock( &finger->glock ) != 0 )
            error( "Failed to unlock cell." );
    
        }
        
    /* If we reached the top of the tree, we're done. */
    if ( finger == NULL ) {
        TIMER_TOC(timer_locktree);
        return 0;
        }
        
    /* Otherwise, we hit a snag. */
    else {
    
        /* Undo the holds up to finger. */
        for ( finger2 = c->parent ; finger2 != finger ; finger2 = finger2->parent )
            __sync_fetch_and_sub( &finger2->ghold , 1 );
            
        /* Unlock this cell. */
        if ( lock_unlock( &c->glock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
        TIMER_TOC(timer_locktree);
        return 1;
    
        }

    }
    
    
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/**
 * @brief Unock a cell's parents.
 *
 * @param c The #cell.
 */
 
void cell_unlocktree( struct cell *c ) {

    struct cell *finger;
    TIMER_TIC

    /* First of all, try to unlock this cell. */
    if ( lock_unlock( &c->lock ) != 0 )
        error( "Failed to unlock cell." );
        
    /* Climb up the tree and unhold the parents. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent )
        __sync_fetch_and_sub( &finger->hold , 1 );
        
354
    TIMER_TOC(timer_locktree);
355
356
357
358
        
    }
    
    
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
void cell_gunlocktree( struct cell *c ) {

    struct cell *finger;
    TIMER_TIC

    /* First of all, try to unlock this cell. */
    if ( lock_unlock( &c->glock ) != 0 )
        error( "Failed to unlock cell." );
        
    /* Climb up the tree and unhold the parents. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent )
        __sync_fetch_and_sub( &finger->ghold , 1 );
        
    TIMER_TOC(timer_locktree);
        
    }
    
    
377
378
379
380
381
382
383
384
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
 */
 
void cell_split ( struct cell *c  ) {

385
    int i, j, k, count = c->count, gcount = c->gcount;
386
    struct part temp, *parts = c->parts;
387
    struct xpart xtemp, *xparts = c->xparts;
388
    struct gpart gtemp, *gparts = c->gparts;
389
390
391
    int left[8], right[8];
    double pivot[3];
    
392
    /* Init the pivots. */
393
394
395
396
    for ( k = 0 ; k < 3 ; k++ )
        pivot[k] = c->loc[k] + c->h[k]/2;
    
    /* Split along the x-axis. */
397
    i = 0; j = count - 1;
398
    while ( i <= j ) {
399
        while ( i <= count-1 && parts[i].x[0] <= pivot[0] )
400
401
402
403
404
            i += 1;
        while ( j >= 0 && parts[j].x[0] > pivot[0] )
            j -= 1;
        if ( i < j ) {
            temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
405
            xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
406
407
            }
        }
Pedro Gonnet's avatar
Pedro Gonnet committed
408
    /* for ( k = 0 ; k <= j ; k++ )
409
410
        if ( parts[k].x[0] > pivot[0] )
            error( "cell_split: sorting failed." );
411
    for ( k = i ; k < count ; k++ )
412
        if ( parts[k].x[0] < pivot[0] )
Pedro Gonnet's avatar
Pedro Gonnet committed
413
            error( "cell_split: sorting failed." ); */
414
    left[1] = i; right[1] = count - 1;
415
416
417
418
419
420
421
422
423
424
425
426
    left[0] = 0; right[0] = j;
    
    /* Split along the y axis, twice. */
    for ( k = 1 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && parts[i].x[1] <= pivot[1] )
                i += 1;
            while ( j >= left[k] && parts[j].x[1] > pivot[1] )
                j -= 1;
            if ( i < j ) {
                temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
427
                xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
428
429
                }
            }
Pedro Gonnet's avatar
Pedro Gonnet committed
430
        /* for ( int kk = left[k] ; kk <= j ; kk++ )
431
            if ( parts[kk].x[1] > pivot[1] ) {
432
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
433
434
                error( "sorting failed (left)." );
                }
Pedro Gonnet's avatar
Pedro Gonnet committed
435
        for ( int kk = i ; kk <= right[k] ; kk++ )
436
            if ( parts[kk].x[1] < pivot[1] )
Pedro Gonnet's avatar
Pedro Gonnet committed
437
                error( "sorting failed (right)." ); */
438
439
440
441
442
443
444
445
446
447
448
449
450
451
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }

    /* Split along the z axis, four times. */
    for ( k = 3 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && parts[i].x[2] <= pivot[2] )
                i += 1;
            while ( j >= left[k] && parts[j].x[2] > pivot[2] )
                j -= 1;
            if ( i < j ) {
                temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
452
                xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
453
454
                }
            }
Pedro Gonnet's avatar
Pedro Gonnet committed
455
        /* for ( int kk = left[k] ; kk <= j ; kk++ )
456
            if ( parts[kk].x[2] > pivot[2] ) {
457
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
458
459
                error( "sorting failed (left)." );
                }
Pedro Gonnet's avatar
Pedro Gonnet committed
460
        for ( int kk = i ; kk <= right[k] ; kk++ )
461
            if ( parts[kk].x[2] < pivot[2] ) {
462
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
463
                error( "sorting failed (right)." );
Pedro Gonnet's avatar
Pedro Gonnet committed
464
                } */
465
466
467
468
469
470
471
472
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }
        
    /* Store the counts and offsets. */
    for ( k = 0 ; k < 8 ; k++ ) {
        c->progeny[k]->count = right[k] - left[k] + 1;
        c->progeny[k]->parts = &c->parts[ left[k] ];
473
        c->progeny[k]->xparts = &c->xparts[ left[k] ];
474
475
        }
        
476
477
478
479
    /* Re-link the gparts. */
    for ( k = 0 ; k < count ; k++ )
        parts[k].gpart->part = &parts[k];
        
Pedro Gonnet's avatar
Pedro Gonnet committed
480
481
482
483
484
485
    /* Verify that _all_ the parts have been assigned to a cell. */
    /* for ( k = 1 ; k < 8 ; k++ )
        if ( &c->progeny[k-1]->parts[ c->progeny[k-1]->count ] != c->progeny[k]->parts )
            error( "Particle sorting failed (internal consistency)." );
    if ( c->progeny[0]->parts != c->parts )
        error( "Particle sorting failed (left edge)." );
486
    if ( &c->progeny[7]->parts[ c->progeny[7]->count ] != &c->parts[ count ] )
Pedro Gonnet's avatar
Pedro Gonnet committed
487
488
        error( "Particle sorting failed (right edge)." ); */
        
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    /* Verify a few sub-cells. */
    /* for ( k = 0 ; k < c->progeny[0]->count ; k++ )
        if ( c->progeny[0]->parts[k].x[0] > pivot[0] ||
             c->progeny[0]->parts[k].x[1] > pivot[1] ||
             c->progeny[0]->parts[k].x[2] > pivot[2] )
            error( "Sorting failed (progeny=0)." );
    for ( k = 0 ; k < c->progeny[1]->count ; k++ )
        if ( c->progeny[1]->parts[k].x[0] > pivot[0] ||
             c->progeny[1]->parts[k].x[1] > pivot[1] ||
             c->progeny[1]->parts[k].x[2] <= pivot[2] )
            error( "Sorting failed (progeny=1)." );
    for ( k = 0 ; k < c->progeny[2]->count ; k++ )
        if ( c->progeny[2]->parts[k].x[0] > pivot[0] ||
             c->progeny[2]->parts[k].x[1] <= pivot[1] ||
             c->progeny[2]->parts[k].x[2] > pivot[2] )
            error( "Sorting failed (progeny=2)." ); */

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    /* Now do the same song and dance for the gparts. */

    /* Split along the x-axis. */
    i = 0; j = gcount - 1;
    while ( i <= j ) {
        while ( i <= gcount-1 && gparts[i].x[0] <= pivot[0] )
            i += 1;
        while ( j >= 0 && gparts[j].x[0] > pivot[0] )
            j -= 1;
        if ( i < j ) {
            gtemp = gparts[i]; gparts[i] = gparts[j]; gparts[j] = gtemp;
            }
        }
    left[1] = i; right[1] = gcount - 1;
    left[0] = 0; right[0] = j;
    
    /* Split along the y axis, twice. */
    for ( k = 1 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && gparts[i].x[1] <= pivot[1] )
                i += 1;
            while ( j >= left[k] && gparts[j].x[1] > pivot[1] )
                j -= 1;
            if ( i < j ) {
                gtemp = gparts[i]; gparts[i] = gparts[j]; gparts[j] = gtemp;
                }
            }
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }

    /* Split along the z axis, four times. */
    for ( k = 3 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && gparts[i].x[2] <= pivot[2] )
                i += 1;
            while ( j >= left[k] && gparts[j].x[2] > pivot[2] )
                j -= 1;
            if ( i < j ) {
                gtemp = gparts[i]; gparts[i] = gparts[j]; gparts[j] = gtemp;
                }
            }
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }
        
    /* Store the counts and offsets. */
    for ( k = 0 ; k < 8 ; k++ ) {
        c->progeny[k]->gcount = right[k] - left[k] + 1;
        c->progeny[k]->gparts = &c->gparts[ left[k] ];
        }
        
    /* Re-link the parts. */
    for ( k = 0 ; k < gcount ; k++ )
        if ( gparts[k].id > 0 )
            gparts[k].part->gpart = &gparts[k];
        
565
566
567
    }