hydro.h 12.1 KB
Newer Older
1
2
/*******************************************************************************
 * This file is part of SWIFT.
3
 * Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/
19
20
21
22
23
24
25
26
27
28
29
30
31
#ifndef SWIFT_MINIMAL_HYDRO_H
#define SWIFT_MINIMAL_HYDRO_H

/**
 * @file Minimal/hydro.h
 * @brief Minimal conservative implementation of SPH (Non-neighbour loop
 * equations)
 *
 * The thermal variable is the internal energy (u). Simple constant
 * viscosity term without switches is implemented. No thermal conduction
 * term is implemented.
 *
 * This corresponds to equations (43), (44), (45), (101), (103)  and (104) with
32
33
 * \f$\beta=3\f$ and \f$\alpha_u=0\f$ of Price, D., Journal of Computational
 * Physics, 2012, Volume 231, Issue 3, pp. 759-794.
34
 */
35

36
#include "adiabatic_index.h"
37
#include "approx_math.h"
38
#include "dimension.h"
39
#include "equation_of_state.h"
40
41
#include "hydro_properties.h"
#include "kernel_hydro.h"
42
43
44
45
46
47
48
49
50
51
52
53
54
55

/**
 * @brief Returns the internal energy of a particle
 *
 * For implementations where the main thermodynamic variable
 * is not internal energy, this function computes the internal
 * energy from the thermodynamic variable.
 *
 * @param p The particle of interest
 * @param dt Time since the last kick
 */
__attribute__((always_inline)) INLINE static float hydro_get_internal_energy(
    const struct part *restrict p, float dt) {

56
  return p->u + p->u_dt * dt;
57
58
59
60
61
62
63
64
65
66
67
}

/**
 * @brief Returns the pressure of a particle
 *
 * @param p The particle of interest
 * @param dt Time since the last kick
 */
__attribute__((always_inline)) INLINE static float hydro_get_pressure(
    const struct part *restrict p, float dt) {

68
69
70
  const float u = p->u + p->u_dt * dt;

  return gas_pressure_from_internal_energy(p->rho, u);
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
}

/**
 * @brief Returns the entropy of a particle
 *
 * For implementations where the main thermodynamic variable
 * is not entropy, this function computes the entropy from
 * the thermodynamic variable.
 *
 * @param p The particle of interest
 * @param dt Time since the last kick
 */
__attribute__((always_inline)) INLINE static float hydro_get_entropy(
    const struct part *restrict p, float dt) {

86
87
88
  const float u = p->u + p->u_dt * dt;

  return gas_entropy_from_internal_energy(p->rho, u);
89
90
91
92
93
94
95
96
97
98
99
}

/**
 * @brief Returns the sound speed of a particle
 *
 * @param p The particle of interest
 * @param dt Time since the last kick
 */
__attribute__((always_inline)) INLINE static float hydro_get_soundspeed(
    const struct part *restrict p, float dt) {

100
101
102
  const float u = p->u + p->u_dt * dt;

  return gas_soundspeed_from_internal_energy(p->rho, u);
103
}
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
/**
 * @brief Returns the density of a particle
 *
 * @param p The particle of interest
 */
__attribute__((always_inline)) INLINE static float hydro_get_density(
    const struct part *restrict p) {

  return p->rho;
}

/**
 * @brief Returns the mass of a particle
 *
 * @param p The particle of interest
 */
__attribute__((always_inline)) INLINE static float hydro_get_mass(
    const struct part *restrict p) {

  return p->mass;
}

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/**
 * @brief Modifies the thermal state of a particle to the imposed internal
 * energy
 *
 * This overrides the current state of the particle but does *not* change its
 * time-derivatives
 *
 * @param p The particle
 * @param u The new internal energy
 */
__attribute__((always_inline)) INLINE static void hydro_set_internal_energy(
    struct part *restrict p, float u) {

  p->u = u;
}

/**
 * @brief Modifies the thermal state of a particle to the imposed entropy
 *
 * This overrides the current state of the particle but does *not* change its
 * time-derivatives
 *
 * @param p The particle
 * @param S The new entropy
 */
__attribute__((always_inline)) INLINE static void hydro_set_entropy(
    struct part *restrict p, float S) {

  p->u = gas_internal_energy_from_entropy(p->rho, S);
}

158
159
160
/**
 * @brief Computes the hydro time-step of a given particle
 *
161
162
163
 * This function returns the time-step of a particle given its hydro-dynamical
 * state. A typical time-step calculation would be the use of the CFL condition.
 *
164
165
 * @param p Pointer to the particle data
 * @param xp Pointer to the extended particle data
166
 * @param hydro_properties The SPH parameters
167
168
169
 *
 */
__attribute__((always_inline)) INLINE static float hydro_compute_timestep(
170
171
    const struct part *restrict p, const struct xpart *restrict xp,
    const struct hydro_props *restrict hydro_properties) {
172
173

  const float CFL_condition = hydro_properties->CFL_condition;
174
175

  /* CFL condition */
176
177
  const float dt_cfl =
      2.f * kernel_gamma * CFL_condition * p->h / p->force.v_sig;
178

179
  return dt_cfl;
180
181
}

182
183
184
185
/**
 * @brief Initialises the particles for the first time
 *
 * This function is called only once just after the ICs have been
186
187
 * read in to do some conversions or assignments between the particle
 * and extended particle fields.
188
189
190
191
 *
 * @param p The particle to act upon
 * @param xp The extended particle data to act upon
 */
192
__attribute__((always_inline)) INLINE static void hydro_first_init_part(
193
    struct part *restrict p, struct xpart *restrict xp) {
194

195
196
197
198
199
  p->ti_begin = 0;
  p->ti_end = 0;
  xp->v_full[0] = p->v[0];
  xp->v_full[1] = p->v[1];
  xp->v_full[2] = p->v[2];
200
201
}

202
203
204
205
/**
 * @brief Prepares a particle for the density calculation.
 *
 * Zeroes all the relevant arrays in preparation for the sums taking place in
206
207
 * the various density loop over neighbours. Typically, all fields of the
 * density sub-structure of a particle get zeroed in here.
208
209
210
 *
 * @param p The particle to act upon
 */
211
__attribute__((always_inline)) INLINE static void hydro_init_part(
212
    struct part *restrict p) {
213

214
215
216
217
218
219
220
221
222
223
224
  p->density.wcount = 0.f;
  p->density.wcount_dh = 0.f;
  p->rho = 0.f;
  p->rho_dh = 0.f;
}

/**
 * @brief Finishes the density calculation.
 *
 * Multiplies the density and number of neighbours by the appropiate constants
 * and add the self-contribution term.
225
226
227
 * Additional quantities such as velocity gradients will also get the final
 *terms
 * added to them here.
228
229
230
231
 *
 * @param p The particle to act upon
 * @param time The current time
 */
232
__attribute__((always_inline)) INLINE static void hydro_end_density(
233
    struct part *restrict p, float time) {
234
235
236

  /* Some smoothing length multiples. */
  const float h = p->h;
237
238
239
  const float h_inv = 1.0f / h;                       /* 1/h */
  const float h_inv_dim = pow_dimension(h_inv);       /* 1/h^d */
  const float h_inv_dim_plus_one = h_inv_dim * h_inv; /* 1/h^(d+1) */
240

241
242
  /* Final operation on the density (add self-contribution). */
  p->rho += p->mass * kernel_root;
243
  p->rho_dh -= hydro_dimension * p->mass * kernel_root;
244
245
246
  p->density.wcount += kernel_root;

  /* Finish the calculation by inserting the missing h-factors */
247
248
  p->rho *= h_inv_dim;
  p->rho_dh *= h_inv_dim_plus_one;
249
  p->density.wcount *= kernel_norm;
250
  p->density.wcount_dh *= h_inv * kernel_gamma * kernel_norm;
251
252
253
254

  const float irho = 1.f / p->rho;

  /* Compute the derivative term */
255
  p->rho_dh = 1.f / (1.f + hydro_dimension_inv * p->h * p->rho_dh * irho);
256
257
258
259
260
}

/**
 * @brief Prepare a particle for the force calculation.
 *
261
262
263
264
265
266
 * This function is called in the ghost task to convert some quantities coming
 * from the density loop over neighbours into quantities ready to be used in the
 * force loop over neighbours. Quantities are typically read from the density
 * sub-structure and written to the force sub-structure.
 * Examples of calculations done here include the calculation of viscosity term
 * constants, thermal conduction terms, hydro conversions, etc.
267
268
269
 *
 * @param p The particle to act upon
 * @param xp The extended particle data to act upon
270
271
 * @param ti_current The current time (on the timeline)
 * @param timeBase The minimal time-step size
272
 */
273
__attribute__((always_inline)) INLINE static void hydro_prepare_force(
274
275
    struct part *restrict p, struct xpart *restrict xp, int ti_current,
    double timeBase) {
276

277
278
279
280
  const float half_dt = (ti_current - (p->ti_begin + p->ti_end) / 2) * timeBase;
  const float pressure = hydro_get_pressure(p, half_dt);

  p->force.pressure = pressure;
281
282
283
284
285
286
}

/**
 * @brief Reset acceleration fields of a particle
 *
 * Resets all hydro acceleration and time derivative fields in preparation
287
 * for the sums taking  place in the various force tasks.
288
289
290
 *
 * @param p The particle to act upon
 */
291
__attribute__((always_inline)) INLINE static void hydro_reset_acceleration(
292
    struct part *restrict p) {
293
294
295
296
297
298
299

  /* Reset the acceleration. */
  p->a_hydro[0] = 0.0f;
  p->a_hydro[1] = 0.0f;
  p->a_hydro[2] = 0.0f;

  /* Reset the time derivatives. */
300
  p->u_dt = 0.0f;
301
  p->force.h_dt = 0.0f;
302
303
304
305
306
307
  p->force.v_sig = 0.0f;
}

/**
 * @brief Predict additional particle fields forward in time when drifting
 *
308
309
310
 * Additional hydrodynamic quantites are drifted forward in time here. These
 * include thermal quantities (thermal energy or total energy or entropy, ...).
 *
311
312
313
314
315
316
 * @param p The particle.
 * @param xp The extended data of the particle.
 * @param dt The drift time-step.
 * @param t0 The time at the start of the drift (on the timeline).
 * @param t1 The time at the end of the drift (on the timeline).
 * @param timeBase The minimal time-step size.
317
318
 */
__attribute__((always_inline)) INLINE static void hydro_predict_extra(
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    struct part *restrict p, const struct xpart *restrict xp, float dt, int t0,
    int t1, double timeBase) {

  const float h_inv = 1.f / p->h;

  /* Predict smoothing length */
  const float w1 = p->force.h_dt * h_inv * dt;
  if (fabsf(w1) < 0.2f)
    p->h *= approx_expf(w1); /* 4th order expansion of exp(w) */
  else
    p->h *= expf(w1);

  /* Predict density */
  const float w2 = -hydro_dimension * w1;
  if (fabsf(w2) < 0.2f)
    p->rho *= approx_expf(w2); /* 4th order expansion of exp(w) */
  else
    p->rho *= expf(w2);
337

338
339
340
  /* Drift the pressure */
  const float dt_entr = (t1 - (p->ti_begin + p->ti_end) / 2) * timeBase;
  p->force.pressure = hydro_get_pressure(p, dt_entr);
341
342
343
344
345
}

/**
 * @brief Finishes the force calculation.
 *
346
347
348
 * Multiplies the force and accelerations by the appropiate constants
 * and add the self-contribution term. In most cases, there is nothing
 * to do here.
349
350
351
 *
 * @param p The particle to act upon
 */
352
__attribute__((always_inline)) INLINE static void hydro_end_force(
353
354
    struct part *restrict p) {

355
  p->force.h_dt *= p->h * hydro_dimension_inv;
356
}
357
358
359
360

/**
 * @brief Kick the additional variables
 *
361
362
363
 * Additional hydrodynamic quantites are kicked forward in time here. These
 * include thermal quantities (thermal energy or total energy or entropy, ...).
 *
364
 * @param p The particle to act upon
365
 * @param xp The particle extended data to act upon
366
 * @param dt The time-step for this kick
367
 * @param half_dt The half time-step for this kick
368
 */
369
__attribute__((always_inline)) INLINE static void hydro_kick_extra(
370
371
    struct part *restrict p, struct xpart *restrict xp, float dt,
    float half_dt) {
372

373
374
375
376
377
378
  /* Do not decrease the energy by more than a factor of 2*/
  const float u_change = p->u_dt * dt;
  if (u_change > -0.5f * p->u)
    p->u += u_change;
  else
    p->u *= 0.5f;
379

380
381
  /* Do not 'overcool' when timestep increases */
  if (p->u + p->u_dt * half_dt < 0.5f * p->u) p->u_dt = -0.5f * p->u / half_dt;
382
}
383
384

/**
385
 * @brief Converts hydro quantity of a particle at the start of a run
386
 *
387
388
389
390
 * This function is called once at the end of the engine_init_particle()
 * routine (at the start of a calculation) after the densities of
 * particles have been computed.
 * This can be used to convert internal energy into entropy for instance.
391
392
393
 *
 * @param p The particle to act upon
 */
394
__attribute__((always_inline)) INLINE static void hydro_convert_quantities(
395
    struct part *restrict p) {}
396
397

#endif /* SWIFT_MINIMAL_HYDRO_H */