runner_doiact_vec.c 52.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2016 James Willis (james.s.willis@durham.ac.uk)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

23
24
#include "swift.h"

25
26
#include "active.h"

27
28
29
/* This object's header. */
#include "runner_doiact_vec.h"

30
31
32
#ifdef WITH_VECTORIZATION
static const vector kernel_gamma2_vec = FILL_VEC(kernel_gamma2);

James Willis's avatar
James Willis committed
33
34
35
/**
 * @brief Compute the vector remainder interactions from the secondary cache.
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
36
 * @param int_cache (return) secondary #cache of interactions between two
James Willis's avatar
James Willis committed
37
 * particles.
James Willis's avatar
James Willis committed
38
 * @param icount Interaction count.
Matthieu Schaller's avatar
Matthieu Schaller committed
39
 * @param rhoSum (return) #vector holding the cumulative sum of the density
James Willis's avatar
James Willis committed
40
 * update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
41
 * @param rho_dhSum (return) #vector holding the cumulative sum of the density
James Willis's avatar
James Willis committed
42
 * gradient update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
43
 * @param wcountSum (return) #vector holding the cumulative sum of the wcount
James Willis's avatar
James Willis committed
44
 * update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
45
 * @param wcount_dhSum (return) #vector holding the cumulative sum of the wcount
James Willis's avatar
James Willis committed
46
 * gradient update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
47
 * @param div_vSum (return) #vector holding the cumulative sum of the divergence
James Willis's avatar
James Willis committed
48
 * update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
49
 * @param curlvxSum (return) #vector holding the cumulative sum of the curl of
James Willis's avatar
James Willis committed
50
 * vx update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
51
 * @param curlvySum (return) #vector holding the cumulative sum of the curl of
James Willis's avatar
James Willis committed
52
 * vy update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
53
 * @param curlvzSum (return) #vector holding the cumulative sum of the curl of
James Willis's avatar
James Willis committed
54
 * vz update on pi.
James Willis's avatar
James Willis committed
55
56
57
58
 * @param v_hi_inv #vector of 1/h for pi.
 * @param v_vix #vector of x velocity of pi.
 * @param v_viy #vector of y velocity of pi.
 * @param v_viz #vector of z velocity of pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
59
 * @param icount_align (return) Interaction count after the remainder
James Willis's avatar
James Willis committed
60
 * interactions have been performed, should be a multiple of the vector length.
James Willis's avatar
James Willis committed
61
 */
James Willis's avatar
James Willis committed
62
__attribute__((always_inline)) INLINE static void calcRemInteractions(
Matthieu Schaller's avatar
Matthieu Schaller committed
63
64
65
66
67
    struct c2_cache *const int_cache, const int icount, vector *rhoSum,
    vector *rho_dhSum, vector *wcountSum, vector *wcount_dhSum,
    vector *div_vSum, vector *curlvxSum, vector *curlvySum, vector *curlvzSum,
    vector v_hi_inv, vector v_vix, vector v_viy, vector v_viz,
    int *icount_align) {
68

69
  mask_t int_mask, int_mask2;
James Willis's avatar
James Willis committed
70
71

  /* Work out the number of remainder interactions and pad secondary cache. */
72
73
74
75
76
77
  *icount_align = icount;
  int rem = icount % (NUM_VEC_PROC * VEC_SIZE);
  if (rem != 0) {
    int pad = (NUM_VEC_PROC * VEC_SIZE) - rem;
    *icount_align += pad;

78
79
80
81
    /* Initialise masks to true. */
    vec_init_mask(int_mask);
    vec_init_mask(int_mask2);

James Willis's avatar
James Willis committed
82
83
84
    /* Pad secondary cache so that there are no contributions in the interaction
     * function. */
    for (int i = icount; i < *icount_align; i++) {
85
86
87
88
89
90
91
92
      int_cache->mq[i] = 0.f;
      int_cache->r2q[i] = 1.f;
      int_cache->dxq[i] = 0.f;
      int_cache->dyq[i] = 0.f;
      int_cache->dzq[i] = 0.f;
      int_cache->vxq[i] = 0.f;
      int_cache->vyq[i] = 0.f;
      int_cache->vzq[i] = 0.f;
93
94
95
96
    }

    /* Zero parts of mask that represent the padded values.*/
    if (pad < VEC_SIZE) {
97
      vec_pad_mask(int_mask2,pad);
James Willis's avatar
James Willis committed
98
    } else {
99
100
      vec_pad_mask(int_mask,VEC_SIZE - rem);
      vec_zero_mask(int_mask2);
101
102
    }

James Willis's avatar
James Willis committed
103
104
    /* Perform remainder interaction and remove remainder from aligned
     * interaction count. */
105
    *icount_align = icount - rem;
James Willis's avatar
James Willis committed
106
107
108
109
110
111
    runner_iact_nonsym_2_vec_density(
        &int_cache->r2q[*icount_align], &int_cache->dxq[*icount_align],
        &int_cache->dyq[*icount_align], &int_cache->dzq[*icount_align],
        v_hi_inv, v_vix, v_viy, v_viz, &int_cache->vxq[*icount_align],
        &int_cache->vyq[*icount_align], &int_cache->vzq[*icount_align],
        &int_cache->mq[*icount_align], rhoSum, rho_dhSum, wcountSum,
112
        wcount_dhSum, div_vSum, curlvxSum, curlvySum, curlvzSum, int_mask, int_mask2, 1);
113
114
115
  }
}

James Willis's avatar
James Willis committed
116
/**
James Willis's avatar
James Willis committed
117
118
 * @brief Left-packs the values needed by an interaction into the secondary
 * cache (Supports AVX, AVX2 and AVX512 instruction sets).
James Willis's avatar
James Willis committed
119
120
 *
 * @param mask Contains which particles need to interact.
Matthieu Schaller's avatar
Matthieu Schaller committed
121
 * @param pjd Index of the particle to store into.
James Willis's avatar
James Willis committed
122
123
124
125
126
127
128
129
130
 * @param v_r2 #vector of the separation between two particles squared.
 * @param v_dx #vector of the x separation between two particles.
 * @param v_dy #vector of the y separation between two particles.
 * @param v_dz #vector of the z separation between two particles.
 * @param v_mj #vector of the mass of particle pj.
 * @param v_vjx #vector of x velocity of pj.
 * @param v_vjy #vector of y velocity of pj.
 * @param v_vjz #vector of z velocity of pj.
 * @param cell_cache #cache of all particles in the cell.
Matthieu Schaller's avatar
Matthieu Schaller committed
131
 * @param int_cache (return) secondary #cache of interactions between two
James Willis's avatar
James Willis committed
132
 * particles.
James Willis's avatar
James Willis committed
133
134
 * @param icount Interaction count.
 * @param rhoSum #vector holding the cumulative sum of the density update on pi.
James Willis's avatar
James Willis committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
 * @param rho_dhSum #vector holding the cumulative sum of the density gradient
 * update on pi.
 * @param wcountSum #vector holding the cumulative sum of the wcount update on
 * pi.
 * @param wcount_dhSum #vector holding the cumulative sum of the wcount gradient
 * update on pi.
 * @param div_vSum #vector holding the cumulative sum of the divergence update
 * on pi.
 * @param curlvxSum #vector holding the cumulative sum of the curl of vx update
 * on pi.
 * @param curlvySum #vector holding the cumulative sum of the curl of vy update
 * on pi.
 * @param curlvzSum #vector holding the cumulative sum of the curl of vz update
 * on pi.
James Willis's avatar
James Willis committed
149
150
151
152
153
 * @param v_hi_inv #vector of 1/h for pi.
 * @param v_vix #vector of x velocity of pi.
 * @param v_viy #vector of y velocity of pi.
 * @param v_viz #vector of z velocity of pi.
 */
James Willis's avatar
James Willis committed
154
__attribute__((always_inline)) INLINE static void storeInteractions(
155
    const short mask, const int pjd, vector *v_r2, vector *v_dx, vector *v_dy,
156
    vector *v_dz, const struct cache *const cell_cache, struct c2_cache *const int_cache,
James Willis's avatar
James Willis committed
157
158
159
160
161
162
163
    int *icount, vector *rhoSum, vector *rho_dhSum, vector *wcountSum,
    vector *wcount_dhSum, vector *div_vSum, vector *curlvxSum,
    vector *curlvySum, vector *curlvzSum, vector v_hi_inv, vector v_vix,
    vector v_viy, vector v_viz) {

/* Left-pack values needed into the secondary cache using the interaction mask.
 */
164
165
166
167
168
#if defined(HAVE_AVX2) || defined(HAVE_AVX512_F)
  int pack = 0;

#ifdef HAVE_AVX512_F
  pack += __builtin_popcount(mask);
James Willis's avatar
James Willis committed
169
170
171
172
  VEC_LEFT_PACK(v_r2->v, mask, &int_cache->r2q[*icount]);
  VEC_LEFT_PACK(v_dx->v, mask, &int_cache->dxq[*icount]);
  VEC_LEFT_PACK(v_dy->v, mask, &int_cache->dyq[*icount]);
  VEC_LEFT_PACK(v_dz->v, mask, &int_cache->dzq[*icount]);
173
174
175
176
  VEC_LEFT_PACK(vec_load(&cell_cache->m[pjd]), mask, &int_cache->mq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vx[pjd]), mask, &int_cache->vxq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vy[pjd]), mask, &int_cache->vyq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vz[pjd]), mask, &int_cache->vzq[*icount]);
177
178
#else
  vector v_mask;
James Willis's avatar
James Willis committed
179
  VEC_FORM_PACKED_MASK(mask, v_mask.m, pack);
James Willis's avatar
James Willis committed
180
181
182
183
184

  VEC_LEFT_PACK(v_r2->v, v_mask.m, &int_cache->r2q[*icount]);
  VEC_LEFT_PACK(v_dx->v, v_mask.m, &int_cache->dxq[*icount]);
  VEC_LEFT_PACK(v_dy->v, v_mask.m, &int_cache->dyq[*icount]);
  VEC_LEFT_PACK(v_dz->v, v_mask.m, &int_cache->dzq[*icount]);
185
186
187
188
  VEC_LEFT_PACK(vec_load(&cell_cache->m[pjd]), v_mask.m, &int_cache->mq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vx[pjd]), v_mask.m, &int_cache->vxq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vy[pjd]), v_mask.m, &int_cache->vyq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vz[pjd]), v_mask.m, &int_cache->vzq[*icount]);
189

190
#endif /* HAVE_AVX512_F */
191
192
193

  (*icount) += pack;
#else
James Willis's avatar
James Willis committed
194
  /* Quicker to do it serially in AVX rather than use intrinsics. */
James Willis's avatar
James Willis committed
195
  for (int bit_index = 0; bit_index < VEC_SIZE; bit_index++) {
196
197
    if (mask & (1 << bit_index)) {
      /* Add this interaction to the queue. */
198
199
200
201
202
203
204
205
      int_cache->r2q[*icount] = v_r2->f[bit_index];
      int_cache->dxq[*icount] = v_dx->f[bit_index];
      int_cache->dyq[*icount] = v_dy->f[bit_index];
      int_cache->dzq[*icount] = v_dz->f[bit_index];
      int_cache->mq[*icount] = cell_cache->m[pjd + bit_index];
      int_cache->vxq[*icount] = cell_cache->vx[pjd + bit_index];
      int_cache->vyq[*icount] = cell_cache->vy[pjd + bit_index];
      int_cache->vzq[*icount] = cell_cache->vz[pjd + bit_index];
206
207
208
209

      (*icount)++;
    }
  }
210

James Willis's avatar
James Willis committed
211
212
#endif /* defined(HAVE_AVX2) || defined(HAVE_AVX512_F) */

James Willis's avatar
James Willis committed
213
  /* Flush the c2 cache if it has reached capacity. */
James Willis's avatar
James Willis committed
214
  if (*icount >= (C2_CACHE_SIZE - (NUM_VEC_PROC * VEC_SIZE))) {
215
216

    int icount_align = *icount;
James Willis's avatar
James Willis committed
217

James Willis's avatar
James Willis committed
218
    /* Peform remainder interactions. */
Matthieu Schaller's avatar
Matthieu Schaller committed
219
220
221
    calcRemInteractions(int_cache, *icount, rhoSum, rho_dhSum, wcountSum,
                        wcount_dhSum, div_vSum, curlvxSum, curlvySum, curlvzSum,
                        v_hi_inv, v_vix, v_viy, v_viz, &icount_align);
222

223
224
225
    mask_t int_mask, int_mask2;
    vec_init_mask(int_mask);
    vec_init_mask(int_mask2);
James Willis's avatar
James Willis committed
226
227

    /* Perform interactions. */
James Willis's avatar
James Willis committed
228
229
230
231
232
233
    for (int pjd = 0; pjd < icount_align; pjd += (NUM_VEC_PROC * VEC_SIZE)) {
      runner_iact_nonsym_2_vec_density(
          &int_cache->r2q[pjd], &int_cache->dxq[pjd], &int_cache->dyq[pjd],
          &int_cache->dzq[pjd], v_hi_inv, v_vix, v_viy, v_viz,
          &int_cache->vxq[pjd], &int_cache->vyq[pjd], &int_cache->vzq[pjd],
          &int_cache->mq[pjd], rhoSum, rho_dhSum, wcountSum, wcount_dhSum,
234
          div_vSum, curlvxSum, curlvySum, curlvzSum, int_mask, int_mask2, 0);
235
    }
James Willis's avatar
James Willis committed
236
237

    /* Reset interaction count. */
238
239
240
    *icount = 0;
  }
}
241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
/**
 * @brief Compute the vector remainder interactions from the secondary cache.
 *
 * @param int_cache (return) secondary #cache of interactions between two
 * particles.
 * @param icount Interaction count.
 * @param rhoSum (return) #vector holding the cumulative sum of the density
 * update on pi.
 * @param rho_dhSum (return) #vector holding the cumulative sum of the density
 * gradient update on pi.
 * @param wcountSum (return) #vector holding the cumulative sum of the wcount
 * update on pi.
 * @param wcount_dhSum (return) #vector holding the cumulative sum of the wcount
 * gradient update on pi.
 * @param div_vSum (return) #vector holding the cumulative sum of the divergence
 * update on pi.
 * @param curlvxSum (return) #vector holding the cumulative sum of the curl of
 * vx update on pi.
 * @param curlvySum (return) #vector holding the cumulative sum of the curl of
 * vy update on pi.
 * @param curlvzSum (return) #vector holding the cumulative sum of the curl of
 * vz update on pi.
 * @param v_hi_inv #vector of 1/h for pi.
 * @param v_vix #vector of x velocity of pi.
 * @param v_viy #vector of y velocity of pi.
 * @param v_viz #vector of z velocity of pi.
 * @param icount_align (return) Interaction count after the remainder
 * interactions have been performed, should be a multiple of the vector length.
 */
__attribute__((always_inline)) INLINE static void calcRemForceInteractions(
    struct c2_cache *const int_cache, const int icount, vector *a_hydro_xSum,
    vector *a_hydro_ySum, vector *a_hydro_zSum, vector *h_dtSum,
    vector *v_sigSum, vector *entropy_dtSum,
275
276
    vector *v_hi_inv, vector *v_vix, vector *v_viy, vector *v_viz,
    vector *v_rhoi, vector *v_grad_hi, vector *v_pOrhoi2, vector *v_balsara_i, vector *v_ci,
277
    int *icount_align, int num_vec_proc) {
278

279
  mask_t int_mask, int_mask2;
280
281
282

  /* Work out the number of remainder interactions and pad secondary cache. */
  *icount_align = icount;
283
  int rem = icount % (num_vec_proc * VEC_SIZE);
284
  if (rem != 0) {
285
    int pad = (num_vec_proc * VEC_SIZE) - rem;
286
287
    *icount_align += pad;

288
289
290
291
    /* Initialise masks to true. */
    vec_init_mask(int_mask);
    vec_init_mask(int_mask2);

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    /* Pad secondary cache so that there are no contributions in the interaction
     * function. */
    for (int i = icount; i < *icount_align; i++) {
      int_cache->mq[i] = 0.f;
      int_cache->r2q[i] = 1.f;
      int_cache->dxq[i] = 0.f;
      int_cache->dyq[i] = 0.f;
      int_cache->dzq[i] = 0.f;
      int_cache->vxq[i] = 0.f;
      int_cache->vyq[i] = 0.f;
      int_cache->vzq[i] = 0.f;
      int_cache->rhoq[i] = 1.f;
      int_cache->grad_hq[i] = 1.f;
      int_cache->pOrho2q[i] = 1.f;
      int_cache->balsaraq[i] = 1.f;
      int_cache->soundspeedq[i] = 1.f;
      int_cache->h_invq[i] = 1.f;
    }

    /* Zero parts of mask that represent the padded values.*/
    if (pad < VEC_SIZE) {
313
      vec_pad_mask(int_mask2,pad);
314
    } else {
315
316
      vec_pad_mask(int_mask,VEC_SIZE - rem);
      vec_zero_mask(int_mask2);
317
318
319
320
321
322
    }

    /* Perform remainder interaction and remove remainder from aligned
     * interaction count. */
    *icount_align = icount - rem;

323
    runner_iact_nonsym_2_vec_force(
324
        &int_cache->r2q[*icount_align], &int_cache->dxq[*icount_align], &int_cache->dyq[*icount_align], &int_cache->dzq[*icount_align], v_vix, v_viy, v_viz, v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci,
325
        &int_cache->vxq[*icount_align], &int_cache->vyq[*icount_align], &int_cache->vzq[*icount_align], &int_cache->rhoq[*icount_align], &int_cache->grad_hq[*icount_align], &int_cache->pOrho2q[*icount_align], &int_cache->balsaraq[*icount_align], &int_cache->soundspeedq[*icount_align], &int_cache->mq[*icount_align], v_hi_inv, &int_cache->h_invq[*icount_align],
326
        a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum, int_mask, int_mask2);
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
  }
}

/**
 * @brief Left-packs the values needed by an interaction into the secondary
 * cache (Supports AVX, AVX2 and AVX512 instruction sets).
 *
 * @param mask Contains which particles need to interact.
 * @param pjd Index of the particle to store into.
 * @param v_r2 #vector of the separation between two particles squared.
 * @param v_dx #vector of the x separation between two particles.
 * @param v_dy #vector of the y separation between two particles.
 * @param v_dz #vector of the z separation between two particles.
 * @param v_mj #vector of the mass of particle pj.
 * @param v_vjx #vector of x velocity of pj.
 * @param v_vjy #vector of y velocity of pj.
 * @param v_vjz #vector of z velocity of pj.
 * @param cell_cache #cache of all particles in the cell.
 * @param int_cache (return) secondary #cache of interactions between two
 * particles.
 * @param icount Interaction count.
 * @param rhoSum #vector holding the cumulative sum of the density update on pi.
 * @param rho_dhSum #vector holding the cumulative sum of the density gradient
 * update on pi.
 * @param wcountSum #vector holding the cumulative sum of the wcount update on
 * pi.
 * @param wcount_dhSum #vector holding the cumulative sum of the wcount gradient
 * update on pi.
 * @param div_vSum #vector holding the cumulative sum of the divergence update
 * on pi.
 * @param curlvxSum #vector holding the cumulative sum of the curl of vx update
 * on pi.
 * @param curlvySum #vector holding the cumulative sum of the curl of vy update
 * on pi.
 * @param curlvzSum #vector holding the cumulative sum of the curl of vz update
 * on pi.
 * @param v_hi_inv #vector of 1/h for pi.
 * @param v_vix #vector of x velocity of pi.
 * @param v_viy #vector of y velocity of pi.
 * @param v_viz #vector of z velocity of pi.
 */
__attribute__((always_inline)) INLINE static void storeForceInteractions(
    const int mask, const int pjd, vector *v_r2, vector *v_dx, vector *v_dy,
370
    vector *v_dz, const struct cache *const cell_cache, struct c2_cache *const int_cache,
371
372
    int *icount, vector *a_hydro_xSum, vector *a_hydro_ySum, vector *a_hydro_zSum,
    vector *h_dtSum, vector *v_sigSum, vector *entropy_dtSum,
373
    vector *v_hi_inv, vector *v_vix, vector *v_viy, vector *v_viz, vector *v_rhoi, vector *v_grad_hi, vector *v_pOrhoi2, vector *v_balsara_i, vector *v_ci) {
374
375
376
377
378
379

/* Left-pack values needed into the secondary cache using the interaction mask.
 */
#if defined(HAVE_AVX2) || defined(HAVE_AVX512_F)
  int pack = 0;

380
381
382
383
384
  /* Invert hj. */
  vector v_hj, v_hj_inv;
  v_hj = vec_load(&cell_cache->h[pjd]);
  v_hj_inv = vec_reciprocal(v_hj);

385
386
387
388
389
390
#ifdef HAVE_AVX512_F
  pack += __builtin_popcount(mask);
  VEC_LEFT_PACK(v_r2->v, mask, &int_cache->r2q[*icount]);
  VEC_LEFT_PACK(v_dx->v, mask, &int_cache->dxq[*icount]);
  VEC_LEFT_PACK(v_dy->v, mask, &int_cache->dyq[*icount]);
  VEC_LEFT_PACK(v_dz->v, mask, &int_cache->dzq[*icount]);
391
392
393
394
395
396
397
398
399
  VEC_LEFT_PACK(vec_load(&cell_cache->m[pjd]), mask, &int_cache->mq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vx[pjd]), mask, &int_cache->vxq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vy[pjd]), mask, &int_cache->vyq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vz[pjd]), mask, &int_cache->vzq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->rho[pjd]), mask, &int_cache->rhoq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->grad_h[pjd]), mask, &int_cache->grad_hq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->pOrho2[pjd]), mask, &int_cache->pOrho2q[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->balsara[pjd]), mask, &int_cache->balsaraq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->soundspeed[pjd]), mask, &int_cache->soundspeedq[*icount]);
400
401
402
403
404
405
406
407
408
  VEC_LEFT_PACK(v_hj_inv->v, mask, &int_cache->h_invq[*icount]);
#else
  vector v_mask;
  VEC_FORM_PACKED_MASK(mask, v_mask.m, pack);

  VEC_LEFT_PACK(v_r2->v, v_mask.m, &int_cache->r2q[*icount]);
  VEC_LEFT_PACK(v_dx->v, v_mask.m, &int_cache->dxq[*icount]);
  VEC_LEFT_PACK(v_dy->v, v_mask.m, &int_cache->dyq[*icount]);
  VEC_LEFT_PACK(v_dz->v, v_mask.m, &int_cache->dzq[*icount]);
409
410
411
412
  VEC_LEFT_PACK(vec_load(&cell_cache->m[pjd]), v_mask.m, &int_cache->mq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vx[pjd]), v_mask.m, &int_cache->vxq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vy[pjd]), v_mask.m, &int_cache->vyq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vz[pjd]), v_mask.m, &int_cache->vzq[*icount]);
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
  VEC_LEFT_PACK(v_rhoj->v, v_mask.m, &int_cache->rhoq[*icount]);
  VEC_LEFT_PACK(v_grad_hj->v, v_mask.m, &int_cache->grad_hq[*icount]);
  VEC_LEFT_PACK(v_pOrhoj2->v, v_mask.m, &int_cache->pOrho2q[*icount]);
  VEC_LEFT_PACK(v_balsara_j->v, v_mask.m, &int_cache->balsaraq[*icount]);
  VEC_LEFT_PACK(v_cj->v, v_mask.m, &int_cache->soundspeedq[*icount]);
  VEC_LEFT_PACK(v_hj_inv->v, v_mask.m, &int_cache->h_invq[*icount]);

#endif /* HAVE_AVX512_F */

  (*icount) += pack;
#else
  /* Quicker to do it serially in AVX rather than use intrinsics. */
  for (int bit_index = 0; bit_index < VEC_SIZE; bit_index++) {
    if (mask & (1 << bit_index)) {
      /* Add this interaction to the queue. */
      int_cache->r2q[*icount] = v_r2->f[bit_index];
      int_cache->dxq[*icount] = v_dx->f[bit_index];
      int_cache->dyq[*icount] = v_dy->f[bit_index];
      int_cache->dzq[*icount] = v_dz->f[bit_index];
      int_cache->mq[*icount] = cell_cache->m[pjd + bit_index];
      int_cache->vxq[*icount] = cell_cache->vx[pjd + bit_index];
      int_cache->vyq[*icount] = cell_cache->vy[pjd + bit_index];
      int_cache->vzq[*icount] = cell_cache->vz[pjd + bit_index];
      
      int_cache->rhoq[*icount] = cell_cache->rho[pjd + bit_index];
      int_cache->grad_hq[*icount] = cell_cache->grad_h[pjd + bit_index];
      int_cache->pOrho2q[*icount] = cell_cache->pOrho2[pjd + bit_index];
      int_cache->balsaraq[*icount] = cell_cache->balsara[pjd + bit_index];
      int_cache->soundspeedq[*icount] = cell_cache->soundspeed[pjd + bit_index];
442
      int_cache->h_invq[*icount] = 1.f / cell_cache->h[pjd + bit_index];
443
444
445
446
447
448
449
450

      (*icount)++;
    }
  }

#endif /* defined(HAVE_AVX2) || defined(HAVE_AVX512_F) */

  /* Flush the c2 cache if it has reached capacity. */
451
  if (*icount >= (C2_CACHE_SIZE - (2 * VEC_SIZE))) {
452
453
454
455
456

    int icount_align = *icount;

    /* Peform remainder interactions. */
    calcRemForceInteractions(int_cache, *icount, a_hydro_xSum, a_hydro_ySum, a_hydro_zSum,
457
458
                             h_dtSum, v_sigSum, entropy_dtSum, v_hi_inv, 
                             v_vix, v_viy, v_viz, v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci,
459
                             &icount_align, 2);
460
461

    /* Perform interactions. */
462
463
    for (int pjd = 0; pjd < icount_align; pjd += (2 * VEC_SIZE)) {

464
      runner_iact_nonsym_2_vec_force_nomask(
465
        &int_cache->r2q[pjd], &int_cache->dxq[pjd], &int_cache->dyq[pjd], &int_cache->dzq[pjd], v_vix, v_viy, v_viz, v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci,
466
        &int_cache->vxq[pjd], &int_cache->vyq[pjd], &int_cache->vzq[pjd], &int_cache->rhoq[pjd], &int_cache->grad_hq[pjd], &int_cache->pOrho2q[pjd], &int_cache->balsaraq[pjd], &int_cache->soundspeedq[pjd], &int_cache->mq[pjd], v_hi_inv, &int_cache->h_invq[pjd],
467
        a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum);
468
469
470
471
472
473
474
    }

    /* Reset interaction count. */
    *icount = 0;
  }
}

James Willis's avatar
James Willis committed
475
476
477
478
/* @brief Populates the arrays max_di and max_dj with the maximum distances of
 * particles into their neighbouring cells. Also finds the first pi that
 * interacts with any particle in cj and the last pj that interacts with any
 * particle in ci.
James Willis's avatar
James Willis committed
479
480
481
482
483
484
485
486
 * @param ci #cell pointer to ci
 * @param cj #cell pointer to cj
 * @param sort_i #entry array for particle distance in ci
 * @param sort_j #entry array for particle distance in cj
 * @param ci_cache #cache for cell ci
 * @param cj_cache #cache for cell cj
 * @param dx_max maximum particle movement allowed in cell
 * @param rshift cutoff shift
James Willis's avatar
James Willis committed
487
488
489
490
 * @param max_di array to hold the maximum distances of pi particles into cell
 * cj
 * @param max_dj array to hold the maximum distances of pj particles into cell
 * cj
James Willis's avatar
James Willis committed
491
492
493
 * @param init_pi first pi to interact with a pj particle
 * @param init_pj last pj to interact with a pi particle
 */
James Willis's avatar
James Willis committed
494
495
496
497
__attribute__((always_inline)) INLINE static void populate_max_d_no_cache(
    const struct cell *ci, const struct cell *cj,
    const struct entry *restrict sort_i, const struct entry *restrict sort_j,
    const float dx_max, const float rshift, float *max_di, float *max_dj,
498
    int *init_pi, int *init_pj, const struct engine *e) {
499
500
501
502
503

  struct part *restrict parts_i = ci->parts;
  struct part *restrict parts_j = cj->parts;
  struct part *p = &parts_i[sort_i[0].i];

504
  float h, d;
James Willis's avatar
James Willis committed
505

James Willis's avatar
James Willis committed
506
  /* Get the distance of the last pi and the first pj on the sorted axis.*/
507
508
509
510
511
  const float di_max = sort_i[ci->count - 1].d - rshift;
  const float dj_min = sort_j[0].d;

  int first_pi = 0, last_pj = cj->count - 1;

Matthieu Schaller's avatar
Matthieu Schaller committed
512
513
  /* Find the first active particle in ci to interact with any particle in cj.
   */
514
515
516
  /* Populate max_di with distances. */
  int active_id = ci->count - 1;
  for (int k = ci->count - 1; k >= 0; k--) {
517
518
519
    p = &parts_i[sort_i[k].i];
    h = p->h;
    d = sort_i[k].d + h * kernel_gamma + dx_max - rshift;
James Willis's avatar
James Willis committed
520

521
    max_di[k] = d;
522

Matthieu Schaller's avatar
Matthieu Schaller committed
523
    /* If the particle is out of range set the index to
524
525
526
527
     * the last active particle within range. */
    if (d < dj_min) {
      first_pi = active_id;
      break;
Matthieu Schaller's avatar
Matthieu Schaller committed
528
529
    } else {
      if (part_is_active(p, e)) active_id = k;
530
531
532
    }
  }

533
  /* Find the maximum distance of pi particles into cj.*/
534
  for (int k = first_pi + 1; k < ci->count; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
535
    max_di[k] = fmaxf(max_di[k - 1], max_di[k]);
536
  }
James Willis's avatar
James Willis committed
537

538
  /* Find the last particle in cj to interact with any particle in ci. */
539
540
541
  /* Populate max_dj with distances. */
  active_id = 0;
  for (int k = 0; k < cj->count; k++) {
542
543
544
    p = &parts_j[sort_j[k].i];
    h = p->h;
    d = sort_j[k].d - h * kernel_gamma - dx_max - rshift;
Matthieu Schaller's avatar
Matthieu Schaller committed
545

546
    max_dj[k] = d;
Matthieu Schaller's avatar
Matthieu Schaller committed
547
548

    /* If the particle is out of range set the index to
549
550
551
     * the last active particle within range. */
    if (d > di_max) {
      last_pj = active_id;
552
      break;
Matthieu Schaller's avatar
Matthieu Schaller committed
553
554
    } else {
      if (part_is_active(p, e)) active_id = k;
555
556
557
558
559
560
    }
  }

  /* Find the maximum distance of pj particles into ci.*/
  for (int k = 1; k <= last_pj; k++) {
    max_dj[k] = fmaxf(max_dj[k - 1], max_dj[k]);
561
562
  }

James Willis's avatar
James Willis committed
563
564
  *init_pi = first_pi;
  *init_pj = last_pj;
565
}
James Willis's avatar
James Willis committed
566
#endif /* WITH_VECTORIZATION */
567
568

/**
James Willis's avatar
James Willis committed
569
570
 * @brief Compute the cell self-interaction (non-symmetric) using vector
 * intrinsics with one particle pi at a time.
571
572
573
574
 *
 * @param r The #runner.
 * @param c The #cell.
 */
James Willis's avatar
James Willis committed
575
576
__attribute__((always_inline)) INLINE void runner_doself1_density_vec(
    struct runner *r, struct cell *restrict c) {
577
578

#ifdef WITH_VECTORIZATION
579
  const struct engine *e = r->e;
580
581
582
583
584
585
  struct part *restrict pi;
  int count_align;
  int num_vec_proc = NUM_VEC_PROC;

  struct part *restrict parts = c->parts;
  const int count = c->count;
James Willis's avatar
James Willis committed
586

587
588
  vector v_hi, v_vix, v_viy, v_viz, v_hig2, v_r2;

James Willis's avatar
James Willis committed
589
  TIMER_TIC
590

591
592
  if (!cell_is_active(c, e)) return;

593
  if (!cell_is_drifted(c, e)) error("Interacting undrifted cell.");
594

James Willis's avatar
James Willis committed
595
  /* Get the particle cache from the runner and re-allocate
596
   * the cache if it is not big enough for the cell. */
597
  struct cache *restrict cell_cache = &r->ci_cache;
James Willis's avatar
James Willis committed
598
599
600

  if (cell_cache->count < count) {
    cache_init(cell_cache, count);
601
602
  }

James Willis's avatar
James Willis committed
603
  /* Read the particles from the cell and store them locally in the cache. */
James Willis's avatar
James Willis committed
604
  cache_read_particles(c, cell_cache);
605
606
607
608

  /* Create secondary cache to store particle interactions. */
  struct c2_cache int_cache;
  int icount = 0, icount_align = 0;
609
610
611
612
613
614
615
616

  /* Loop over the particles in the cell. */
  for (int pid = 0; pid < count; pid++) {

    /* Get a pointer to the ith particle. */
    pi = &parts[pid];

    /* Is the ith particle active? */
617
    if (!part_is_active(pi, e)) continue;
618
619
620
621
622

    vector pix, piy, piz;

    const float hi = cell_cache->h[pid];

James Willis's avatar
James Willis committed
623
    /* Fill particle pi vectors. */
624
625
626
627
628
629
630
631
632
633
634
    pix.v = vec_set1(cell_cache->x[pid]);
    piy.v = vec_set1(cell_cache->y[pid]);
    piz.v = vec_set1(cell_cache->z[pid]);
    v_hi.v = vec_set1(hi);
    v_vix.v = vec_set1(cell_cache->vx[pid]);
    v_viy.v = vec_set1(cell_cache->vy[pid]);
    v_viz.v = vec_set1(cell_cache->vz[pid]);

    const float hig2 = hi * hi * kernel_gamma2;
    v_hig2.v = vec_set1(hig2);

James Willis's avatar
James Willis committed
635
    /* Reset cumulative sums of update vectors. */
James Willis's avatar
James Willis committed
636
637
638
    vector rhoSum, rho_dhSum, wcountSum, wcount_dhSum, div_vSum, curlvxSum,
        curlvySum, curlvzSum;

James Willis's avatar
James Willis committed
639
    /* Get the inverse of hi. */
640
    vector v_hi_inv;
James Willis's avatar
James Willis committed
641

642
    v_hi_inv = vec_reciprocal(v_hi);
James Willis's avatar
James Willis committed
643

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
    rhoSum.v = vec_setzero();
    rho_dhSum.v = vec_setzero();
    wcountSum.v = vec_setzero();
    wcount_dhSum.v = vec_setzero();
    div_vSum.v = vec_setzero();
    curlvxSum.v = vec_setzero();
    curlvySum.v = vec_setzero();
    curlvzSum.v = vec_setzero();

    /* Pad cache if there is a serial remainder. */
    count_align = count;
    int rem = count % (num_vec_proc * VEC_SIZE);
    if (rem != 0) {
      int pad = (num_vec_proc * VEC_SIZE) - rem;

      count_align += pad;
660
661
662
663
664
665
666
667

      /* Set positions to the same as particle pi so when the r2 > 0 mask is
       * applied these extra contributions are masked out.*/
      for (int i = count; i < count_align; i++) {
        cell_cache->x[i] = pix.f[0];
        cell_cache->y[i] = piy.f[0];
        cell_cache->z[i] = piz.f[0];
      }
668
669
670
671
672
    }

    vector pjx, pjy, pjz;
    vector pjx2, pjy2, pjz2;

James Willis's avatar
James Willis committed
673
674
    /* Find all of particle pi's interacions and store needed values in the
     * secondary cache.*/
675
676
677
678
679
680
    for (int pjd = 0; pjd < count_align; pjd += (num_vec_proc * VEC_SIZE)) {

      /* Load 2 sets of vectors from the particle cache. */
      pjx.v = vec_load(&cell_cache->x[pjd]);
      pjy.v = vec_load(&cell_cache->y[pjd]);
      pjz.v = vec_load(&cell_cache->z[pjd]);
681

682
683
684
      pjx2.v = vec_load(&cell_cache->x[pjd + VEC_SIZE]);
      pjy2.v = vec_load(&cell_cache->y[pjd + VEC_SIZE]);
      pjz2.v = vec_load(&cell_cache->z[pjd + VEC_SIZE]);
685
      
686
687
688
689
      /* Compute the pairwise distance. */
      vector v_dx_tmp, v_dy_tmp, v_dz_tmp;
      vector v_dx_tmp2, v_dy_tmp2, v_dz_tmp2, v_r2_2;

James Willis's avatar
James Willis committed
690
691
      v_dx_tmp.v = vec_sub(pix.v, pjx.v);
      v_dx_tmp2.v = vec_sub(pix.v, pjx2.v);
692
      v_dy_tmp.v = vec_sub(piy.v, pjy.v);
James Willis's avatar
James Willis committed
693
      v_dy_tmp2.v = vec_sub(piy.v, pjy2.v);
694
      v_dz_tmp.v = vec_sub(piz.v, pjz.v);
James Willis's avatar
James Willis committed
695
696
697
698
      v_dz_tmp2.v = vec_sub(piz.v, pjz2.v);

      v_r2.v = vec_mul(v_dx_tmp.v, v_dx_tmp.v);
      v_r2_2.v = vec_mul(v_dx_tmp2.v, v_dx_tmp2.v);
699
      v_r2.v = vec_fma(v_dy_tmp.v, v_dy_tmp.v, v_r2.v);
James Willis's avatar
James Willis committed
700
      v_r2_2.v = vec_fma(v_dy_tmp2.v, v_dy_tmp2.v, v_r2_2.v);
701
      v_r2.v = vec_fma(v_dz_tmp.v, v_dz_tmp.v, v_r2.v);
James Willis's avatar
James Willis committed
702
703
      v_r2_2.v = vec_fma(v_dz_tmp2.v, v_dz_tmp2.v, v_r2_2.v);

704
705
      /* Form a mask from r2 < hig2 and r2 > 0.*/
      mask_t v_doi_mask, v_doi_mask_check, v_doi_mask2, v_doi_mask2_check;
706
      int doi_mask, doi_mask2;
707

James Willis's avatar
James Willis committed
708
      /* Form r2 > 0 mask and r2 < hig2 mask. */
709
710
      vec_create_mask(v_doi_mask_check, vec_cmp_gt(v_r2.v, vec_setzero()));
      vec_create_mask(v_doi_mask, vec_cmp_lt(v_r2.v, v_hig2.v));
711

James Willis's avatar
James Willis committed
712
      /* Form r2 > 0 mask and r2 < hig2 mask. */
713
714
      vec_create_mask(v_doi_mask2_check, vec_cmp_gt(v_r2_2.v, vec_setzero()));
      vec_create_mask(v_doi_mask2, vec_cmp_lt(v_r2_2.v, v_hig2.v));
715

716
      /*TODO: Convert vector masks to integers before and operation. */
717
718
719
      /* Combine the two masks and form an integer mask. */
      doi_mask = vec_cmp_result(vec_mask_and(v_doi_mask, v_doi_mask_check));
      doi_mask2 = vec_cmp_result(vec_mask_and(v_doi_mask2, v_doi_mask2_check));
720

James Willis's avatar
James Willis committed
721
722
      /* If there are any interactions left pack interaction values into c2
       * cache. */
723
      if (doi_mask) {
James Willis's avatar
James Willis committed
724
        storeInteractions(doi_mask, pjd, &v_r2, &v_dx_tmp, &v_dy_tmp, &v_dz_tmp,
725
                          cell_cache, &int_cache,
James Willis's avatar
James Willis committed
726
727
728
                          &icount, &rhoSum, &rho_dhSum, &wcountSum,
                          &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum,
                          &curlvzSum, v_hi_inv, v_vix, v_viy, v_viz);
729
730
      }
      if (doi_mask2) {
James Willis's avatar
James Willis committed
731
732
        storeInteractions(
            doi_mask2, pjd + VEC_SIZE, &v_r2_2, &v_dx_tmp2, &v_dy_tmp2,
733
            &v_dz_tmp2, cell_cache, &int_cache,
James Willis's avatar
James Willis committed
734
735
            &icount, &rhoSum, &rho_dhSum, &wcountSum, &wcount_dhSum, &div_vSum,
            &curlvxSum, &curlvySum, &curlvzSum, v_hi_inv, v_vix, v_viy, v_viz);
736
737
738
      }
    }

James Willis's avatar
James Willis committed
739
    /* Perform padded vector remainder interactions if any are present. */
Matthieu Schaller's avatar
Matthieu Schaller committed
740
741
742
    calcRemInteractions(&int_cache, icount, &rhoSum, &rho_dhSum, &wcountSum,
                        &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum,
                        &curlvzSum, v_hi_inv, v_vix, v_viy, v_viz,
James Willis's avatar
James Willis committed
743
744
745
746
                        &icount_align);

    /* Initialise masks to true in case remainder interactions have been
     * performed. */
747
748
749
    mask_t int_mask, int_mask2;
    vec_init_mask(int_mask);
    vec_init_mask(int_mask2);
750
751

    /* Perform interaction with 2 vectors. */
James Willis's avatar
James Willis committed
752
753
754
755
756
757
    for (int pjd = 0; pjd < icount_align; pjd += (num_vec_proc * VEC_SIZE)) {
      runner_iact_nonsym_2_vec_density(
          &int_cache.r2q[pjd], &int_cache.dxq[pjd], &int_cache.dyq[pjd],
          &int_cache.dzq[pjd], v_hi_inv, v_vix, v_viy, v_viz,
          &int_cache.vxq[pjd], &int_cache.vyq[pjd], &int_cache.vzq[pjd],
          &int_cache.mq[pjd], &rhoSum, &rho_dhSum, &wcountSum, &wcount_dhSum,
758
          &div_vSum, &curlvxSum, &curlvySum, &curlvzSum, int_mask, int_mask2, 0);
759
760
    }

James Willis's avatar
James Willis committed
761
762
763
764
765
766
767
768
769
770
    /* Perform horizontal adds on vector sums and store result in particle pi.
     */
    VEC_HADD(rhoSum, pi->rho);
    VEC_HADD(rho_dhSum, pi->density.rho_dh);
    VEC_HADD(wcountSum, pi->density.wcount);
    VEC_HADD(wcount_dhSum, pi->density.wcount_dh);
    VEC_HADD(div_vSum, pi->density.div_v);
    VEC_HADD(curlvxSum, pi->density.rot_v[0]);
    VEC_HADD(curlvySum, pi->density.rot_v[1]);
    VEC_HADD(curlvzSum, pi->density.rot_v[2]);
771
772
773
774
775

    /* Reset interaction count. */
    icount = 0;
  } /* loop over all particles. */

James Willis's avatar
James Willis committed
776
  TIMER_TOC(timer_doself_density);
777
#endif /* WITH_VECTORIZATION */
778
779
}

780
781
782
783
784
785
786
787
788
789
790
791
792
793
/**
 * @brief Compute the cell self-interaction (non-symmetric) using vector
 * intrinsics with one particle pi at a time.
 *
 * @param r The #runner.
 * @param c The #cell.
 */
__attribute__((always_inline)) INLINE void runner_doself2_force_vec(
    struct runner *r, struct cell *restrict c) {

#ifdef WITH_VECTORIZATION
  const struct engine *e = r->e;
  struct part *restrict pi;
  int count_align;
794
  const int num_vec_proc = 1;//NUM_VEC_PROC;
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

  struct part *restrict parts = c->parts;
  const int count = c->count;

  vector v_hi, v_vix, v_viy, v_viz, v_hig2, v_r2;
  vector v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci;

  //TIMER_TIC

  if (!cell_is_active(c, e)) return;

  if (!cell_is_drifted(c, e)) cell_drift_particles(c, e);

  /* Get the particle cache from the runner and re-allocate
   * the cache if it is not big enough for the cell. */
  struct cache *restrict cell_cache = &r->ci_cache;

  if (cell_cache->count < count) {
    cache_init(cell_cache, count);
  }

  /* Read the particles from the cell and store them locally in the cache. */
  cache_read_particles(c, cell_cache);

James Willis's avatar
James Willis committed
819
820
821
822
823
824
825
826
827
828
#ifdef SWIFT_DEBUG_CHECKS
  for(int i=0; i<count; i++) {
    pi = &c->parts[i];
    /* Check that particles have been drifted to the current time */
    if (pi->ti_drift != e->ti_current)
      error("Particle pi not drifted to current time");
    }
  }
#endif

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
  /* Create secondary cache to store particle interactions. */
  struct c2_cache int_cache;
  int icount = 0, icount_align = 0;

  /* Loop over the particles in the cell. */
  for (int pid = 0; pid < count; pid++) {

    /* Get a pointer to the ith particle. */
    pi = &parts[pid];

    /* Is the ith particle active? */
    if (!part_is_active(pi, e)) continue;

    vector pix, piy, piz;

    const float hi = cell_cache->h[pid];

    /* Fill particle pi vectors. */
    pix.v = vec_set1(cell_cache->x[pid]);
    piy.v = vec_set1(cell_cache->y[pid]);
    piz.v = vec_set1(cell_cache->z[pid]);
    v_hi.v = vec_set1(hi);
    v_vix.v = vec_set1(cell_cache->vx[pid]);
    v_viy.v = vec_set1(cell_cache->vy[pid]);
    v_viz.v = vec_set1(cell_cache->vz[pid]);
    
    v_rhoi.v = vec_set1(cell_cache->rho[pid]);
    v_grad_hi.v = vec_set1(cell_cache->grad_h[pid]);
    v_pOrhoi2.v = vec_set1(cell_cache->pOrho2[pid]);
    v_balsara_i.v = vec_set1(cell_cache->balsara[pid]);
    v_ci.v = vec_set1(cell_cache->soundspeed[pid]);

    const float hig2 = hi * hi * kernel_gamma2;
    v_hig2.v = vec_set1(hig2);

    /* Reset cumulative sums of update vectors. */
    vector a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum;

    /* Get the inverse of hi. */
    vector v_hi_inv;

    v_hi_inv = vec_reciprocal(v_hi);

    a_hydro_xSum.v = vec_setzero();
    a_hydro_ySum.v = vec_setzero();
    a_hydro_zSum.v = vec_setzero();
    h_dtSum.v = vec_setzero();
    v_sigSum.v = vec_set1(pi->force.v_sig);
    entropy_dtSum.v = vec_setzero();

    /* Pad cache if there is a serial remainder. */
    count_align = count;
    int rem = count % (num_vec_proc * VEC_SIZE);
    if (rem != 0) {
      int pad = (num_vec_proc * VEC_SIZE) - rem;

      count_align += pad;

      /* Set positions to the same as particle pi so when the r2 > 0 mask is
       * applied these extra contributions are masked out.*/
      for (int i = count; i < count_align; i++) {
        cell_cache->x[i] = pix.f[0];
        cell_cache->y[i] = piy.f[0];
        cell_cache->z[i] = piz.f[0];
893
        cell_cache->h[i] = 1.f;
894
895
896
      }
    }

897
    vector pjx, pjy, pjz, hj, hjg2;
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

    /* Find all of particle pi's interacions and store needed values in the
     * secondary cache.*/
    for (int pjd = 0; pjd < count_align; pjd += (num_vec_proc * VEC_SIZE)) {

      /* Load 2 sets of vectors from the particle cache. */
      pjx.v = vec_load(&cell_cache->x[pjd]);
      pjy.v = vec_load(&cell_cache->y[pjd]);
      pjz.v = vec_load(&cell_cache->z[pjd]);
      hj.v = vec_load(&cell_cache->h[pjd]);
      hjg2.v = vec_mul(vec_mul(hj.v,hj.v), kernel_gamma2_vec.v);

      /* Compute the pairwise distance. */
      vector v_dx_tmp, v_dy_tmp, v_dz_tmp;

      v_dx_tmp.v = vec_sub(pix.v, pjx.v);
      v_dy_tmp.v = vec_sub(piy.v, pjy.v);
      v_dz_tmp.v = vec_sub(piz.v, pjz.v);

      v_r2.v = vec_mul(v_dx_tmp.v, v_dx_tmp.v);
      v_r2.v = vec_fma(v_dy_tmp.v, v_dy_tmp.v, v_r2.v);
      v_r2.v = vec_fma(v_dz_tmp.v, v_dz_tmp.v, v_r2.v);

921
      /* Form r2 > 0 mask, r2 < hig2 mask and r2 < hjg2 mask. */
922
923
      mask_t v_doi_mask, v_doi_mask_self_check;
      int doi_mask, doi_mask_self_check;
924

925
      /* Form r2 > 0 mask.*/
926
      vec_create_mask(v_doi_mask_self_check, vec_cmp_gt(v_r2.v, vec_setzero()));
927
928
929
930

      /* Form a mask from r2 < hig2 mask and r2 < hjg2 mask. */
      vector v_h2;
      v_h2.v = vec_fmax(v_hig2.v, hjg2.v);
931
      vec_create_mask(v_doi_mask, vec_cmp_lt(v_r2.v, v_h2.v));
932

933
      /* Form integer masks. */
934
935
      doi_mask_self_check = vec_form_int_mask(v_doi_mask_self_check);
      doi_mask = vec_form_int_mask(v_doi_mask);
936
      
937
      /* Combine all 3 masks. */
938
      doi_mask = doi_mask & doi_mask_self_check;
939
940
941
942
943
944

      /* If there are any interactions left pack interaction values into c2
       * cache. */
      if (doi_mask) {
        
        storeForceInteractions(doi_mask, pjd, &v_r2, &v_dx_tmp, &v_dy_tmp, &v_dz_tmp,
945
                          cell_cache, &int_cache,
946
947
                          &icount, &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum,
                          &h_dtSum, &v_sigSum, &entropy_dtSum,
948
                          &v_hi_inv, &v_vix, &v_viy, &v_viz, &v_rhoi, &v_grad_hi, &v_pOrhoi2, &v_balsara_i, &v_ci);
949
950
951
952
953
954
      }

    } /* Loop over all other particles. */

    /* Perform padded vector remainder interactions if any are present. */
    calcRemForceInteractions(&int_cache, icount, &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum,
955
956
                             &h_dtSum, &v_sigSum, &entropy_dtSum, &v_hi_inv,
                             &v_vix, &v_viy, &v_viz, &v_rhoi, &v_grad_hi, &v_pOrhoi2, &v_balsara_i, &v_ci,
957
                             &icount_align, 2);
958
959

    /* Perform interaction with 2 vectors. */
960
    for (int pjd = 0; pjd < icount_align; pjd += (2 * VEC_SIZE)) {
961
      runner_iact_nonsym_2_vec_force_nomask(
962
        &int_cache.r2q[pjd], &int_cache.dxq[pjd], &int_cache.dyq[pjd], &int_cache.dzq[pjd], &v_vix, &v_viy, &v_viz, &v_rhoi, &v_grad_hi, &v_pOrhoi2, &v_balsara_i, &v_ci,
963
        &int_cache.vxq[pjd], &int_cache.vyq[pjd], &int_cache.vzq[pjd], &int_cache.rhoq[pjd], &int_cache.grad_hq[pjd], &int_cache.pOrho2q[pjd], &int_cache.balsaraq[pjd], &int_cache.soundspeedq[pjd], &int_cache.mq[pjd], &v_hi_inv, &int_cache.h_invq[pjd],
964
        &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum, &h_dtSum, &v_sigSum, &entropy_dtSum);
965

966
967
968
969
970
971
    }
    
    VEC_HADD(a_hydro_xSum, pi->a_hydro[0]);
    VEC_HADD(a_hydro_ySum, pi->a_hydro[1]);
    VEC_HADD(a_hydro_zSum, pi->a_hydro[2]);
    VEC_HADD(h_dtSum, pi->force.h_dt);
972
    VEC_HMAX(v_sigSum, pi->force.v_sig);
973
974
975
976
977
978
979
980
981
982
    VEC_HADD(entropy_dtSum, pi->entropy_dt);

    /* Reset interaction count. */
    icount = 0;
  } /* loop over all particles. */

  //TIMER_TOC(timer_doself_force);
#endif /* WITH_VECTORIZATION */
}

983
/**
James Willis's avatar
James Willis committed
984
985
 * @brief Compute the density interactions between a cell pair (non-symmetric)
 * using vector intrinsics.
986
987
988
989
990
 *
 * @param r The #runner.
 * @param ci The first #cell.
 * @param cj The second #cell.
 */
James Willis's avatar
James Willis committed
991
992
void runner_dopair1_density_vec(struct runner *r, struct cell *ci,
                                struct cell *cj) {
993
994
995
996

#ifdef WITH_VECTORIZATION
  const struct engine *restrict e = r->e;

James Willis's avatar
James Willis committed
997
  vector v_hi, v_vix, v_viy, v_viz, v_hig2;
998
999
1000
1001
1002
1003

  TIMER_TIC;

  /* Anything to do here? */
  if (!cell_is_active(ci, e) && !cell_is_active(cj, e)) return;

1004
1005
  if (!cell_is_drifted(ci, e) || !cell_is_drifted(cj, e))
    error("Interacting undrifted cells.");
1006
1007
1008
1009
1010
1011

  /* Get the sort ID. */
  double shift[3] = {0.0, 0.0, 0.0};
  const int sid = space_getsid(e->s, &ci, &cj, shift);

  /* Have the cells been sorted? */
1012
1013
1014
1015
  if (!(ci->sorted & (1 << sid)) || ci->dx_max_sort > space_maxreldx * ci->dmin)
    runner_do_sort(r, ci, (1 << sid), 1);
  if (!(cj->sorted & (1 << sid)) || cj->dx_max_sort > space_maxreldx * cj->dmin)
    runner_do_sort(r, cj, (1 << sid), 1);
1016

1017
1018
1019
1020
1021
1022
1023
1024
  /* Get the cutoff shift. */
  double rshift = 0.0;
  for (int k = 0; k < 3; k++) rshift += shift[k] * runner_shift[sid][k];

  /* Pick-out the sorted lists. */
  const struct entry *restrict sort_i = &ci->sort[sid * (ci->count + 1)];
  const struct entry *restrict sort_j = &cj->sort[sid * (cj->count + 1)];

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the dx_max_sort values in the cell are indeed an upper
     bound on particle movement. */
  for (int pid = 0; pid < ci->count; pid++) {
    const struct part *p = &ci->parts[sort_i[pid].i];
    const float d = p->x[0] * runner_shift[sid][0] +
                    p->x[1] * runner_shift[sid][1] +
                    p->x[2] * runner_shift[sid][2];
    if (fabsf(d - sort_i[pid].d) - ci->dx_max_sort >
        1.0e-6 * max(fabsf(d), ci->dx_max_sort))
      error("particle shift diff exceeds dx_max_sort.");
  }
  for (int pjd = 0; pjd < cj->count; pjd++) {
    const struct part *p = &cj->parts[sort_j[pjd].i];
    const float d = p->x[0] * runner_shift[sid][0] +
                    p->x[1] * runner_shift[sid][1] +
                    p->x[2] * runner_shift[sid][2];
    if (fabsf(d - sort_j[pjd].d) - cj->dx_max_sort >
        1.0e-6 * max(fabsf(d), cj->dx_max_sort))
      error("particle shift diff exceeds dx_max_sort.");
  }
#endif /* SWIFT_DEBUG_CHECKS */

1048
1049
1050
1051
1052
1053
1054
1055
1056
  /* Get some other useful values. */
  const int count_i = ci->count;
  const int count_j = cj->count;
  const double hi_max = ci->h_max * kernel_gamma - rshift;
  const double hj_max = cj->h_max * kernel_gamma;
  struct part *restrict parts_i = ci->parts;
  struct part *restrict parts_j = cj->parts;
  const double di_max = sort_i[count_i - 1].d - rshift;
  const double dj_min = sort_j[0].d;
1057
  const float dx_max = (ci->dx_max_sort + cj->dx_max_sort);
1058
1059

  /* Check if any particles are active and return if there are not. */
Matthieu Schaller's avatar
Matthieu Schaller committed
1060
1061
1062
  int numActive = 0;
  for (int pid = count_i - 1;
       pid >= 0 && sort_i[pid].d + hi_max + dx_max > dj_min; pid--) {
1063
1064
1065
1066
    struct part *restrict pi = &parts_i[sort_i[pid].i];
    if (part_is_active(pi, e)) {
      numActive++;
      break;
Matthieu Schaller's avatar
Matthieu Schaller committed
1067
    }
1068
  }
1069

Matthieu Schaller's avatar
Matthieu Schaller committed
1070
  if (!numActive) {
1071
    for (int pjd = 0; pjd < count_j && sort_j[pjd].d - hj_max - dx_max < di_max;
Matthieu Schaller's avatar
Matthieu Schaller committed
1072
         pjd++) {
1073
1074
      struct part *restrict pj = &parts_j[sort_j[pjd].i];
      if (part_is_active(pj, e)) {
1075
1076
        numActive++;
        break;
Matthieu Schaller's avatar
Matthieu Schaller committed
1077
1078
      }
    }
1079
  }
1080

Matthieu Schaller's avatar
Matthieu Schaller committed
1081
  if (numActive == 0) return;
1082

1083
1084
1085
1086
  /* Get both particle caches from the runner and re-allocate
   * them if they are not big enough for the cells. */
  struct cache *restrict ci_cache = &r->ci_cache;
  struct cache *restrict cj_cache = &r->cj_cache;
1087

1088
1089
1090
1091
1092
1093
  if (ci_cache->count < count_i) {
    cache_init(ci_cache, count_i);
  }
  if (cj_cache->count < count_j) {
    cache_init(cj_cache, count_j);
  }
1094

1095
1096
1097
  int first_pi, last_pj;
  float *max_di __attribute__((aligned(sizeof(float) * VEC_SIZE)));
  float *max_dj __attribute__((aligned(sizeof(float) * VEC_SIZE)));
1098

1099
1100
  max_di = r->ci_cache.max_d;
  max_dj = r->cj_cache.max_d;
1101

1102
1103
1104
1105
  /* Find particles maximum distance into cj, max_di[] and ci, max_dj[]. */
  /* Also find the first pi that interacts with any particle in cj and the last
   * pj that interacts with any particle in ci. */
  populate_max_d_no_cache(ci, cj, sort_i, sort_j, dx_max, rshift, max_di,
Matthieu Schaller's avatar
Matthieu Schaller committed
1106
                          max_dj, &first_pi, &last_pj, e);
1107

1108
1109
1110
1111
1112
  /* Find the maximum index into cj that is required by a particle in ci. */
  /* Find the maximum index into ci that is required by a particle in cj. */
  float di, dj;
  int max_ind_j = count_j - 1;
  int max_ind_i = 0;
1113

1114
1115
1116
  dj = sort_j[max_ind_j].d;
  while (max_ind_j > 0 && max_di[count_i - 1] < dj) {
    max_ind_j--;
1117
1118

    dj = sort_j[max_ind_j].d;
1119
  }
1120

1121
1122
1123
  di = sort_i[max_ind_i].d;
  while (max_ind_i < count_i - 1 && max_dj[0] > di) {
    max_ind_i++;
1124
1125

    di = sort_i[max_ind_i].d;
1126
  }
1127

1128
1129
1130
1131
  /* Limits of the outer loops. */
  int first_pi_loop = first_pi;
  int last_pj_loop = last_pj;

1132
1133
1134
1135
  /* Take the max/min of both values calculated to work out how many particles
   * to read into the cache. */
  last_pj = max(last_pj, max_ind_j);
  first_pi = min(first_pi, max_ind_i);
1136

1137
1138
1139
1140
  /* Read the needed particles into the two caches. */
  int first_pi_align = first_pi;
  int last_pj_align = last_pj;
  cache_read_two_partial_cells_sorted(ci, cj, ci_cache, cj_cache, sort_i,
Matthieu Schaller's avatar
Matthieu Schaller committed
1141
1142
                                      sort_j, shift, &first_pi_align,
                                      &last_pj_align, 1);
1143

1144
1145
  /* Get the number of particles read into the ci cache. */
  int ci_cache_count = count_i - first_pi_align;
1146

1147
  if (cell_is_active(ci, e)) {
1148

1149
    /* Loop over the parts in ci. */
1150
    for (int pid = count_i - 1; pid >= first_pi_loop && max_ind_j >= 0; pid--) {