cell.c 12 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 * Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <float.h>
#include <limits.h>
#include <math.h>

32
33
34
35
36
/* MPI headers. */
#ifdef WITH_MPI
    #include <mpi.h>
#endif

37
38
39
40
41
/* Switch off timers. */
#ifdef TIMER
    #undef TIMER
#endif

42
/* Local headers. */
43
#include "const.h"
44
45
46
#include "cycle.h"
#include "lock.h"
#include "task.h"
47
#include "timers.h"
48
#include "part.h"
49
#include "space.h"
50
#include "cell.h"
51
52
#include "error.h"
#include "inline.h"
53
54


55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
 
int cell_getsize ( struct cell *c ) {

    int k, count = 1;
    
    /* Sum up the progeny if split. */
    if ( c->split )
        for ( k = 0 ; k < 8 ; k++ )
            if ( c->progeny[k] != NULL )
                count += cell_getsize( c->progeny[k] );
                
    /* Return the final count. */
    return count;

    }


/** 
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
 
87
int cell_unpack ( struct pcell *pc , struct cell *c , struct space *s ) {
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

    int k, count = 1;
    struct cell *temp;
    
    /* Unpack the current pcell. */
    c->h_max = pc->h_max;
    c->dt_min = pc->dt_min;
    c->dt_max = pc->dt_max;
    c->count = pc->count;
    
    /* Fill the progeny recursively, depth-first. */
    for ( k = 0 ; k < 8 ; k++ )
        if ( pc->progeny[k] >= 0 ) {
            temp = space_getcell( s );
            temp->count = 0;
            temp->loc[0] = c->loc[0];
            temp->loc[1] = c->loc[1];
            temp->loc[2] = c->loc[2];
            temp->h[0] = c->h[0]/2;
            temp->h[1] = c->h[1]/2;
            temp->h[2] = c->h[2]/2;
            temp->dmin = c->dmin/2;
            if ( k & 4 )
                temp->loc[0] += temp->h[0];
            if ( k & 2 )
                temp->loc[1] += temp->h[1];
            if ( k & 1 )
                temp->loc[2] += temp->h[2];
            temp->depth = c->depth + 1;
            temp->split = 0;
            temp->dx_max = 0.0;
            temp->nodeID = c->nodeID;
            temp->parent = c;
            c->progeny[k] = temp;
            c->split = 1;
123
            count += cell_unpack( &pc[ pc->progeny[k] ] , temp , s );
124
125
126
127
128
129
130
131
            }
            
    /* Return the total number of unpacked cells. */
    return count;

    }


132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/**
 * @brief Link the cells recursively to the given part array.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */

int cell_link ( struct cell *c , struct part *parts ) {

    int k, ind = 0;
    
    c->parts = parts;
    
    /* Fill the progeny recursively, depth-first. */
    if ( c->split )
        for ( k = 0 ; k < 8 ; k++ )
            if ( c->progeny[k] != NULL )
                ind += cell_link( c->progeny[k] , &parts[ind] );
            
    /* Return the total number of unpacked cells. */
    return c->count;

    }


159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
 
int cell_pack ( struct cell *c , struct pcell *pc ) {

    int k, count = 1;
    
    /* Start by packing the data of the current cell. */
    pc->h_max = c->h_max;
    pc->dt_min = c->dt_min;
    pc->dt_max = c->dt_max;
    pc->count = c->count;
    
    /* Fill in the progeny, depth-first recursion. */
    for ( k = 0 ; k < 8 ; k++ )
        if ( c->progeny[k] != NULL ) {
            pc->progeny[k] = count;
            count += cell_pack( c->progeny[k] , &pc[count] );
            }
        else
            pc->progeny[k] = -1;
            
    /* Return the number of packed cells used. */
    return count;

    }


194
195
196
197
198
199
200
201
202
203
204
205
/**
 * @brief Lock a cell and hold its parents.
 *
 * @param c The #cell.
 */
 
int cell_locktree( struct cell *c ) {

    struct cell *finger, *finger2;
    TIMER_TIC

    /* First of all, try to lock this cell. */
206
    if ( c->hold || lock_trylock( &c->lock ) != 0 ) {
207
        TIMER_TOC(timer_locktree);
208
209
210
211
212
213
214
215
216
217
218
        return 1;
        }
        
    /* Did somebody hold this cell in the meantime? */
    if ( c->hold ) {
        
        /* Unlock this cell. */
        if ( lock_unlock( &c->lock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
219
        TIMER_TOC(timer_locktree);
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        return 1;
    
        }
        
    /* Climb up the tree and lock/hold/unlock. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent ) {
    
        /* Lock this cell. */
        if ( lock_trylock( &finger->lock ) != 0 )
            break;
            
        /* Increment the hold. */
        __sync_fetch_and_add( &finger->hold , 1 );
        
        /* Unlock the cell. */
        if ( lock_unlock( &finger->lock ) != 0 )
            error( "Failed to unlock cell." );
    
        }
        
    /* If we reached the top of the tree, we're done. */
    if ( finger == NULL ) {
242
        TIMER_TOC(timer_locktree);
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        return 0;
        }
        
    /* Otherwise, we hit a snag. */
    else {
    
        /* Undo the holds up to finger. */
        for ( finger2 = c->parent ; finger2 != finger ; finger2 = finger2->parent )
            __sync_fetch_and_sub( &finger2->hold , 1 );
            
        /* Unlock this cell. */
        if ( lock_unlock( &c->lock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
258
        TIMER_TOC(timer_locktree);
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        return 1;
    
        }

    }
    
    
/**
 * @brief Unock a cell's parents.
 *
 * @param c The #cell.
 */
 
void cell_unlocktree( struct cell *c ) {

    struct cell *finger;
    TIMER_TIC

    /* First of all, try to unlock this cell. */
    if ( lock_unlock( &c->lock ) != 0 )
        error( "Failed to unlock cell." );
        
    /* Climb up the tree and unhold the parents. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent )
        __sync_fetch_and_sub( &finger->hold , 1 );
        
285
    TIMER_TOC(timer_locktree);
286
287
288
289
290
291
292
293
294
295
296
297
        
    }
    
    
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
 */
 
void cell_split ( struct cell *c  ) {

298
    int i, j, k;
299
    struct part temp, *parts = c->parts;
300
    struct xpart xtemp, *xparts = c->xparts;
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
    int left[8], right[8];
    double pivot[3];
    
    /* Init the pivot. */
    for ( k = 0 ; k < 3 ; k++ )
        pivot[k] = c->loc[k] + c->h[k]/2;
    
    /* Split along the x-axis. */
    i = 0; j = c->count - 1;
    while ( i <= j ) {
        while ( i <= c->count-1 && parts[i].x[0] <= pivot[0] )
            i += 1;
        while ( j >= 0 && parts[j].x[0] > pivot[0] )
            j -= 1;
        if ( i < j ) {
            temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
317
            xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
318
319
            }
        }
Pedro Gonnet's avatar
Pedro Gonnet committed
320
    /* for ( k = 0 ; k <= j ; k++ )
321
322
323
324
        if ( parts[k].x[0] > pivot[0] )
            error( "cell_split: sorting failed." );
    for ( k = i ; k < c->count ; k++ )
        if ( parts[k].x[0] < pivot[0] )
Pedro Gonnet's avatar
Pedro Gonnet committed
325
            error( "cell_split: sorting failed." ); */
326
327
328
329
330
331
332
333
334
335
336
337
338
    left[1] = i; right[1] = c->count - 1;
    left[0] = 0; right[0] = j;
    
    /* Split along the y axis, twice. */
    for ( k = 1 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && parts[i].x[1] <= pivot[1] )
                i += 1;
            while ( j >= left[k] && parts[j].x[1] > pivot[1] )
                j -= 1;
            if ( i < j ) {
                temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
339
                xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
340
341
                }
            }
Pedro Gonnet's avatar
Pedro Gonnet committed
342
        /* for ( int kk = left[k] ; kk <= j ; kk++ )
343
            if ( parts[kk].x[1] > pivot[1] ) {
344
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
345
346
                error( "sorting failed (left)." );
                }
Pedro Gonnet's avatar
Pedro Gonnet committed
347
        for ( int kk = i ; kk <= right[k] ; kk++ )
348
            if ( parts[kk].x[1] < pivot[1] )
Pedro Gonnet's avatar
Pedro Gonnet committed
349
                error( "sorting failed (right)." ); */
350
351
352
353
354
355
356
357
358
359
360
361
362
363
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }

    /* Split along the z axis, four times. */
    for ( k = 3 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && parts[i].x[2] <= pivot[2] )
                i += 1;
            while ( j >= left[k] && parts[j].x[2] > pivot[2] )
                j -= 1;
            if ( i < j ) {
                temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
364
                xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
365
366
                }
            }
Pedro Gonnet's avatar
Pedro Gonnet committed
367
        /* for ( int kk = left[k] ; kk <= j ; kk++ )
368
            if ( parts[kk].x[2] > pivot[2] ) {
369
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
370
371
                error( "sorting failed (left)." );
                }
Pedro Gonnet's avatar
Pedro Gonnet committed
372
        for ( int kk = i ; kk <= right[k] ; kk++ )
373
            if ( parts[kk].x[2] < pivot[2] ) {
374
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
375
                error( "sorting failed (right)." );
Pedro Gonnet's avatar
Pedro Gonnet committed
376
                } */
377
378
379
380
381
382
383
384
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }
        
    /* Store the counts and offsets. */
    for ( k = 0 ; k < 8 ; k++ ) {
        c->progeny[k]->count = right[k] - left[k] + 1;
        c->progeny[k]->parts = &c->parts[ left[k] ];
385
        c->progeny[k]->xparts = &c->xparts[ left[k] ];
386
387
        }
        
Pedro Gonnet's avatar
Pedro Gonnet committed
388
389
390
391
392
393
394
395
396
    /* Verify that _all_ the parts have been assigned to a cell. */
    /* for ( k = 1 ; k < 8 ; k++ )
        if ( &c->progeny[k-1]->parts[ c->progeny[k-1]->count ] != c->progeny[k]->parts )
            error( "Particle sorting failed (internal consistency)." );
    if ( c->progeny[0]->parts != c->parts )
        error( "Particle sorting failed (left edge)." );
    if ( &c->progeny[7]->parts[ c->progeny[7]->count ] != &c->parts[ c->count ] )
        error( "Particle sorting failed (right edge)." ); */
        
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    /* Verify a few sub-cells. */
    /* for ( k = 0 ; k < c->progeny[0]->count ; k++ )
        if ( c->progeny[0]->parts[k].x[0] > pivot[0] ||
             c->progeny[0]->parts[k].x[1] > pivot[1] ||
             c->progeny[0]->parts[k].x[2] > pivot[2] )
            error( "Sorting failed (progeny=0)." );
    for ( k = 0 ; k < c->progeny[1]->count ; k++ )
        if ( c->progeny[1]->parts[k].x[0] > pivot[0] ||
             c->progeny[1]->parts[k].x[1] > pivot[1] ||
             c->progeny[1]->parts[k].x[2] <= pivot[2] )
            error( "Sorting failed (progeny=1)." );
    for ( k = 0 ; k < c->progeny[2]->count ; k++ )
        if ( c->progeny[2]->parts[k].x[0] > pivot[0] ||
             c->progeny[2]->parts[k].x[1] <= pivot[1] ||
             c->progeny[2]->parts[k].x[2] > pivot[2] )
            error( "Sorting failed (progeny=2)." ); */

    }