runner_doiact_grav.h 40.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2013 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
 *               2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/
#ifndef SWIFT_RUNNER_DOIACT_GRAV_H
#define SWIFT_RUNNER_DOIACT_GRAV_H

/* Includes. */
#include "cell.h"
25
#include "gravity.h"
26
#include "inline.h"
27
28
#include "part.h"

Matthieu Schaller's avatar
Matthieu Schaller committed
29
30
31
32
33
34
35
36
/**
 * @brief Recursively propagate the multipoles down the tree by applying the
 * L2L and L2P kernels.
 *
 * @param r The #runner.
 * @param c The #cell we are working on.
 * @param timer Are we timing this ?
 */
37
38
void runner_do_grav_down(struct runner *r, struct cell *c, int timer) {

39
  /* Some constants */
40
  const struct engine *e = r->e;
41
42

  /* Cell properties */
43
44
  struct gpart *gparts = c->gparts;
  const int gcount = c->gcount;
45

46
  TIMER_TIC;
47

48
49
#ifdef SWIFT_DEBUG_CHECKS
  if (c->ti_old_multipole != e->ti_current) error("c->multipole not drifted.");
50
51
  if (c->multipole->pot.ti_init != e->ti_current)
    error("c->field tensor not initialised");
52
53
#endif

54
  if (c->split) { /* Node case */
55

56
    /* Add the field-tensor to all the 8 progenitors */
57
58
59
    for (int k = 0; k < 8; ++k) {
      struct cell *cp = c->progeny[k];

60
      /* Do we have a progenitor with any active g-particles ? */
61
      if (cp != NULL && cell_is_active_gravity(cp, e)) {
62

63
64
65
#ifdef SWIFT_DEBUG_CHECKS
        if (cp->ti_old_multipole != e->ti_current)
          error("cp->multipole not drifted.");
66
67
        if (cp->multipole->pot.ti_init != e->ti_current)
          error("cp->field tensor not initialised");
68
#endif
69
        struct grav_tensor shifted_tensor;
70

71
72
        /* If the tensor received any contribution, push it down */
        if (c->multipole->pot.interacted) {
73

74
75
76
77
78
79
80
          /* Shift the field tensor */
          gravity_L2L(&shifted_tensor, &c->multipole->pot, cp->multipole->CoM,
                      c->multipole->CoM);

          /* Add it to this level's tensor */
          gravity_field_tensors_add(&cp->multipole->pot, &shifted_tensor);
        }
81

82
        /* Recurse */
83
        runner_do_grav_down(r, cp, 0);
84
85
86
      }
    }

87
  } else { /* Leaf case */
88

89
90
91
    /* We can abort early if no interactions via multipole happened */
    if (!c->multipole->pot.interacted) return;

92
93
    if (!cell_are_gpart_drifted(c, e)) error("Un-drifted gparts");

94
95
    /* Apply accelerations to the particles */
    for (int i = 0; i < gcount; ++i) {
96
97

      /* Get a handle on the gpart */
98
      struct gpart *gp = &gparts[i];
99
100

      /* Update if active */
101
102
103
104
105
106
      if (gpart_is_active(gp, e)) {

#ifdef SWIFT_DEBUG_CHECKS
        /* Check that particles have been drifted to the current time */
        if (gp->ti_drift != e->ti_current)
          error("gpart not drifted to current time");
107
108
        if (c->multipole->pot.ti_init != e->ti_current)
          error("c->field tensor not initialised");
109
110
#endif

111
        /* Apply the kernel */
112
        gravity_L2P(&c->multipole->pot, c->multipole->CoM, gp);
113
      }
114
    }
115
  }
116
117

  if (timer) TIMER_TOC(timer_dograv_down);
118
119
}

120
121
122
123
124
125
126
127
/**
 * @brief Computes the interaction of the field tensor in a cell with the
 * multipole of another cell.
 *
 * @param r The #runner.
 * @param ci The #cell with field tensor to interact.
 * @param cj The #cell with the multipole.
 */
128
129
void runner_dopair_grav_mm(const struct runner *r, struct cell *restrict ci,
                           struct cell *restrict cj) {
130

131
  /* Some constants */
132
  const struct engine *e = r->e;
133
134
135
  const struct space *s = e->s;
  const int periodic = s->periodic;
  const double dim[3] = {s->dim[0], s->dim[1], s->dim[2]};
136
  const struct gravity_props *props = e->gravity_properties;
137
138
  // const float a_smooth = e->gravity_properties->a_smooth;
  // const float rlr_inv = 1. / (a_smooth * ci->super->width[0]);
139
140
141

  TIMER_TIC;

142
  /* Anything to do here? */
143
  if (!cell_is_active_gravity(ci, e) || ci->nodeID != engine_rank) return;
144

145
146
147
  /* Short-cut to the multipole */
  const struct multipole *multi_j = &cj->multipole->m_pole;

148
#ifdef SWIFT_DEBUG_CHECKS
149
150
  if (ci == cj) error("Interacting a cell with itself using M2L");

Matthieu Schaller's avatar
Matthieu Schaller committed
151
152
  if (multi_j->num_gpart == 0)
    error("Multipole does not seem to have been set.");
153

154
155
  if (ci->multipole->pot.ti_init != e->ti_current)
    error("ci->grav tensor not initialised.");
156
#endif
157

158
  /* Do we need to drift the multipole ? */
159
160
161
162
163
164
  if (cj->ti_old_multipole != e->ti_current)
    error(
        "Undrifted multipole cj->ti_old_multipole=%lld cj->nodeID=%d "
        "ci->nodeID=%d "
        "e->ti_current=%lld",
        cj->ti_old_multipole, cj->nodeID, ci->nodeID, e->ti_current);
165
166

  /* Let's interact at this level */
167
  gravity_M2L(&ci->multipole->pot, multi_j, ci->multipole->CoM,
168
              cj->multipole->CoM, props, periodic, dim);
169
170
171
172

  TIMER_TOC(timer_dopair_grav_mm);
}

173
174
175
176
177
178
179
static INLINE void runner_dopair_grav_pp_full(const struct engine *e,
                                              struct gravity_cache *ci_cache,
                                              struct gravity_cache *cj_cache,
                                              int gcount_i, int gcount_j,
                                              int gcount_padded_j,
                                              struct gpart *restrict gparts_i,
                                              struct gpart *restrict gparts_j) {
Matthieu Schaller's avatar
Matthieu Schaller committed
180

181
182
  TIMER_TIC;

183
184
  /* Loop over all particles in ci... */
  for (int pid = 0; pid < gcount_i; pid++) {
185

186
187
    /* Skip inactive particles */
    if (!ci_cache->active[pid]) continue;
188

189
190
    /* Skip particle that can use the multipole */
    if (ci_cache->use_mpole[pid]) continue;
191

192
193
194
195
#ifdef SWIFT_DEBUG_CHECKS
    if (!gpart_is_active(&gparts_i[pid], e))
      error("Active particle went through the cache");
#endif
196

197
198
199
    const float x_i = ci_cache->x[pid];
    const float y_i = ci_cache->y[pid];
    const float z_i = ci_cache->z[pid];
200

201
202
203
204
205
    /* Some powers of the softening length */
    const float h_i = ci_cache->epsilon[pid];
    const float h2_i = h_i * h_i;
    const float h_inv_i = 1.f / h_i;
    const float h_inv3_i = h_inv_i * h_inv_i * h_inv_i;
206

207
208
    /* Local accumulators for the acceleration */
    float a_x = 0.f, a_y = 0.f, a_z = 0.f;
209

210
211
212
213
214
215
    /* Make the compiler understand we are in happy vectorization land */
    swift_align_information(cj_cache->x, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(cj_cache->y, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(cj_cache->z, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(cj_cache->m, SWIFT_CACHE_ALIGNMENT);
    swift_assume_size(gcount_padded_j, VEC_SIZE);
216

217
218
    /* Loop over every particle in the other cell. */
    for (int pjd = 0; pjd < gcount_padded_j; pjd++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
219

220
221
222
223
224
      /* Get info about j */
      const float x_j = cj_cache->x[pjd];
      const float y_j = cj_cache->y[pjd];
      const float z_j = cj_cache->z[pjd];
      const float mass_j = cj_cache->m[pjd];
225

226
227
228
229
      /* Compute the pairwise (square) distance. */
      const float dx = x_i - x_j;
      const float dy = y_i - y_j;
      const float dz = z_i - z_j;
230
231
      const float r2 = dx * dx + dy * dy + dz * dz;

232
233
#ifdef SWIFT_DEBUG_CHECKS
      if (r2 == 0.f) error("Interacting particles with 0 distance");
234

235
236
237
238
239
240
      /* Check that particles have been drifted to the current time */
      if (gparts_i[pid].ti_drift != e->ti_current)
        error("gpi not drifted to current time");
      if (pjd < gcount_j && gparts_j[pjd].ti_drift != e->ti_current)
        error("gpj not drifted to current time");
#endif
241

242
243
244
245
246
247
248
249
      /* Interact! */
      float f_ij;
      runner_iact_grav_pp_full(r2, h2_i, h_inv_i, h_inv3_i, mass_j, &f_ij);

      /* Store it back */
      a_x -= f_ij * dx;
      a_y -= f_ij * dy;
      a_z -= f_ij * dz;
250
251

#ifdef SWIFT_DEBUG_CHECKS
252
253
      /* Update the interaction counter if it's not a padded gpart */
      if (pjd < gcount_j) gparts_i[pid].num_interacted++;
254
#endif
255
    }
256

257
258
259
260
261
    /* Store everything back in cache */
    ci_cache->a_x[pid] = a_x;
    ci_cache->a_y[pid] = a_y;
    ci_cache->a_z[pid] = a_z;
  }
262
263

  TIMER_TOC(timer_dopair_grav_pp);
264
}
265

266
267
268
269
270
static INLINE void runner_dopair_grav_pp_truncated(
    const struct engine *e, const float rlr_inv, struct gravity_cache *ci_cache,
    struct gravity_cache *cj_cache, int gcount_i, int gcount_j,
    int gcount_padded_j, struct gpart *restrict gparts_i,
    struct gpart *restrict gparts_j) {
271

272
273
  TIMER_TIC;

274
275
  /* Loop over all particles in ci... */
  for (int pid = 0; pid < gcount_i; pid++) {
276

277
278
    /* Skip inactive particles */
    if (!ci_cache->active[pid]) continue;
279

280
281
    /* Skip particle that can use the multipole */
    if (ci_cache->use_mpole[pid]) continue;
282
283

#ifdef SWIFT_DEBUG_CHECKS
284
285
    if (!gpart_is_active(&gparts_i[pid], e))
      error("Active particle went through the cache");
286
287
#endif

288
289
290
    const float x_i = ci_cache->x[pid];
    const float y_i = ci_cache->y[pid];
    const float z_i = ci_cache->z[pid];
291

292
293
294
295
296
    /* Some powers of the softening length */
    const float h_i = ci_cache->epsilon[pid];
    const float h2_i = h_i * h_i;
    const float h_inv_i = 1.f / h_i;
    const float h_inv3_i = h_inv_i * h_inv_i * h_inv_i;
297

298
299
    /* Local accumulators for the acceleration */
    float a_x = 0.f, a_y = 0.f, a_z = 0.f;
300

301
302
303
304
305
306
    /* Make the compiler understand we are in happy vectorization land */
    swift_align_information(cj_cache->x, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(cj_cache->y, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(cj_cache->z, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(cj_cache->m, SWIFT_CACHE_ALIGNMENT);
    swift_assume_size(gcount_padded_j, VEC_SIZE);
307

308
309
    /* Loop over every particle in the other cell. */
    for (int pjd = 0; pjd < gcount_padded_j; pjd++) {
310

311
      /* Get info about j */
312
313
314
      const float x_j = cj_cache->x[pjd];
      const float y_j = cj_cache->y[pjd];
      const float z_j = cj_cache->z[pjd];
315
      const float mass_j = cj_cache->m[pjd];
Matthieu Schaller's avatar
Matthieu Schaller committed
316

317
318
319
320
      /* Compute the pairwise (square) distance. */
      const float dx = x_i - x_j;
      const float dy = y_i - y_j;
      const float dz = z_i - z_j;
321
322
      const float r2 = dx * dx + dy * dy + dz * dz;

323
324
#ifdef SWIFT_DEBUG_CHECKS
      if (r2 == 0.f) error("Interacting particles with 0 distance");
325

326
327
328
329
330
331
      /* Check that particles have been drifted to the current time */
      if (gparts_i[pid].ti_drift != e->ti_current)
        error("gpi not drifted to current time");
      if (pjd < gcount_j && gparts_j[pjd].ti_drift != e->ti_current)
        error("gpj not drifted to current time");
#endif
332

333
334
335
336
337
338
339
340
341
      /* Interact! */
      float f_ij;
      runner_iact_grav_pp_truncated(r2, h2_i, h_inv_i, h_inv3_i, mass_j,
                                    rlr_inv, &f_ij);

      /* Store it back */
      a_x -= f_ij * dx;
      a_y -= f_ij * dy;
      a_z -= f_ij * dz;
342
343

#ifdef SWIFT_DEBUG_CHECKS
344
345
      /* Update the interaction counter if it's not a padded gpart */
      if (pjd < gcount_j) gparts_i[pid].num_interacted++;
346
#endif
347
    }
348

349
350
351
352
353
    /* Store everything back in cache */
    ci_cache->a_x[pid] = a_x;
    ci_cache->a_y[pid] = a_y;
    ci_cache->a_z[pid] = a_z;
  }
354
355

  TIMER_TOC(timer_dopair_grav_pp);
356
}
357

358
359
360
361
362
363
static INLINE void runner_dopair_grav_pm(
    const struct engine *restrict e, struct gravity_cache *ci_cache,
    int gcount_i, int gcount_padded_i, struct gpart *restrict gparts_i,
    const float CoM_j[3], const struct multipole *restrict multi_j,
    struct cell *restrict cj) {

364
365
  TIMER_TIC;

366
  /* Make the compiler understand we are in happy vectorization land */
367
368
369
370
371
372
373
374
375
376
377
378
  swift_declare_aligned_ptr(float, x, ci_cache->x, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, y, ci_cache->y, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, z, ci_cache->z, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, epsilon, ci_cache->epsilon,
                            SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, a_x, ci_cache->a_x, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, a_y, ci_cache->a_y, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(float, a_z, ci_cache->a_z, SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(int, active, ci_cache->active,
                            SWIFT_CACHE_ALIGNMENT);
  swift_declare_aligned_ptr(int, use_mpole, ci_cache->use_mpole,
                            SWIFT_CACHE_ALIGNMENT);
379
  swift_assume_size(gcount_padded_i, VEC_SIZE);
380

381
382
  /* Loop over all particles in ci... */
  for (int pid = 0; pid < gcount_padded_i; pid++) {
383

384
    /* Skip inactive particles */
385
    if (!active[pid]) continue;
386

387
    /* Skip particle that cannot use the multipole */
388
    if (!use_mpole[pid]) continue;
389
390

#ifdef SWIFT_DEBUG_CHECKS
391
392
    if (pid < gcount_i && !gpart_is_active(&gparts_i[pid], e))
      error("Active particle went through the cache");
393
394
#endif

395
396
397
    const float x_i = x[pid];
    const float y_i = y[pid];
    const float z_i = z[pid];
398
399

    /* Some powers of the softening length */
400
    const float h_i = epsilon[pid];
401
402
403
404
405
406
407
    const float h_inv_i = 1.f / h_i;

    /* Distance to the Multipole */
    const float dx = x_i - CoM_j[0];
    const float dy = y_i - CoM_j[1];
    const float dz = z_i - CoM_j[2];
    const float r2 = dx * dx + dy * dy + dz * dz;
Matthieu Schaller's avatar
Matthieu Schaller committed
408

409
410
411
412
413
414
    /* Interact! */
    float f_x, f_y, f_z;
    runner_iact_grav_pm(dx, dy, dz, r2, h_i, h_inv_i, multi_j, &f_x, &f_y,
                        &f_z);

    /* Store it back */
415
416
417
    a_x[pid] = f_x;
    a_y[pid] = f_y;
    a_z[pid] = f_z;
418
419

#ifdef SWIFT_DEBUG_CHECKS
420
421
422
    /* Update the interaction counter */
    if (pid < gcount_i)
      gparts_i[pid].num_interacted += cj->multipole->m_pole.num_gpart;
423
424
#endif
  }
425
426

  TIMER_TOC(timer_dopair_grav_pm);
427
428
429
430
}

/**
 * @brief Computes the interaction of all the particles in a cell with all the
431
 * particles of another cell (switching function between full and truncated).
432
433
434
435
436
 *
 * @param r The #runner.
 * @param ci The first #cell.
 * @param cj The other #cell.
 */
437
void runner_dopair_grav_pp(struct runner *r, struct cell *ci, struct cell *cj) {
438

439
440
441
442
443
  const struct engine *e = r->e;

  TIMER_TIC;

  /* Anything to do here? */
444
  if (!cell_is_active_gravity(ci, e) && !cell_is_active_gravity(cj, e)) return;
445
446
447
448
449
450
451
452
453

  /* Check that we are not doing something stupid */
  if (ci->split || cj->split) error("Running P-P on splitable cells");

  /* Let's start by drifting things */
  if (!cell_are_gpart_drifted(ci, e)) error("Un-drifted gparts");
  if (!cell_are_gpart_drifted(cj, e)) error("Un-drifted gparts");

  /* Recover some useful constants */
454
  struct space *s = e->s;
455
  const int periodic = s->periodic;
456
  const double cell_width = s->width[0];
457
  const float theta_crit2 = e->gravity_properties->theta_crit2;
458
459
  const double a_smooth = e->gravity_properties->a_smooth;
  const double r_cut_min = e->gravity_properties->r_cut_min;
460
  const double rlr = cell_width * a_smooth;
461
  const double min_trunc = rlr * r_cut_min;
462
463
464
465
466
467
  const float rlr_inv = 1. / rlr;

  /* Caches to play with */
  struct gravity_cache *const ci_cache = &r->ci_gravity_cache;
  struct gravity_cache *const cj_cache = &r->cj_gravity_cache;

468
469
470
471
472
  /* Get the distance vector between the pairs, wrapping. */
  double cell_shift[3];
  space_getsid(s, &ci, &cj, cell_shift);

  /* Record activity status */
473
474
  const int ci_active = cell_is_active_gravity(ci, e);
  const int cj_active = cell_is_active_gravity(cj, e);
475
476
477

  /* Do we need to drift the multipoles ? */
  if (cj_active && ci->ti_old_multipole != e->ti_current)
478
    error("Un-drifted multipole");
479
  if (ci_active && cj->ti_old_multipole != e->ti_current)
480
    error("Un-drifted multipole");
481
482
483
484
485

  /* Centre of the cell pair */
  const double loc[3] = {ci->loc[0],   // + 0. * ci->width[0],
                         ci->loc[1],   // + 0. * ci->width[1],
                         ci->loc[2]};  // + 0. * ci->width[2]};
486

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
  /* Shift to apply to the particles in each cell */
  const double shift_i[3] = {loc[0] + cell_shift[0], loc[1] + cell_shift[1],
                             loc[2] + cell_shift[2]};
  const double shift_j[3] = {loc[0], loc[1], loc[2]};

  /* Recover the multipole info and shift the CoM locations */
  const float rmax_i = ci->multipole->r_max;
  const float rmax_j = cj->multipole->r_max;
  const float rmax2_i = rmax_i * rmax_i;
  const float rmax2_j = rmax_j * rmax_j;
  const struct multipole *multi_i = &ci->multipole->m_pole;
  const struct multipole *multi_j = &cj->multipole->m_pole;
  const float CoM_i[3] = {ci->multipole->CoM[0] - shift_i[0],
                          ci->multipole->CoM[1] - shift_i[1],
                          ci->multipole->CoM[2] - shift_i[2]};
  const float CoM_j[3] = {cj->multipole->CoM[0] - shift_j[0],
                          cj->multipole->CoM[1] - shift_j[1],
                          cj->multipole->CoM[2] - shift_j[2]};

  /* Start by constructing particle caches */
507
508

  /* Computed the padded counts */
509
510
  const int gcount_i = ci->gcount;
  const int gcount_j = cj->gcount;
511
512
  const int gcount_padded_i = gcount_i - (gcount_i % VEC_SIZE) + VEC_SIZE;
  const int gcount_padded_j = gcount_j - (gcount_j % VEC_SIZE) + VEC_SIZE;
513

514
#ifdef SWIFT_DEBUG_CHECKS
515
  /* Check that we fit in cache */
Matthieu Schaller's avatar
Matthieu Schaller committed
516
517
518
  if (gcount_i > ci_cache->count || gcount_j > cj_cache->count)
    error("Not enough space in the caches! gcount_i=%d gcount_j=%d", gcount_i,
          gcount_j);
519
#endif
520

521
522
  /* Fill the caches */
  gravity_cache_populate(e->max_active_bin, ci_cache, ci->gparts, gcount_i,
523
524
                         gcount_padded_i, shift_i, CoM_j, rmax2_j, theta_crit2,
                         ci);
525
  gravity_cache_populate(e->max_active_bin, cj_cache, cj->gparts, gcount_j,
526
527
                         gcount_padded_j, shift_j, CoM_i, rmax2_i, theta_crit2,
                         cj);
528

529
530
  /* Can we use the Newtonian version or do we need the truncated one ? */
  if (!periodic) {
531

532
    /* Not periodic -> Can always use Newtonian potential */
Matthieu Schaller's avatar
Matthieu Schaller committed
533

534
535
    /* Let's updated the active cell(s) only */
    if (ci_active) {
536

537
538
539
      /* First the P2P */
      runner_dopair_grav_pp_full(e, ci_cache, cj_cache, gcount_i, gcount_j,
                                 gcount_padded_j, ci->gparts, cj->gparts);
540

541
542
543
      /* Then the M2P */
      runner_dopair_grav_pm(e, ci_cache, gcount_i, gcount_padded_i, ci->gparts,
                            CoM_j, multi_j, cj);
544
    }
545
546
547
548
549
550
551
552
    if (cj_active) {

      /* First the P2P */
      runner_dopair_grav_pp_full(e, cj_cache, ci_cache, gcount_j, gcount_i,
                                 gcount_padded_i, cj->gparts, ci->gparts);
      /* Then the M2P */
      runner_dopair_grav_pm(e, cj_cache, gcount_j, gcount_padded_j, cj->gparts,
                            CoM_i, multi_i, ci);
553
    }
554

555
  } else { /* Periodic BC */
556

557
558
559
560
    /* Get the relative distance between the CoMs */
    const double dx[3] = {CoM_j[0] - CoM_i[0], CoM_j[1] - CoM_i[1],
                          CoM_j[2] - CoM_i[2]};
    const double r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];
561
562

    /* Get the maximal distance between any two particles */
563
    const double max_r = sqrt(r2) + rmax_i + rmax_j;
564
565

    /* Do we need to use the truncated interactions ? */
566
567
568
569
570
    if (max_r > min_trunc) {

      /* Periodic but far-away cells must use the truncated potential */

      /* Let's updated the active cell(s) only */
571
572
573
      if (ci_active) {

        /* First the (truncated) P2P */
574
575
576
        runner_dopair_grav_pp_truncated(e, rlr_inv, ci_cache, cj_cache,
                                        gcount_i, gcount_j, gcount_padded_j,
                                        ci->gparts, cj->gparts);
577
578
579
580
581
582
583
584

        /* Then the M2P */
        runner_dopair_grav_pm(e, ci_cache, gcount_i, gcount_padded_i,
                              ci->gparts, CoM_j, multi_j, cj);
      }
      if (cj_active) {

        /* First the (truncated) P2P */
585
586
587
        runner_dopair_grav_pp_truncated(e, rlr_inv, cj_cache, ci_cache,
                                        gcount_j, gcount_i, gcount_padded_i,
                                        cj->gparts, ci->gparts);
588
589
590
591
592
593

        /* Then the M2P */
        runner_dopair_grav_pm(e, cj_cache, gcount_j, gcount_padded_j,
                              cj->gparts, CoM_i, multi_i, ci);
      }

594
595
596
597
598
    } else {

      /* Periodic but close-by cells can use the full Newtonian potential */

      /* Let's updated the active cell(s) only */
599
600
601
      if (ci_active) {

        /* First the (Newtonian) P2P */
602
603
        runner_dopair_grav_pp_full(e, ci_cache, cj_cache, gcount_i, gcount_j,
                                   gcount_padded_j, ci->gparts, cj->gparts);
604
605
606
607
608
609
610
611

        /* Then the M2P */
        runner_dopair_grav_pm(e, ci_cache, gcount_i, gcount_padded_i,
                              ci->gparts, CoM_j, multi_j, cj);
      }
      if (cj_active) {

        /* First the (Newtonian) P2P */
612
613
        runner_dopair_grav_pp_full(e, cj_cache, ci_cache, gcount_j, gcount_i,
                                   gcount_padded_i, cj->gparts, ci->gparts);
614
615
616
617
618

        /* Then the M2P */
        runner_dopair_grav_pm(e, cj_cache, gcount_j, gcount_padded_j,
                              cj->gparts, CoM_i, multi_i, ci);
      }
619
    }
620
  }
621

622
623
624
625
  /* Write back to the particles */
  if (ci_active) gravity_cache_write_back(ci_cache, ci->gparts, gcount_i);
  if (cj_active) gravity_cache_write_back(cj_cache, cj->gparts, gcount_j);

626
  TIMER_TOC(timer_dopair_grav_branch);
627
628
}

629
/**
630
631
 * @brief Computes the interaction of all the particles in a cell using the
 * full Newtonian potential.
632
633
 *
 * @param r The #runner.
Matthieu Schaller's avatar
Matthieu Schaller committed
634
 * @param c The #cell.
635
636
637
 *
 * @todo Use a local cache for the particles.
 */
638
void runner_doself_grav_pp_full(struct runner *r, struct cell *c) {
639

640
641
642
643
644
645
646
  /* Some constants */
  const struct engine *const e = r->e;
  struct gravity_cache *const ci_cache = &r->ci_gravity_cache;

  /* Cell properties */
  const int gcount = c->gcount;
  struct gpart *restrict gparts = c->gparts;
647
  const int c_active = cell_is_active_gravity(c, e);
648
649
650
  const double loc[3] = {c->loc[0] + 0.5 * c->width[0],
                         c->loc[1] + 0.5 * c->width[1],
                         c->loc[2] + 0.5 * c->width[2]};
651
652
653
654

  /* Anything to do here ?*/
  if (!c_active) return;

655
#ifdef SWIFT_DEBUG_CHECKS
656
657
  /* Check that we fit in cache */
  if (gcount > ci_cache->count)
658
    error("Not enough space in the cache! gcount=%d", gcount);
659
#endif
660
661
662
663

  /* Computed the padded counts */
  const int gcount_padded = gcount - (gcount % VEC_SIZE) + VEC_SIZE;

664
  gravity_cache_populate_no_mpole(e->max_active_bin, ci_cache, gparts, gcount,
665
                                  gcount_padded, loc, c);
666
667
668
669
670

  /* Ok... Here we go ! */

  /* Loop over all particles in ci... */
  for (int pid = 0; pid < gcount; pid++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
671

672
    /* Skip inactive particles */
673
    if (!ci_cache->active[pid]) continue;
Matthieu Schaller's avatar
Matthieu Schaller committed
674

675
676
677
    const float x_i = ci_cache->x[pid];
    const float y_i = ci_cache->y[pid];
    const float z_i = ci_cache->z[pid];
Matthieu Schaller's avatar
Matthieu Schaller committed
678

679
680
681
682
683
    /* Some powers of the softening length */
    const float h_i = ci_cache->epsilon[pid];
    const float h2_i = h_i * h_i;
    const float h_inv_i = 1.f / h_i;
    const float h_inv3_i = h_inv_i * h_inv_i * h_inv_i;
Matthieu Schaller's avatar
Matthieu Schaller committed
684

685
686
    /* Local accumulators for the acceleration */
    float a_x = 0.f, a_y = 0.f, a_z = 0.f;
Matthieu Schaller's avatar
Matthieu Schaller committed
687

688
689
690
691
692
693
    /* Make the compiler understand we are in happy vectorization land */
    swift_align_information(ci_cache->x, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(ci_cache->y, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(ci_cache->z, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(ci_cache->m, SWIFT_CACHE_ALIGNMENT);
    swift_assume_size(gcount_padded, VEC_SIZE);
Matthieu Schaller's avatar
Matthieu Schaller committed
694

695
696
    /* Loop over every other particle in the cell. */
    for (int pjd = 0; pjd < gcount_padded; pjd++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
697

698
      /* No self interaction */
Matthieu Schaller's avatar
Matthieu Schaller committed
699
      if (pid == pjd) continue;
700
701
702
703
704
705

      /* Get info about j */
      const float x_j = ci_cache->x[pjd];
      const float y_j = ci_cache->y[pjd];
      const float z_j = ci_cache->z[pjd];
      const float mass_j = ci_cache->m[pjd];
Matthieu Schaller's avatar
Matthieu Schaller committed
706

707
708
709
710
711
      /* Compute the pairwise (square) distance. */
      const float dx = x_i - x_j;
      const float dy = y_i - y_j;
      const float dz = z_i - z_j;
      const float r2 = dx * dx + dy * dy + dz * dz;
Matthieu Schaller's avatar
Matthieu Schaller committed
712

713
714
#ifdef SWIFT_DEBUG_CHECKS
      if (r2 == 0.f) error("Interacting particles with 0 distance");
Matthieu Schaller's avatar
Matthieu Schaller committed
715

716
717
      /* Check that particles have been drifted to the current time */
      if (gparts[pid].ti_drift != e->ti_current)
Matthieu Schaller's avatar
Matthieu Schaller committed
718
        error("gpi not drifted to current time");
719
      if (pjd < gcount && gparts[pjd].ti_drift != e->ti_current)
Matthieu Schaller's avatar
Matthieu Schaller committed
720
        error("gpj not drifted to current time");
721
#endif
Matthieu Schaller's avatar
Matthieu Schaller committed
722

723
724
725
      /* Interact! */
      float f_ij;
      runner_iact_grav_pp_full(r2, h2_i, h_inv_i, h_inv3_i, mass_j, &f_ij);
Matthieu Schaller's avatar
Matthieu Schaller committed
726

727
728
729
730
      /* Store it back */
      a_x -= f_ij * dx;
      a_y -= f_ij * dy;
      a_z -= f_ij * dz;
Matthieu Schaller's avatar
Matthieu Schaller committed
731

732
733
734
735
736
#ifdef SWIFT_DEBUG_CHECKS
      /* Update the interaction counter if it's not a padded gpart */
      if (pjd < gcount) gparts[pid].num_interacted++;
#endif
    }
Matthieu Schaller's avatar
Matthieu Schaller committed
737

738
    /* Store everything back in cache */
739
740
741
    ci_cache->a_x[pid] = a_x;
    ci_cache->a_y[pid] = a_y;
    ci_cache->a_z[pid] = a_z;
742
743
  }

744
  /* Write back to the particles */
745
  gravity_cache_write_back(ci_cache, gparts, gcount);
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
}

/**
 * @brief Computes the interaction of all the particles in a cell using the
 * truncated Newtonian potential.
 *
 * @param r The #runner.
 * @param c The #cell.
 *
 * @todo Use a local cache for the particles.
 */
void runner_doself_grav_pp_truncated(struct runner *r, struct cell *c) {

  /* Some constants */
  const struct engine *const e = r->e;
  const struct space *s = e->s;
  const double cell_width = s->width[0];
  const double a_smooth = e->gravity_properties->a_smooth;
  const double rlr = cell_width * a_smooth;
  const float rlr_inv = 1. / rlr;

767
768
769
770
771
772
  /* Caches to play with */
  struct gravity_cache *const ci_cache = &r->ci_gravity_cache;

  /* Cell properties */
  const int gcount = c->gcount;
  struct gpart *restrict gparts = c->gparts;
773
  const int c_active = cell_is_active_gravity(c, e);
774
775
776
  const double loc[3] = {c->loc[0] + 0.5 * c->width[0],
                         c->loc[1] + 0.5 * c->width[1],
                         c->loc[2] + 0.5 * c->width[2]};
777
778
779
780

  /* Anything to do here ?*/
  if (!c_active) return;

781
#ifdef SWIFT_DEBUG_CHECKS
782
783
  /* Check that we fit in cache */
  if (gcount > ci_cache->count)
784
    error("Not enough space in the caches! gcount=%d", gcount);
785
#endif
786
787
788
789

  /* Computed the padded counts */
  const int gcount_padded = gcount - (gcount % VEC_SIZE) + VEC_SIZE;

790
  gravity_cache_populate_no_mpole(e->max_active_bin, ci_cache, gparts, gcount,
791
                                  gcount_padded, loc, c);
792
793
794
795
796

  /* Ok... Here we go ! */

  /* Loop over all particles in ci... */
  for (int pid = 0; pid < gcount; pid++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
797

798
    /* Skip inactive particles */
799
    if (!ci_cache->active[pid]) continue;
Matthieu Schaller's avatar
Matthieu Schaller committed
800

801
802
803
    const float x_i = ci_cache->x[pid];
    const float y_i = ci_cache->y[pid];
    const float z_i = ci_cache->z[pid];
Matthieu Schaller's avatar
Matthieu Schaller committed
804

805
806
807
808
809
    /* Some powers of the softening length */
    const float h_i = ci_cache->epsilon[pid];
    const float h2_i = h_i * h_i;
    const float h_inv_i = 1.f / h_i;
    const float h_inv3_i = h_inv_i * h_inv_i * h_inv_i;
Matthieu Schaller's avatar
Matthieu Schaller committed
810

811
812
    /* Local accumulators for the acceleration */
    float a_x = 0.f, a_y = 0.f, a_z = 0.f;
Matthieu Schaller's avatar
Matthieu Schaller committed
813

814
815
816
817
818
819
    /* Make the compiler understand we are in happy vectorization land */
    swift_align_information(ci_cache->x, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(ci_cache->y, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(ci_cache->z, SWIFT_CACHE_ALIGNMENT);
    swift_align_information(ci_cache->m, SWIFT_CACHE_ALIGNMENT);
    swift_assume_size(gcount_padded, VEC_SIZE);
Matthieu Schaller's avatar
Matthieu Schaller committed
820

821
822
    /* Loop over every other particle in the cell. */
    for (int pjd = 0; pjd < gcount_padded; pjd++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
823

824
      /* No self interaction */
Matthieu Schaller's avatar
Matthieu Schaller committed
825
      if (pid == pjd) continue;
826
827
828
829
830
831

      /* Get info about j */
      const float x_j = ci_cache->x[pjd];
      const float y_j = ci_cache->y[pjd];
      const float z_j = ci_cache->z[pjd];
      const float mass_j = ci_cache->m[pjd];
Matthieu Schaller's avatar
Matthieu Schaller committed
832

833
834
835
836
837
      /* Compute the pairwise (square) distance. */
      const float dx = x_i - x_j;
      const float dy = y_i - y_j;
      const float dz = z_i - z_j;
      const float r2 = dx * dx + dy * dy + dz * dz;
Matthieu Schaller's avatar
Matthieu Schaller committed
838

839
840
#ifdef SWIFT_DEBUG_CHECKS
      if (r2 == 0.f) error("Interacting particles with 0 distance");
Matthieu Schaller's avatar
Matthieu Schaller committed
841

842
843
      /* Check that particles have been drifted to the current time */
      if (gparts[pid].ti_drift != e->ti_current)
Matthieu Schaller's avatar
Matthieu Schaller committed
844
        error("gpi not drifted to current time");
845
      if (pjd < gcount && gparts[pjd].ti_drift != e->ti_current)
Matthieu Schaller's avatar
Matthieu Schaller committed
846
        error("gpj not drifted to current time");
847
#endif
Matthieu Schaller's avatar
Matthieu Schaller committed
848

849
850
851
852
      /* Interact! */
      float f_ij;
      runner_iact_grav_pp_truncated(r2, h2_i, h_inv_i, h_inv3_i, mass_j,
                                    rlr_inv, &f_ij);
853
854
855
856
857

      /* Store it back */
      a_x -= f_ij * dx;
      a_y -= f_ij * dy;
      a_z -= f_ij * dz;
Matthieu Schaller's avatar
Matthieu Schaller committed
858

859
860
861
862
863
#ifdef SWIFT_DEBUG_CHECKS
      /* Update the interaction counter if it's not a padded gpart */
      if (pjd < gcount) gparts[pid].num_interacted++;
#endif
    }
Matthieu Schaller's avatar
Matthieu Schaller committed
864

865
    /* Store everything back in cache */
866
867
868
    ci_cache->a_x[pid] = a_x;
    ci_cache->a_y[pid] = a_y;
    ci_cache->a_z[pid] = a_z;
869
870
  }

871
  /* Write back to the particles */
872
  gravity_cache_write_back(ci_cache, gparts, gcount);
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
}

/**
 * @brief Computes the interaction of all the particles in a cell directly
 * (Switching function between truncated and full)
 *
 * @param r The #runner.
 * @param c The #cell.
 */
void runner_doself_grav_pp(struct runner *r, struct cell *c) {

  /* Some properties of the space */
  const struct engine *e = r->e;
  const struct space *s = e->s;
  const int periodic = s->periodic;
  const double cell_width = s->width[0];
  const double a_smooth = e->gravity_properties->a_smooth;
  const double r_cut_min = e->gravity_properties->r_cut_min;
  const double min_trunc = cell_width * r_cut_min * a_smooth;

  TIMER_TIC;

#ifdef SWIFT_DEBUG_CHECKS
  if (c->gcount == 0) error("Doing self gravity on an empty cell !");
#endif

  /* Anything to do here? */
900
  if (!cell_is_active_gravity(c, e)) return;
901

902
903
904
  /* Check that we are not doing something stupid */
  if (c->split) error("Running P-P on a splitable cell");

905
  /* Do we need to start by drifting things ? */
906
  if (!cell_are_gpart_drifted(c, e)) error("Un-drifted gparts");
907
908
909
910
911
912
913

  /* Can we use the Newtonian version or do we need the truncated one ? */
  if (!periodic) {
    runner_doself_grav_pp_full(r, c);
  } else {

    /* Get the maximal distance between any two particles */
914
    const double max_r = 2. * c->multipole->r_max;
915
916
917
918
919
920
921

    /* Do we need to use the truncated interactions ? */
    if (max_r > min_trunc)
      runner_doself_grav_pp_truncated(r, c);
    else
      runner_doself_grav_pp_full(r, c);
  }
922

923
  TIMER_TOC(timer_doself_grav_pp);
924
925
}

Matthieu Schaller's avatar
Matthieu Schaller committed
926
927
928
929
930
931
932
/**
 * @brief Computes the interaction of all the particles in a cell with all the
 * particles of another cell.
 *
 * @param r The #runner.
 * @param ci The first #cell.
 * @param cj The other #cell.
933
 * @param gettimer Are we timing this ?
Matthieu Schaller's avatar
Matthieu Schaller committed
934
935
936
 *
 * @todo Use a local cache for the particles.
 */
937
938
void runner_dopair_grav(struct runner *r, struct cell *ci, struct cell *cj,
                        int gettimer) {
Matthieu Schaller's avatar
Matthieu Schaller committed
939

940
941
  /* Some constants */
  const struct engine *e = r->e;
942
  const struct space *s = e->s;
943
  const int nodeID = e->nodeID;
944
  const int periodic = s->periodic;
945
  const double cell_width = s->width[0];
946
  const double dim[3] = {s->dim[0], s->dim[1], s->dim[2]};
947
  const struct gravity_props *props = e->gravity_properties;
948
  const double theta_crit2 = props->theta_crit2;
949
950
  const double max_distance = props->a_smooth * props->r_cut_max * cell_width;
  const double max_distance2 = max_distance * max_distance;
951

952
  /* Anything to do here? */
953
954
  if (!((cell_is_active_gravity(ci, e) && ci->nodeID == nodeID) ||
        (cell_is_active_gravity(cj, e) && cj->nodeID == nodeID)))
955
956
    return;

Matthieu Schaller's avatar
Matthieu Schaller committed
957
#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
958

Matthieu Schaller's avatar
Matthieu Schaller committed
959
960
961
962
  const int gcount_i = ci->gcount;
  const int gcount_j = cj->gcount;

  /* Early abort? */
Matthieu Schaller's avatar
Matthieu Schaller committed
963
964
  if (gcount_i == 0 || gcount_j == 0)
    error("Doing pair gravity on an empty cell !");
Matthieu Schaller's avatar
Matthieu Schaller committed
965
966

  /* Sanity check */
967
  if (ci == cj) error("Pair interaction between a cell and itself.");
968

969
  if (cell_is_active_gravity(ci, e) && ci->ti_old_multipole != e->ti_current)
970
    error("ci->multipole not drifted.");
971
  if (cell_is_active_gravity(cj, e) && cj->ti_old_multipole != e->ti_current)
972
    error("cj->multipole not drifted.");
973
974
#endif

975
  TIMER_TIC;
976

977
978
979
  /* Recover the multipole information */
  struct gravity_tensors *const multi_i = ci->multipole;
  struct gravity_tensors *const multi_j = cj->multipole;
980

981
  /* Get the distance between the CoMs */
982
983
984
  double dx = multi_i->CoM[0] - multi_j->CoM[0];
  double dy = multi_i->CoM[1] - multi_j->CoM[1];
  double dz = multi_i->CoM[2] - multi_j->CoM[2];
985

986
987
988
989
990
  /* Apply BC */
  if (periodic) {
    dx = nearest(dx, dim[0]);
    dy = nearest(dy, dim[1]);
    dz = nearest(dz, dim[2]);
991
  }
992
  const double r2 = dx * dx + dy * dy + dz * dz;
993

994
995
  /* Are we beyond the distance where the truncated forces are 0? */
  if (periodic && r2 > max_distance2) {