test125cells.c 23 KB
Newer Older
1
2
/*******************************************************************************
 * This file is part of SWIFT.
3
 * Copyright (C) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk).
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

20
21
22
23
/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
24
25
26
27
28
29
#include <fenv.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

30
31
/* Local headers. */
#include "swift.h"
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
enum velocity_field {
  velocity_zero,
  velocity_const,
  velocity_divergent,
  velocity_rotating
};

enum pressure_field { pressure_const, pressure_gradient, pressure_divergent };

void set_velocity(struct part *part, enum velocity_field vel, float size) {

  switch (vel) {
    case velocity_zero:
      part->v[0] = 0.f;
      part->v[1] = 0.f;
      part->v[2] = 0.f;
      break;
    case velocity_const:
      part->v[0] = 1.f;
      part->v[1] = 0.f;
      part->v[2] = 0.f;
      break;
    case velocity_divergent:
      part->v[0] = part->x[0] - 2.5 * size;
      part->v[1] = part->x[1] - 2.5 * size;
      part->v[2] = part->x[2] - 2.5 * size;
      break;
    case velocity_rotating:
      part->v[0] = part->x[1];
      part->v[1] = -part->x[0];
      part->v[2] = 0.f;
      break;
  }
}

float get_pressure(double x[3], enum pressure_field press, float size) {

  float r2 = 0.;
  float dx[3] = {0.f};

  switch (press) {
    case pressure_const:
      return 1.5f;
      break;
    case pressure_gradient:
      return 1.5f * x[0]; /* gradient along x */
      break;
    case pressure_divergent:
      dx[0] = x[0] - 2.5 * size;
      dx[1] = x[1] - 2.5 * size;
      dx[2] = x[2] - 2.5 * size;
      r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];
      return sqrt(r2) + 1.5f;
      break;
  }
  return 0.f;
}

void set_energy_state(struct part *part, enum pressure_field press, float size,
                      float density) {

  const float pressure = get_pressure(part->x, press, size);

#if defined(GADGET2_SPH)
  part->entropy = pressure / pow_gamma(density);
98
99
#elif defined(DEFAULT_SPH)
  part->u = pressure / (hydro_gamma_minus_one * density);
Matthieu Schaller's avatar
Matthieu Schaller committed
100
101
#elif defined(MINIMAL_SPH)
  part->u = pressure / (hydro_gamma_minus_one * density);
102
#elif defined(GIZMO_SPH) || defined(SHADOWSWIFT)
103
  part->primitives.P = pressure;
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#else
  error("Need to define pressure here !");
#endif
}

struct solution_part {

  long long id;
  double x[3];
  float v[3];
  float a_hydro[3];
  float h;
  float rho;
  float div_v;
  float S;
  float u;
  float P;
  float c;
  float h_dt;
  float v_sig;
  float S_dt;
  float u_dt;
};

void get_solution(const struct cell *main_cell, struct solution_part *solution,
                  float density, enum velocity_field vel,
                  enum pressure_field press, float size) {

132
  for (int i = 0; i < main_cell->count; ++i) {
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

    solution[i].id = main_cell->parts[i].id;

    solution[i].x[0] = main_cell->parts[i].x[0];
    solution[i].x[1] = main_cell->parts[i].x[1];
    solution[i].x[2] = main_cell->parts[i].x[2];

    solution[i].v[0] = main_cell->parts[i].v[0];
    solution[i].v[1] = main_cell->parts[i].v[1];
    solution[i].v[2] = main_cell->parts[i].v[2];

    solution[i].h = main_cell->parts[i].h;

    solution[i].rho = density;

    solution[i].P = get_pressure(solution[i].x, press, size);
    solution[i].u = solution[i].P / (solution[i].rho * hydro_gamma_minus_one);
    solution[i].S = solution[i].P / pow_gamma(solution[i].rho);
    solution[i].c = sqrt(hydro_gamma * solution[i].P / solution[i].rho);

    if (vel == velocity_divergent)
      solution[i].div_v = 3.f;
    else
      solution[i].div_v = 0.f;

    solution[i].h_dt = solution[i].h * solution[i].div_v / 3.;

    float gradP[3] = {0.f};
    if (press == pressure_gradient) {
      gradP[0] = 1.5f;
      gradP[1] = 0.f;
      gradP[2] = 0.f;
    } else if (press == pressure_divergent) {
      float dx[3];
      dx[0] = solution[i].x[0] - 2.5 * size;
      dx[1] = solution[i].x[1] - 2.5 * size;
      dx[2] = solution[i].x[2] - 2.5 * size;
      float r = sqrt(dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2]);
      if (r > 0.) {
        gradP[0] = dx[0] / r;
        gradP[1] = dx[1] / r;
        gradP[2] = dx[2] / r;
      }
    }

    solution[i].a_hydro[0] = -gradP[0] / solution[i].rho;
    solution[i].a_hydro[1] = -gradP[1] / solution[i].rho;
    solution[i].a_hydro[2] = -gradP[2] / solution[i].rho;

    solution[i].v_sig = 2.f * solution[i].c;
183
184
185

    solution[i].S_dt = 0.f;
    solution[i].u_dt = -(solution[i].P / solution[i].rho) * solution[i].div_v;
186
187
188
  }
}

189
190
191
void reset_particles(struct cell *c, enum velocity_field vel,
                     enum pressure_field press, float size, float density) {

192
  for (int i = 0; i < c->count; ++i) {
193
194
195
196
197

    struct part *p = &c->parts[i];

    set_velocity(p, vel, size);
    set_energy_state(p, press, size, density);
Bert Vandenbroucke's avatar
Bert Vandenbroucke committed
198

199
#if defined(GIZMO_SPH) || defined(SHADOWSWIFT)
200
    float volume = p->conserved.mass / density;
201
202
203
204
205
#if defined(GIZMO_SPH)
    p->geometry.volume = volume;
#else
    p->cell.volume = volume;
#endif
Bert Vandenbroucke's avatar
Bert Vandenbroucke committed
206
207
208
209
210
211
212
213
    p->primitives.rho = density;
    p->primitives.v[0] = p->v[0];
    p->primitives.v[1] = p->v[1];
    p->primitives.v[2] = p->v[2];
    p->conserved.momentum[0] = p->conserved.mass * p->v[0];
    p->conserved.momentum[1] = p->conserved.mass * p->v[1];
    p->conserved.momentum[2] = p->conserved.mass * p->v[2];
    p->conserved.energy =
214
        p->primitives.P / hydro_gamma_minus_one * volume +
Bert Vandenbroucke's avatar
Bert Vandenbroucke committed
215
216
217
218
219
        0.5f * (p->conserved.momentum[0] * p->conserved.momentum[0] +
                p->conserved.momentum[1] * p->conserved.momentum[1] +
                p->conserved.momentum[2] * p->conserved.momentum[2]) /
            p->conserved.mass;
#endif
220
221
222
  }
}

223
224
/**
 * @brief Constructs a cell and all of its particle in a valid state prior to
225
 * a SPH time-step.
226
227
228
229
230
 *
 * @param n The cube root of the number of particles.
 * @param offset The position of the cell offset from (0,0,0).
 * @param size The cell size.
 * @param h The smoothing length of the particles in units of the inter-particle
231
 * separation.
232
233
 * @param density The density of the fluid.
 * @param partId The running counter of IDs.
234
235
 * @param vel The type of velocity field.
 * @param press The type of pressure field.
236
 */
237
struct cell *make_cell(size_t n, const double offset[3], double size, double h,
238
239
                       double density, long long *partId,
                       enum velocity_field vel, enum pressure_field press) {
240

241
242
243
244
245
246
  const size_t count = n * n * n;
  const double volume = size * size * size;
  struct cell *cell = malloc(sizeof(struct cell));
  bzero(cell, sizeof(struct cell));

  if (posix_memalign((void **)&cell->parts, part_align,
247
                     count * sizeof(struct part)) != 0)
248
    error("couldn't allocate particles, no. of particles: %d", (int)count);
249
250
251
  if (posix_memalign((void **)&cell->xparts, xpart_align,
                     count * sizeof(struct xpart)) != 0)
    error("couldn't allocate particles, no. of x-particles: %d", (int)count);
252
  bzero(cell->parts, count * sizeof(struct part));
253
  bzero(cell->xparts, count * sizeof(struct xpart));
254
255
256

  /* Construct the parts */
  struct part *part = cell->parts;
257
  struct xpart *xpart = cell->xparts;
258
259
260
  for (size_t x = 0; x < n; ++x) {
    for (size_t y = 0; y < n; ++y) {
      for (size_t z = 0; z < n; ++z) {
261
262
263
        part->x[0] = offset[0] + size * (x + 0.5) / (float)n;
        part->x[1] = offset[1] + size * (y + 0.5) / (float)n;
        part->x[2] = offset[2] + size * (z + 0.5) / (float)n;
264
        part->h = size * h / (float)n;
265

266
#if defined(GIZMO_SPH) || defined(SHADOWSWIFT)
267
        part->conserved.mass = density * volume / count;
268
#else
269
        part->mass = density * volume / count;
270
#endif
271
272
273
274
275

        set_velocity(part, vel, size);
        set_energy_state(part, press, size, density);

        part->id = ++(*partId);
276
277
        part->ti_begin = 0;
        part->ti_end = 1;
278

279
        hydro_first_init_part(part, xpart);
280

281
#if defined(GIZMO_SPH) || defined(SHADOWSWIFT)
282
        float volume = part->conserved.mass / density;
283
284
285
286
287
#ifdef GIZMO_SPH
        part->geometry.volume = volume;
#else
        part->cell.volume = volume;
#endif
288
289
290
291
292
293
294
295
        part->primitives.rho = density;
        part->primitives.v[0] = part->v[0];
        part->primitives.v[1] = part->v[1];
        part->primitives.v[2] = part->v[2];
        part->conserved.momentum[0] = part->conserved.mass * part->v[0];
        part->conserved.momentum[1] = part->conserved.mass * part->v[1];
        part->conserved.momentum[2] = part->conserved.mass * part->v[2];
        part->conserved.energy =
296
            part->primitives.P / hydro_gamma_minus_one * volume +
297
298
299
300
301
302
            0.5f * (part->conserved.momentum[0] * part->conserved.momentum[0] +
                    part->conserved.momentum[1] * part->conserved.momentum[1] +
                    part->conserved.momentum[2] * part->conserved.momentum[2]) /
                part->conserved.mass;
#endif

303
        ++part;
304
        ++xpart;
305
306
307
308
309
310
311
312
      }
    }
  }

  /* Cell properties */
  cell->split = 0;
  cell->h_max = h;
  cell->count = count;
313
  cell->gcount = 0;
314
  cell->dx_max = 0.;
Matthieu Schaller's avatar
Matthieu Schaller committed
315
316
317
  cell->width[0] = size;
  cell->width[1] = size;
  cell->width[2] = size;
318
319
320
321
322
323
324
  cell->loc[0] = offset[0];
  cell->loc[1] = offset[1];
  cell->loc[2] = offset[2];

  cell->ti_end_min = 1;
  cell->ti_end_max = 1;

325
  // shuffle_particles(cell->parts, cell->count);
326
327
328
329
330
331
332
333
334
335

  cell->sorted = 0;
  cell->sort = NULL;
  cell->sortsize = 0;

  return cell;
}

void clean_up(struct cell *ci) {
  free(ci->parts);
336
  free(ci->xparts);
337
338
339
340
341
342
343
344
  free(ci->sort);
  free(ci);
}

/**
 * @brief Dump all the particles to a file
 */
void dump_particle_fields(char *fileName, struct cell *main_cell,
345
                          struct solution_part *solution, int with_solution) {
346
347
348
349
  FILE *file = fopen(fileName, "w");

  /* Write header */
  fprintf(file,
350
351
352
353
354
          "# %4s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s "
          "%8s %8s %8s %8s %8s\n",
          "ID", "pos_x", "pos_y", "pos_z", "v_x", "v_y", "v_z", "h", "rho",
          "div_v", "S", "u", "P", "c", "a_x", "a_y", "a_z", "h_dt", "v_sig",
          "dS/dt", "du/dt");
355
356
357
358

  fprintf(file, "# Main cell --------------------------------------------\n");

  /* Write main cell */
359
  for (int pid = 0; pid < main_cell->count; pid++) {
360
    fprintf(file,
361
362
363
            "%6llu %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f "
            "%8.5f "
            "%8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f\n",
364
365
366
            main_cell->parts[pid].id, main_cell->parts[pid].x[0],
            main_cell->parts[pid].x[1], main_cell->parts[pid].x[2],
            main_cell->parts[pid].v[0], main_cell->parts[pid].v[1],
367
            main_cell->parts[pid].v[2], main_cell->parts[pid].h,
368
            hydro_get_density(&main_cell->parts[pid]),
369
#if defined(MINIMAL_SPH) || defined(SHADOWSWIFT)
Matthieu Schaller's avatar
Matthieu Schaller committed
370
            0.f,
Matthieu Schaller's avatar
Matthieu Schaller committed
371
#else
Matthieu Schaller's avatar
Matthieu Schaller committed
372
373
            main_cell->parts[pid].density.div_v,
#endif
374
375
376
377
378
379
            hydro_get_entropy(&main_cell->parts[pid], 0.f),
            hydro_get_internal_energy(&main_cell->parts[pid], 0.f),
            hydro_get_pressure(&main_cell->parts[pid], 0.f),
            hydro_get_soundspeed(&main_cell->parts[pid], 0.f),
            main_cell->parts[pid].a_hydro[0], main_cell->parts[pid].a_hydro[1],
            main_cell->parts[pid].a_hydro[2], main_cell->parts[pid].force.h_dt,
380
#if defined(GADGET2_SPH)
381
382
            main_cell->parts[pid].force.v_sig, main_cell->parts[pid].entropy_dt,
            0.f
383
#elif defined(DEFAULT_SPH)
384
385
            main_cell->parts[pid].force.v_sig, 0.f,
            main_cell->parts[pid].force.u_dt
Matthieu Schaller's avatar
Matthieu Schaller committed
386
#elif defined(MINIMAL_SPH)
387
            main_cell->parts[pid].force.v_sig, 0.f, main_cell->parts[pid].u_dt
388
#else
389
            0.f, 0.f, 0.f
390
#endif
Matthieu Schaller's avatar
Matthieu Schaller committed
391
            );
392
393
  }

394
395
396
397
  if (with_solution) {

    fprintf(file, "# Solution ---------------------------------------------\n");

398
    for (int pid = 0; pid < main_cell->count; pid++) {
399
400
401
402
403
404
405
406
407
408
      fprintf(file,
              "%6llu %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f "
              "%8.5f %8.5f "
              "%8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f\n",
              solution[pid].id, solution[pid].x[0], solution[pid].x[1],
              solution[pid].x[2], solution[pid].v[0], solution[pid].v[1],
              solution[pid].v[2], solution[pid].h, solution[pid].rho,
              solution[pid].div_v, solution[pid].S, solution[pid].u,
              solution[pid].P, solution[pid].c, solution[pid].a_hydro[0],
              solution[pid].a_hydro[1], solution[pid].a_hydro[2],
409
410
              solution[pid].h_dt, solution[pid].v_sig, solution[pid].S_dt,
              solution[pid].u_dt);
411
412
    }
  }
413

414
415
416
417
418
419
  fclose(file);
}

/* Just a forward declaration... */
void runner_dopair1_density(struct runner *r, struct cell *ci, struct cell *cj);
void runner_doself1_density(struct runner *r, struct cell *ci);
420
421
void runner_dopair2_force(struct runner *r, struct cell *ci, struct cell *cj);
void runner_doself2_force(struct runner *r, struct cell *ci);
422

423
424
425
426
#if defined(SHADOWSWIFT) && defined(HYDRO_DIMENSION_3D)
VORONOI3D_DECLARE_GLOBAL_VARIABLES()
#endif

427
428
/* And go... */
int main(int argc, char *argv[]) {
429

430
  size_t runs = 0, particles = 0;
431
  double h = 1.23485, size = 1., rho = 2.5;
432
433
  char outputFileNameExtension[200] = "";
  char outputFileName[200] = "";
434
435
  enum velocity_field vel = velocity_zero;
  enum pressure_field press = pressure_const;
436
437
438
439
440

  /* Initialize CPU frequency, this also starts time. */
  unsigned long long cpufreq = 0;
  clocks_set_cpufreq(cpufreq);

441
  /* Choke on FP-exceptions */
442
  feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
443

444
445
446
  /* Get some randomness going */
  srand(0);

447
448
449
450
451
452
#if defined(SHADOWSWIFT) && defined(HYDRO_DIMENSION_3D)
  float box_anchor[3] = {-2.0f, -2.0f, -2.0f};
  float box_side[3] = {8.0f, 8.0f, 8.0f};
  voronoi_set_box(box_anchor, box_side);
#endif

453
  char c;
454
  while ((c = getopt(argc, argv, "m:s:h:n:r:t:d:f:v:p:")) != -1) {
455
456
457
458
459
460
461
    switch (c) {
      case 'h':
        sscanf(optarg, "%lf", &h);
        break;
      case 's':
        sscanf(optarg, "%lf", &size);
        break;
462
      case 'n':
463
464
465
466
467
468
469
470
471
472
473
        sscanf(optarg, "%zu", &particles);
        break;
      case 'r':
        sscanf(optarg, "%zu", &runs);
        break;
      case 'm':
        sscanf(optarg, "%lf", &rho);
        break;
      case 'f':
        strcpy(outputFileNameExtension, optarg);
        break;
474
475
476
477
478
479
      case 'v':
        sscanf(optarg, "%d", (int *)&vel);
        break;
      case 'p':
        sscanf(optarg, "%d", (int *)&press);
        break;
480
481
482
483
484
485
486
487
      case '?':
        error("Unknown option.");
        break;
    }
  }

  if (h < 0 || particles == 0 || runs == 0) {
    printf(
488
489
490
491
492
        "\nUsage: %s -n PARTICLES_PER_AXIS -r NUMBER_OF_RUNS [OPTIONS...]\n"
        "\nGenerates 125 cells, filled with particles on a Cartesian grid."
        "\nThese are then interacted using runner_dopair1_density() and "
        "runner_doself1_density() followed by runner_dopair2_force() and "
        "runner_doself2_force()"
493
494
495
496
        "\n\nOptions:"
        "\n-h DISTANCE=1.2348 - Smoothing length in units of <x>"
        "\n-m rho             - Physical density in the cell"
        "\n-s size            - Physical size of the cell"
497
        "\n-v type (0,1,2,3)  - Velocity field: (zero, constant, divergent, "
498
        "rotating)"
499
        "\n-p type (0,1,2)    - Pressure field: (constant, gradient divergent)"
500
501
502
503
504
505
        "\n-f fileName        - Part of the file name used to save the dumps\n",
        argv[0]);
    exit(1);
  }

  /* Help users... */
506
  message("Adiabatic index: ga = %f", hydro_gamma);
507
  message("Hydro implementation: %s", SPH_IMPLEMENTATION);
508
509
  message("Smoothing length: h = %f", h * size);
  message("Kernel:               %s", kernel_name);
510
  message("Neighbour target: N = %f", pow_dimension(h) * kernel_norm);
511
  message("Density target: rho = %f", rho);
512
513
514
515
516
517
518
519
520
  message("div_v target:   div = %f", vel == 2 ? 3.f : 0.f);
  message("curl_v target: curl = [0., 0., %f]", vel == 3 ? -2.f : 0.f);
  if (press == pressure_const)
    message("P field constant");
  else if (press == pressure_gradient)
    message("P field gradient");
  else
    message("P field divergent");

521
522
  printf("\n");

523
524
525
526
#if !defined(HYDRO_DIMENSION_3D)
  message("test125cells only useful in 3D. Change parameters in const.h !");
  return 1;
#endif
Matthieu Schaller's avatar
Matthieu Schaller committed
527

528
529
530
531
  /* Build the infrastructure */
  struct space space;
  space.periodic = 0;

532
533
534
  struct phys_const prog_const;
  prog_const.const_newton_G = 1.f;

535
  struct hydro_props hp;
536
537
  hp.target_neighbours = pow_dimension(h) * kernel_norm;
  hp.delta_neighbours = 2.;
538
  hp.max_smoothing_iterations = 1;
539
  hp.CFL_condition = 0.1;
540

541
  struct engine engine;
542
  engine.hydro_properties = &hp;
543
  engine.physical_constants = &prog_const;
544
545
546
547
548
549
550
551
  engine.s = &space;
  engine.time = 0.1f;
  engine.ti_current = 1;

  struct runner runner;
  runner.e = &engine;

  /* Construct some cells */
552
553
  struct cell *cells[125];
  struct cell *inner_cells[27];
554
  struct cell *main_cell;
555
  int count = 0;
556
  static long long partId = 0;
557
558
559
560
561
562
563
564
565
  for (int i = 0; i < 5; ++i) {
    for (int j = 0; j < 5; ++j) {
      for (int k = 0; k < 5; ++k) {

        /* Position of the cell */
        const double offset[3] = {i * size, j * size, k * size};

        /* Construct it */
        cells[i * 25 + j * 5 + k] =
566
            make_cell(particles, offset, size, h, rho, &partId, vel, press);
567
568
569
570
571
572

        /* Store the inner cells */
        if (i > 0 && i < 4 && j > 0 && j < 4 && k > 0 && k < 4) {
          inner_cells[count] = cells[i * 25 + j * 5 + k];
          count++;
        }
573
574
575
576
577
      }
    }
  }

  /* Store the main cell for future use */
578
  main_cell = cells[62];
579

580
581
582
583
584
585
  /* Construct the real solution */
  struct solution_part *solution =
      malloc(main_cell->count * sizeof(struct solution_part));
  get_solution(main_cell, solution, rho, vel, press, size);

  /* Start the test */
586
  ticks time = 0;
587
  for (size_t n = 0; n < runs; ++n) {
588
589
590

    const ticks tic = getticks();

591
592
593
594
595
596
    /* First, sort stuff */
    for (int j = 0; j < 125; ++j) runner_do_sort(&runner, cells[j], 0x1FFF, 0);

    /* Initialise the particles */
    for (int j = 0; j < 125; ++j) runner_do_init(&runner, cells[j], 0);

597
/* Do the density calculation */
598
#if !(defined(MINIMAL_SPH) && defined(WITH_VECTORIZATION))
599

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
    /* Run all the pairs (only once !)*/
    for (int i = 0; i < 5; i++) {
      for (int j = 0; j < 5; j++) {
        for (int k = 0; k < 5; k++) {

          struct cell *ci = cells[i * 25 + j * 5 + k];

          for (int ii = -1; ii < 2; ii++) {
            int iii = i + ii;
            if (iii < 0 || iii >= 5) continue;
            iii = (iii + 5) % 5;
            for (int jj = -1; jj < 2; jj++) {
              int jjj = j + jj;
              if (jjj < 0 || jjj >= 5) continue;
              jjj = (jjj + 5) % 5;
              for (int kk = -1; kk < 2; kk++) {
                int kkk = k + kk;
                if (kkk < 0 || kkk >= 5) continue;
                kkk = (kkk + 5) % 5;

                struct cell *cj = cells[iii * 25 + jjj * 5 + kkk];

                if (cj > ci) runner_dopair1_density(&runner, ci, cj);
              }
            }
          }
        }
      }
    }

    /* And now the self-interaction for the central cells*/
631
    for (int j = 0; j < 27; ++j)
632
633
634
      runner_doself1_density(&runner, inner_cells[j]);

#endif
635

636
637
638
639
    /* Ghost to finish everything on the central cells */
    for (int j = 0; j < 27; ++j) runner_do_ghost(&runner, inner_cells[j]);

/* Do the force calculation */
640
#if !(defined(MINIMAL_SPH) && defined(WITH_VECTORIZATION))
641

642
643
644
645
646
647
648
649
650
651
652
653
654
655
    /* Do the pairs (for the central 27 cells) */
    for (int i = 1; i < 4; i++) {
      for (int j = 1; j < 4; j++) {
        for (int k = 1; k < 4; k++) {

          struct cell *cj = cells[i * 25 + j * 5 + k];

          if (main_cell != cj) runner_dopair2_force(&runner, main_cell, cj);
        }
      }
    }

    /* And now the self-interaction for the main cell */
    runner_doself2_force(&runner, main_cell);
656
657
#endif

658
659
660
    /* Finally, give a gentle kick */
    runner_do_kick(&runner, main_cell, 0);

661
662
663
664
    const ticks toc = getticks();
    time += toc - tic;

    /* Dump if necessary */
665
    if (n == 0) {
666
      sprintf(outputFileName, "swift_dopair_125_%s.dat",
667
              outputFileNameExtension);
668
      dump_particle_fields(outputFileName, main_cell, solution, 0);
669
670
671
672
673
674
    }
  }

  /* Output timing */
  message("SWIFT calculation took       : %15lli ticks.", time / runs);

675
676
677
  for (int j = 0; j < 125; ++j)
    reset_particles(cells[j], vel, press, size, rho);

678
679
680
681
682
683
684
685
  /* NOW BRUTE-FORCE CALCULATION */

  const ticks tic = getticks();

  /* Initialise the particles */
  for (int j = 0; j < 125; ++j) runner_do_init(&runner, cells[j], 0);

/* Do the density calculation */
686
#if !(defined(MINIMAL_SPH) && defined(WITH_VECTORIZATION))
687

688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
  /* Run all the pairs (only once !)*/
  for (int i = 0; i < 5; i++) {
    for (int j = 0; j < 5; j++) {
      for (int k = 0; k < 5; k++) {

        struct cell *ci = cells[i * 25 + j * 5 + k];

        for (int ii = -1; ii < 2; ii++) {
          int iii = i + ii;
          if (iii < 0 || iii >= 5) continue;
          iii = (iii + 5) % 5;
          for (int jj = -1; jj < 2; jj++) {
            int jjj = j + jj;
            if (jjj < 0 || jjj >= 5) continue;
            jjj = (jjj + 5) % 5;
            for (int kk = -1; kk < 2; kk++) {
              int kkk = k + kk;
              if (kkk < 0 || kkk >= 5) continue;
              kkk = (kkk + 5) % 5;

              struct cell *cj = cells[iii * 25 + jjj * 5 + kkk];

              if (cj > ci) pairs_all_density(&runner, ci, cj);
            }
          }
        }
      }
    }
  }
717

718
719
  /* And now the self-interaction for the central cells*/
  for (int j = 0; j < 27; ++j) self_all_density(&runner, inner_cells[j]);
720

721
#endif
722

723
724
  /* Ghost to finish everything on the central cells */
  for (int j = 0; j < 27; ++j) runner_do_ghost(&runner, inner_cells[j]);
725

726
/* Do the force calculation */
727
#if !(defined(MINIMAL_SPH) && defined(WITH_VECTORIZATION))
728

729
730
731
732
  /* Do the pairs (for the central 27 cells) */
  for (int i = 1; i < 4; i++) {
    for (int j = 1; j < 4; j++) {
      for (int k = 1; k < 4; k++) {
733

734
735
736
737
738
739
740
741
742
        struct cell *cj = cells[i * 25 + j * 5 + k];

        if (main_cell != cj) pairs_all_force(&runner, main_cell, cj);
      }
    }
  }

  /* And now the self-interaction for the main cell */
  self_all_force(&runner, main_cell);
743

744
#endif
745

746
747
  /* Finally, give a gentle kick */
  runner_do_kick(&runner, main_cell, 0);
748

749
  const ticks toc = getticks();
750

751
752
  /* Output timing */
  message("Brute force calculation took : %15lli ticks.", toc - tic);
753

754
755
  sprintf(outputFileName, "brute_force_125_%s.dat", outputFileNameExtension);
  dump_particle_fields(outputFileName, main_cell, solution, 0);
756
757

  /* Clean things to make the sanitizer happy ... */
758
  for (int i = 0; i < 125; ++i) clean_up(cells[i]);
759
  free(solution);
760
761
762

  return 0;
}