runner.c 57.8 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
 ******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
23

Pedro Gonnet's avatar
Pedro Gonnet committed
24
25
/* Config parameters. */
#include "../config.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
26
27
28
29

/* Some standard headers. */
#include <float.h>
#include <limits.h>
30
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
31

32
33
/* MPI headers. */
#ifdef WITH_MPI
34
#include <mpi.h>
35
36
#endif

37
38
39
/* This object's header. */
#include "runner.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
40
/* Local headers. */
41
#include "active.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
42
#include "approx_math.h"
43
#include "atomic.h"
44
#include "cell.h"
45
#include "const.h"
Stefan Arridge's avatar
Stefan Arridge committed
46
#include "cooling.h"
47
#include "debug.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
48
#include "drift.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
49
#include "engine.h"
50
#include "error.h"
51
52
#include "gravity.h"
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
53
#include "hydro_properties.h"
54
#include "kick.h"
55
#include "minmax.h"
56
#include "runner_doiact_fft.h"
James Willis's avatar
James Willis committed
57
#include "runner_doiact_vec.h"
58
#include "scheduler.h"
59
#include "sort_part.h"
60
#include "sourceterms.h"
61
#include "space.h"
62
#include "stars.h"
63
64
#include "task.h"
#include "timers.h"
65
#include "timestep.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
66

67
/* Import the density loop functions. */
68
69
70
#define FUNCTION density
#include "runner_doiact.h"

71
/* Import the gradient loop functions (if required). */
72
73
74
75
76
77
#ifdef EXTRA_HYDRO_LOOP
#undef FUNCTION
#define FUNCTION gradient
#include "runner_doiact.h"
#endif

78
/* Import the force loop functions. */
79
80
81
82
#undef FUNCTION
#define FUNCTION force
#include "runner_doiact.h"

83
/* Import the gravity loop functions. */
84
#include "runner_doiact_fft.h"
85
#include "runner_doiact_grav.h"
86

Tom Theuns's avatar
Tom Theuns committed
87
/**
Tom Theuns's avatar
Tom Theuns committed
88
 * @brief Perform source terms
Tom Theuns's avatar
Tom Theuns committed
89
90
91
92
93
94
95
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_sourceterms(struct runner *r, struct cell *c, int timer) {
  const int count = c->count;
96
  const double cell_min[3] = {c->loc[0], c->loc[1], c->loc[2]};
Tom Theuns's avatar
Tom Theuns committed
97
  const double cell_width[3] = {c->width[0], c->width[1], c->width[2]};
Tom Theuns's avatar
Tom Theuns committed
98
  struct sourceterms *sourceterms = r->e->sourceterms;
99
  const int dimen = 3;
Tom Theuns's avatar
Tom Theuns committed
100
101
102
103
104
105
106

  TIMER_TIC;

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_sourceterms(r, c->progeny[k], 0);
107
  } else {
Tom Theuns's avatar
Tom Theuns committed
108

109
    if (count > 0) {
Tom Theuns's avatar
Tom Theuns committed
110

111
112
113
114
115
116
      /* do sourceterms in this cell? */
      const int incell =
          sourceterms_test_cell(cell_min, cell_width, sourceterms, dimen);
      if (incell == 1) {
        sourceterms_apply(r, sourceterms, c);
      }
Tom Theuns's avatar
Tom Theuns committed
117
118
    }
  }
Tom Theuns's avatar
Tom Theuns committed
119
120
121
122

  if (timer) TIMER_TOC(timer_dosource);
}

Tom Theuns's avatar
Tom Theuns committed
123
124
125
/**
 * @brief Calculate gravity acceleration from external potential
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
126
127
128
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
Tom Theuns's avatar
Tom Theuns committed
129
 */
130
void runner_do_grav_external(struct runner *r, struct cell *c, int timer) {
Tom Theuns's avatar
Tom Theuns committed
131

Matthieu Schaller's avatar
Matthieu Schaller committed
132
133
  struct gpart *restrict gparts = c->gparts;
  const int gcount = c->gcount;
134
135
136
  const struct engine *e = r->e;
  const struct external_potential *potential = e->external_potential;
  const struct phys_const *constants = e->physical_constants;
137
  const double time = r->e->time;
Matthieu Schaller's avatar
Matthieu Schaller committed
138

139
  TIMER_TIC;
Tom Theuns's avatar
Tom Theuns committed
140

141
  /* Anything to do here? */
142
  if (!cell_is_active(c, e)) return;
143

Tom Theuns's avatar
Tom Theuns committed
144
145
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
146
    for (int k = 0; k < 8; k++)
147
      if (c->progeny[k] != NULL) runner_do_grav_external(r, c->progeny[k], 0);
148
  } else {
149

150
151
    /* Loop over the gparts in this cell. */
    for (int i = 0; i < gcount; i++) {
152

153
154
      /* Get a direct pointer on the part. */
      struct gpart *restrict gp = &gparts[i];
Matthieu Schaller's avatar
Matthieu Schaller committed
155

156
      /* Is this part within the time step? */
157
      if (gpart_is_active(gp, e)) {
158
159
        external_gravity_acceleration(time, potential, constants, gp);
      }
160
    }
161
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
162

163
  if (timer) TIMER_TOC(timer_dograv_external);
Tom Theuns's avatar
Tom Theuns committed
164
165
}

Stefan Arridge's avatar
Stefan Arridge committed
166
/**
167
168
 * @brief Calculate change in thermal state of particles induced
 * by radiative cooling and heating.
Stefan Arridge's avatar
Stefan Arridge committed
169
170
171
172
173
174
175
176
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_cooling(struct runner *r, struct cell *c, int timer) {

  struct part *restrict parts = c->parts;
177
  struct xpart *restrict xparts = c->xparts;
Stefan Arridge's avatar
Stefan Arridge committed
178
  const int count = c->count;
179
180
181
  const struct engine *e = r->e;
  const struct cooling_function_data *cooling_func = e->cooling_func;
  const struct phys_const *constants = e->physical_constants;
182
  const struct unit_system *us = e->internal_units;
183
  const double timeBase = e->timeBase;
Stefan Arridge's avatar
Stefan Arridge committed
184
185
186

  TIMER_TIC;

187
188
189
  /* Anything to do here? */
  if (!cell_is_active(c, e)) return;

Stefan Arridge's avatar
Stefan Arridge committed
190
191
192
193
  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_cooling(r, c->progeny[k], 0);
194
  } else {
Stefan Arridge's avatar
Stefan Arridge committed
195

196
197
    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {
Stefan Arridge's avatar
Stefan Arridge committed
198

199
200
201
      /* Get a direct pointer on the part. */
      struct part *restrict p = &parts[i];
      struct xpart *restrict xp = &xparts[i];
Stefan Arridge's avatar
Stefan Arridge committed
202

203
      if (part_is_active(p, e)) {
204

205
206
        /* Let's cool ! */
        const double dt = get_timestep(p->time_bin, timeBase);
207
208
        cooling_cool_part(constants, us, cooling_func, p, xp, dt);
      }
Stefan Arridge's avatar
Stefan Arridge committed
209
210
211
212
213
214
    }
  }

  if (timer) TIMER_TOC(timer_do_cooling);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
215
216
217
218
219
220
/**
 * @brief Sort the entries in ascending order using QuickSort.
 *
 * @param sort The entries
 * @param N The number of entries.
 */
221
void runner_do_sort_ascending(struct entry *sort, int N) {
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

  struct {
    short int lo, hi;
  } qstack[10];
  int qpos, i, j, lo, hi, imin;
  struct entry temp;
  float pivot;

  /* Sort parts in cell_i in decreasing order with quicksort */
  qstack[0].lo = 0;
  qstack[0].hi = N - 1;
  qpos = 0;
  while (qpos >= 0) {
    lo = qstack[qpos].lo;
    hi = qstack[qpos].hi;
    qpos -= 1;
    if (hi - lo < 15) {
      for (i = lo; i < hi; i++) {
        imin = i;
        for (j = i + 1; j <= hi; j++)
          if (sort[j].d < sort[imin].d) imin = j;
        if (imin != i) {
          temp = sort[imin];
          sort[imin] = sort[i];
          sort[i] = temp;
        }
      }
    } else {
      pivot = sort[(lo + hi) / 2].d;
      i = lo;
      j = hi;
      while (i <= j) {
        while (sort[i].d < pivot) i++;
        while (sort[j].d > pivot) j--;
        if (i <= j) {
          if (i < j) {
            temp = sort[i];
            sort[i] = sort[j];
            sort[j] = temp;
          }
          i += 1;
          j -= 1;
        }
      }
      if (j > (lo + hi) / 2) {
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
Pedro Gonnet's avatar
Pedro Gonnet committed
276
        }
277
278
279
280
281
282
283
284
285
286
287
288
      } else {
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
        }
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
      }
Pedro Gonnet's avatar
Pedro Gonnet committed
289
    }
290
291
292
  }
}

Matthieu Schaller's avatar
Matthieu Schaller committed
293
294
295
296
297
298
299
300
/**
 * @brief Recursively checks that the flags are consistent in a cell hierarchy.
 *
 * Debugging function.
 *
 * @param c The #cell to check.
 * @param flags The sorting flags to check.
 */
301
void runner_check_sorts(struct cell *c, int flags) {
Matthieu Schaller's avatar
Matthieu Schaller committed
302
303

#ifdef SWIFT_DEBUG_CHECKS
Pedro Gonnet's avatar
Pedro Gonnet committed
304
  if (flags & ~c->sorted) error("Inconsistent sort flags (downward)!");
305
306
  if (c->split)
    for (int k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
307
      if (c->progeny[k] != NULL) runner_check_sorts(c->progeny[k], c->sorted);
Matthieu Schaller's avatar
Matthieu Schaller committed
308
309
310
#else
  error("Calling debugging code without debugging flag activated.");
#endif
311
312
}

Pedro Gonnet's avatar
Pedro Gonnet committed
313
314
315
316
317
/**
 * @brief Sort the particles in the given cell along all cardinal directions.
 *
 * @param r The #runner.
 * @param c The #cell.
318
 * @param flags Cell flag.
319
320
 * @param cleanup If true, re-build the sorts for the selected flags instead
 *        of just adding them.
321
322
 * @param clock Flag indicating whether to record the timing or not, needed
 *      for recursive calls.
Pedro Gonnet's avatar
Pedro Gonnet committed
323
 */
324
325
void runner_do_sort(struct runner *r, struct cell *c, int flags, int cleanup,
                    int clock) {
326
327
328
329

  struct entry *finger;
  struct entry *fingers[8];
  struct part *parts = c->parts;
330
  struct xpart *xparts = c->xparts;
331
  const int count = c->count;
Matthieu Schaller's avatar
Matthieu Schaller committed
332
  float buff[8];
333

334
  TIMER_TIC;
Pedro Gonnet's avatar
Pedro Gonnet committed
335

336
337
  /* We need to do the local sorts plus whatever was requested further up. */
  flags |= c->do_sort;
338
339
340
341
342
  if (cleanup) {
    c->sorted = 0;
  } else {
    flags &= ~c->sorted;
  }
343
  if (flags == 0 && !c->do_sub_sort) return;
344
345

  /* Check that the particles have been moved to the current time */
Pedro Gonnet's avatar
Pedro Gonnet committed
346
347
  if (flags && !cell_are_part_drifted(c, r->e))
    error("Sorting un-drifted cell");
Pedro Gonnet's avatar
Pedro Gonnet committed
348

349
350
351
352
353
#ifdef SWIFT_DEBUG_CHECKS
  /* Make sure the sort flags are consistent (downward). */
  runner_check_sorts(c, c->sorted);

  /* Make sure the sort flags are consistent (upard). */
Pedro Gonnet's avatar
Pedro Gonnet committed
354
355
356
  for (struct cell *finger = c->parent; finger != NULL;
       finger = finger->parent) {
    if (finger->sorted & ~c->sorted) error("Inconsistent sort flags (upward).");
357
358
  }
#endif
359

360
361
  /* Update the sort timer which represents the last time the sorts
     were re-set. */
362
363
  if (c->sorted == 0) c->ti_sort = r->e->ti_current;

364
  /* start by allocating the entry arrays. */
365
366
367
  if (c->sort == NULL) {
    if ((c->sort = (struct entry *)malloc(sizeof(struct entry) * (count + 1) *
                                          13)) == NULL)
368
369
      error("Failed to allocate sort memory.");
  }
370
  struct entry *sort = c->sort;
371
372
373
374
375

  /* Does this cell have any progeny? */
  if (c->split) {

    /* Fill in the gaps within the progeny. */
376
    float dx_max_sort = 0.0f;
377
    float dx_max_sort_old = 0.0f;
378
    for (int k = 0; k < 8; k++) {
379
      if (c->progeny[k] != NULL) {
380
381
382
383
384
        /* Only propagate cleanup if the progeny is stale. */
        runner_do_sort(r, c->progeny[k], flags,
                       cleanup && (c->progeny[k]->dx_max_sort >
                                   space_maxreldx * c->progeny[k]->dmin),
                       0);
385
        dx_max_sort = max(dx_max_sort, c->progeny[k]->dx_max_sort);
386
        dx_max_sort_old = max(dx_max_sort_old, c->progeny[k]->dx_max_sort_old);
387
      }
388
    }
389
390
    c->dx_max_sort = dx_max_sort;
    c->dx_max_sort_old = dx_max_sort_old;
391
392

    /* Loop over the 13 different sort arrays. */
393
    for (int j = 0; j < 13; j++) {
394
395
396
397
398

      /* Has this sort array been flagged? */
      if (!(flags & (1 << j))) continue;

      /* Init the particle index offsets. */
399
      int off[8];
400
401
      off[0] = 0;
      for (int k = 1; k < 8; k++)
402
403
404
405
406
407
        if (c->progeny[k - 1] != NULL)
          off[k] = off[k - 1] + c->progeny[k - 1]->count;
        else
          off[k] = off[k - 1];

      /* Init the entries and indices. */
408
      int inds[8];
409
      for (int k = 0; k < 8; k++) {
410
411
412
413
414
415
416
417
418
419
        inds[k] = k;
        if (c->progeny[k] != NULL && c->progeny[k]->count > 0) {
          fingers[k] = &c->progeny[k]->sort[j * (c->progeny[k]->count + 1)];
          buff[k] = fingers[k]->d;
          off[k] = off[k];
        } else
          buff[k] = FLT_MAX;
      }

      /* Sort the buffer. */
420
421
      for (int i = 0; i < 7; i++)
        for (int k = i + 1; k < 8; k++)
422
          if (buff[inds[k]] < buff[inds[i]]) {
423
            int temp_i = inds[i];
424
425
426
427
428
429
            inds[i] = inds[k];
            inds[k] = temp_i;
          }

      /* For each entry in the new sort list. */
      finger = &sort[j * (count + 1)];
430
      for (int ind = 0; ind < count; ind++) {
431
432
433
434
435
436
437
438
439
440

        /* Copy the minimum into the new sort array. */
        finger[ind].d = buff[inds[0]];
        finger[ind].i = fingers[inds[0]]->i + off[inds[0]];

        /* Update the buffer. */
        fingers[inds[0]] += 1;
        buff[inds[0]] = fingers[inds[0]]->d;

        /* Find the smallest entry. */
441
        for (int k = 1; k < 8 && buff[inds[k]] < buff[inds[k - 1]]; k++) {
442
          int temp_i = inds[k - 1];
443
444
          inds[k - 1] = inds[k];
          inds[k] = temp_i;
Pedro Gonnet's avatar
Pedro Gonnet committed
445
        }
446

447
448
449
450
451
452
453
      } /* Merge. */

      /* Add a sentinel. */
      sort[j * (count + 1) + count].d = FLT_MAX;
      sort[j * (count + 1) + count].i = 0;

      /* Mark as sorted. */
454
      atomic_or(&c->sorted, 1 << j);
455
456
457
458
459
460
461
462

    } /* loop over sort arrays. */

  } /* progeny? */

  /* Otherwise, just sort. */
  else {

463
    /* Reset the sort distance */
464
    if (c->sorted == 0) {
465
466
467
468
469
470
471
472

      /* And the individual sort distances if we are a local cell */
      if (xparts != NULL) {
        for (int k = 0; k < count; k++) {
          xparts[k].x_diff_sort[0] = 0.0f;
          xparts[k].x_diff_sort[1] = 0.0f;
          xparts[k].x_diff_sort[2] = 0.0f;
        }
473
      }
474
475
      c->dx_max_sort_old = 0.f;
      c->dx_max_sort = 0.f;
476
477
    }

478
    /* Fill the sort array. */
479
    for (int k = 0; k < count; k++) {
480
      const double px[3] = {parts[k].x[0], parts[k].x[1], parts[k].x[2]};
481
      for (int j = 0; j < 13; j++)
482
483
        if (flags & (1 << j)) {
          sort[j * (count + 1) + k].i = k;
Matthieu Schaller's avatar
Matthieu Schaller committed
484
485
486
          sort[j * (count + 1) + k].d = px[0] * runner_shift[j][0] +
                                        px[1] * runner_shift[j][1] +
                                        px[2] * runner_shift[j][2];
487
        }
488
    }
489
490

    /* Add the sentinel and sort. */
491
    for (int j = 0; j < 13; j++)
492
493
494
      if (flags & (1 << j)) {
        sort[j * (count + 1) + count].d = FLT_MAX;
        sort[j * (count + 1) + count].i = 0;
495
        runner_do_sort_ascending(&sort[j * (count + 1)], count);
496
        atomic_or(&c->sorted, 1 << j);
497
498
499
      }
  }

500
#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
501
  /* Verify the sorting. */
502
  for (int j = 0; j < 13; j++) {
503
504
    if (!(flags & (1 << j))) continue;
    finger = &sort[j * (count + 1)];
505
    for (int k = 1; k < count; k++) {
506
507
508
509
510
      if (finger[k].d < finger[k - 1].d)
        error("Sorting failed, ascending array.");
      if (finger[k].i >= count) error("Sorting failed, indices borked.");
    }
  }
Pedro Gonnet's avatar
Pedro Gonnet committed
511

512
513
514
515
  /* Make sure the sort flags are consistent (downward). */
  runner_check_sorts(c, flags);

  /* Make sure the sort flags are consistent (upward). */
Pedro Gonnet's avatar
Pedro Gonnet committed
516
517
518
  for (struct cell *finger = c->parent; finger != NULL;
       finger = finger->parent) {
    if (finger->sorted & ~c->sorted) error("Inconsistent sort flags.");
519
  }
520
#endif
521

522
523
524
525
526
  /* Clear the cell's sort flags. */
  c->do_sort = 0;
  c->do_sub_sort = 0;
  c->requires_sorts = 0;

527
528
529
  if (clock) TIMER_TOC(timer_dosort);
}

530
/**
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
 * @brief Initialize the multipoles before the gravity calculation.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_init_grav(struct runner *r, struct cell *c, int timer) {

  const struct engine *e = r->e;

  TIMER_TIC;

#ifdef SWIFT_DEBUG_CHECKS
  if (!(e->policy & engine_policy_self_gravity))
    error("Grav-init task called outside of self-gravity calculation");
#endif

  /* Anything to do here? */
  if (!cell_is_active(c, e)) return;

  /* Drift the multipole */
  cell_drift_multipole(c, e);
553

554
555
556
557
558
559
560
561
562
563
564
565
566
  /* Reset the gravity acceleration tensors */
  gravity_field_tensors_init(&c->multipole->pot);

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) runner_do_init_grav(r, c->progeny[k], 0);
    }
  }

  if (timer) TIMER_TOC(timer_init_grav);
}

567
/**
568
569
570
571
572
 * @brief Intermediate task after the gradient loop that does final operations
 * on the gradient quantities and optionally slope limits the gradients
 *
 * @param r The runner thread.
 * @param c The cell.
573
 * @param timer Are we timing this ?
574
 */
575
void runner_do_extra_ghost(struct runner *r, struct cell *c, int timer) {
576

577
#ifdef EXTRA_HYDRO_LOOP
578

579
580
  struct part *restrict parts = c->parts;
  const int count = c->count;
581
  const struct engine *e = r->e;
582

583
584
  TIMER_TIC;

585
  /* Anything to do here? */
586
  if (!cell_is_active(c, e)) return;
587

588
589
590
  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
591
      if (c->progeny[k] != NULL) runner_do_extra_ghost(r, c->progeny[k], 0);
592
593
594
595
596
597
598
599
  } else {

    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {

      /* Get a direct pointer on the part. */
      struct part *restrict p = &parts[i];

600
      if (part_is_active(p, e)) {
601
602
603
604
605
606

        /* Get ready for a force calculation */
        hydro_end_gradient(p);
      }
    }
  }
607

608
609
  if (timer) TIMER_TOC(timer_do_extra_ghost);

610
611
#else
  error("SWIFT was not compiled with the extra hydro loop activated.");
612
#endif
613
}
614

615
/**
616
617
 * @brief Intermediate task after the density to check that the smoothing
 * lengths are correct.
618
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
619
 * @param r The runner thread.
620
 * @param c The cell.
621
 * @param timer Are we timing this ?
622
 */
623
void runner_do_ghost(struct runner *r, struct cell *c, int timer) {
624

Matthieu Schaller's avatar
Matthieu Schaller committed
625
626
  struct part *restrict parts = c->parts;
  struct xpart *restrict xparts = c->xparts;
627
  const struct engine *e = r->e;
628
  const struct space *s = e->s;
629
  const float hydro_h_max = e->hydro_properties->h_max;
630
631
632
  const float eps = e->hydro_properties->h_tolerance;
  const float hydro_eta_dim =
      pow_dimension(e->hydro_properties->eta_neighbours);
633
  const int max_smoothing_iter = e->hydro_properties->max_smoothing_iterations;
634
  int redo = 0, count = 0;
635

636
637
  TIMER_TIC;

638
  /* Anything to do here? */
639
  if (!cell_is_active(c, e)) return;
640

641
642
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
643
    for (int k = 0; k < 8; k++)
644
645
      if (c->progeny[k] != NULL) runner_do_ghost(r, c->progeny[k], 0);
  } else {
646

647
    /* Init the list of active particles that have to be updated. */
648
    int *pid = NULL;
649
    if ((pid = malloc(sizeof(int) * c->count)) == NULL)
650
      error("Can't allocate memory for pid.");
651
652
653
654
655
    for (int k = 0; k < c->count; k++)
      if (part_is_active(&parts[k], e)) {
        pid[count] = k;
        ++count;
      }
656

657
658
659
    /* While there are particles that need to be updated... */
    for (int num_reruns = 0; count > 0 && num_reruns < max_smoothing_iter;
         num_reruns++) {
660

661
662
      /* Reset the redo-count. */
      redo = 0;
663

664
      /* Loop over the remaining active parts in this cell. */
665
      for (int i = 0; i < count; i++) {
666

667
668
669
        /* Get a direct pointer on the part. */
        struct part *restrict p = &parts[pid[i]];
        struct xpart *restrict xp = &xparts[pid[i]];
670

671
#ifdef SWIFT_DEBUG_CHECKS
672
        /* Is this part within the timestep? */
673
674
675
        if (!part_is_active(p, e)) error("Ghost applied to inactive particle");
#endif

676
677
678
679
680
        /* Get some useful values */
        const float h_old = p->h;
        const float h_old_dim = pow_dimension(h_old);
        const float h_old_dim_minus_one = pow_dimension_minus_one(h_old);
        float h_new;
681

682
        if (p->density.wcount == 0.f) { /* No neighbours case */
683

684
685
686
          /* Double h and try again */
          h_new = 2.f * h_old;
        } else {
Matthieu Schaller's avatar
Matthieu Schaller committed
687

688
689
          /* Finish the density calculation */
          hydro_end_density(p);
690

691
692
693
694
695
696
697
          /* Compute one step of the Newton-Raphson scheme */
          const float n_sum = p->density.wcount * h_old_dim;
          const float n_target = hydro_eta_dim;
          const float f = n_sum - n_target;
          const float f_prime =
              p->density.wcount_dh * h_old_dim +
              hydro_dimension * p->density.wcount * h_old_dim_minus_one;
698

699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
          h_new = h_old - f / f_prime;

#ifdef SWIFT_DEBUG_CHECKS
          if ((f > 0.f && h_new > h_old) || (f < 0.f && h_new < h_old))
            error(
                "Smoothing length correction not going in the right direction");
#endif

          /* Safety check: truncate to the range [ h_old/2 , 2h_old ]. */
          h_new = min(h_new, 2.f * h_old);
          h_new = max(h_new, 0.5f * h_old);
        }

        /* Check whether the particle has an inappropriate smoothing length */
        if (fabsf(h_new - h_old) > eps * h_old) {
714

715
          /* Ok, correct then */
716
          p->h = h_new;
717

718
719
          /* If below the absolute maximum, try again */
          if (p->h < hydro_h_max) {
720

721
722
723
            /* Flag for another round of fun */
            pid[redo] = pid[i];
            redo += 1;
724

725
            /* Re-initialise everything */
726
            hydro_init_part(p, &s->hs);
727
728
729
730
731
732
733

            /* Off we go ! */
            continue;
          } else {

            /* Ok, this particle is a lost cause... */
            p->h = hydro_h_max;
734
735
736
737

            /* Do some damage control if no neighbours at all were found */
            if (p->density.wcount == kernel_root * kernel_norm)
              hydro_part_has_no_neighbours(p, xp);
738
          }
739
        }
740

741
        /* We now have a particle whose smoothing length has converged */
Matthieu Schaller's avatar
Matthieu Schaller committed
742

743
        /* As of here, particle force variables will be set. */
744

745
746
        /* Compute variables required for the force loop */
        hydro_prepare_force(p, xp);
747

748
749
        /* The particle force values are now set.  Do _NOT_
           try to read any particle density variables! */
Matthieu Schaller's avatar
Matthieu Schaller committed
750

751
752
        /* Prepare the particle for the force loop over neighbours */
        hydro_reset_acceleration(p);
753
754
      }

755
756
      /* We now need to treat the particles whose smoothing length had not
       * converged again */
757

758
759
760
      /* Re-set the counter for the next loop (potentially). */
      count = redo;
      if (count > 0) {
761

762
763
        /* Climb up the cell hierarchy. */
        for (struct cell *finger = c; finger != NULL; finger = finger->parent) {
Matthieu Schaller's avatar
Matthieu Schaller committed
764

765
766
          /* Run through this cell's density interactions. */
          for (struct link *l = finger->density; l != NULL; l = l->next) {
767

768
769
770
771
#ifdef SWIFT_DEBUG_CHECKS
            if (l->t->ti_run < r->e->ti_current)
              error("Density task should have been run.");
#endif
Matthieu Schaller's avatar
Matthieu Schaller committed
772

773
774
775
            /* Self-interaction? */
            if (l->t->type == task_type_self)
              runner_doself_subset_density(r, finger, parts, pid, count);
776

777
778
            /* Otherwise, pair interaction? */
            else if (l->t->type == task_type_pair) {
779

780
781
782
783
784
785
786
              /* Left or right? */
              if (l->t->ci == finger)
                runner_dopair_subset_density(r, finger, parts, pid, count,
                                             l->t->cj);
              else
                runner_dopair_subset_density(r, finger, parts, pid, count,
                                             l->t->ci);
787

788
            }
789

790
791
792
793
            /* Otherwise, sub-self interaction? */
            else if (l->t->type == task_type_sub_self)
              runner_dosub_subset_density(r, finger, parts, pid, count, NULL,
                                          -1, 1);
794

795
796
797
798
799
800
801
802
803
804
805
            /* Otherwise, sub-pair interaction? */
            else if (l->t->type == task_type_sub_pair) {

              /* Left or right? */
              if (l->t->ci == finger)
                runner_dosub_subset_density(r, finger, parts, pid, count,
                                            l->t->cj, -1, 1);
              else
                runner_dosub_subset_density(r, finger, parts, pid, count,
                                            l->t->ci, -1, 1);
            }
806
807
808
          }
        }
      }
809
    }
810

811
812
#ifdef SWIFT_DEBUG_CHECKS
    if (count) {
813
      error("Smoothing length failed to converge on %i particles.", count);
814
815
    }
#else
816
    if (count)
817
      error("Smoothing length failed to converge on %i particles.", count);
818
#endif
819

820
821
822
    /* Be clean */
    free(pid);
  }
823

824
  if (timer) TIMER_TOC(timer_do_ghost);
825
826
}

827
/**
828
 * @brief Unskip any tasks associated with active cells.
829
830
 *
 * @param c The cell.
831
 * @param e The engine.
832
 */
833
static void runner_do_unskip(struct cell *c, struct engine *e) {
834

835
836
837
  /* Ignore empty cells. */
  if (c->count == 0 && c->gcount == 0) return;

838
839
  /* Skip inactive cells. */
  if (!cell_is_active(c, e)) return;
840

841
  /* Recurse */
842
843
  if (c->split) {
    for (int k = 0; k < 8; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
844
      if (c->progeny[k] != NULL) {
Matthieu Schaller's avatar
Matthieu Schaller committed
845
        struct cell *cp = c->progeny[k];
846
        runner_do_unskip(cp, e);
847
848
849
      }
    }
  }
850
851

  /* Unskip any active tasks. */
852
853
  const int forcerebuild = cell_unskip_tasks(c, &e->sched);
  if (forcerebuild) atomic_inc(&e->forcerebuild);
854
}
855

856
/**
857
 * @brief Mapper function to unskip active tasks.
858
859
860
861
862
 *
 * @param map_data An array of #cell%s.
 * @param num_elements Chunk size.
 * @param extra_data Pointer to an #engine.
 */
863
864
void runner_do_unskip_mapper(void *map_data, int num_elements,
                             void *extra_data) {
865

866
867
  struct engine *e = (struct engine *)extra_data;
  struct cell *cells = (struct cell *)map_data;
868

869
870
  for (int ind = 0; ind < num_elements; ind++) {
    struct cell *c = &cells[ind];
871
    if (c != NULL) runner_do_unskip(c, e);
872
  }
873
}
874
/**
875
 * @brief Drift all part in a cell.
876
877
878
879
880
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
881
void runner_do_drift_part(struct runner *r, struct cell *c, int timer) {
882

883
  TIMER_TIC;
Matthieu Schaller's avatar
Matthieu Schaller committed
884

885
  cell_drift_part(c, r->e, 0);
886

887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
  if (timer) TIMER_TOC(timer_drift_part);
}

/**
 * @brief Drift all gpart in a cell.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
void runner_do_drift_gpart(struct runner *r, struct cell *c, int timer) {

  TIMER_TIC;

  cell_drift_gpart(c, r->e);

  if (timer) TIMER_TOC(timer_drift_gpart);
904
}
905

906
907
908
909
910
911
912
/**
 * @brief Perform the first half-kick on all the active particles in a cell.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
913
void runner_do_kick1(struct runner *r, struct cell *c, int timer) {
914

915
916
917
918
  const struct engine *e = r->e;
  struct part *restrict parts = c->parts;
  struct xpart *restrict xparts = c->xparts;
  struct gpart *restrict gparts = c->gparts;
919
  struct spart *restrict sparts = c->sparts;
920
921
  const int count = c->count;
  const int gcount = c->gcount;
922
  const int scount = c->scount;
923
  const integertime_t ti_current = e->ti_current;
924
  const double timeBase = e->timeBase;
925

926
927
928
  TIMER_TIC;

  /* Anything to do here? */
929
  if (!cell_is_starting(c, e)) return;
930
931
932
933
934
935
936
937