runner_doiact_vec.c 70.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2016 James Willis (james.s.willis@durham.ac.uk)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

23
24
#include "swift.h"

25
26
#include "active.h"

27
28
29
/* This object's header. */
#include "runner_doiact_vec.h"

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#ifdef WITH_VECTORIZATION
static const vector kernel_gamma2_vec = FILL_VEC(kernel_gamma2);

//static void printFloatVector(vector v, char *label, int length) {
//
//  int i;
//  printf("%s:[", label);
//  for (i = 0; i < length; i++) {
//    printf("%f, ", v.f[i]);
//  }
//  printf("]\n");
//}

//static void printIntVector(vector v, char *label, int length) {
//
//  int i;
//  printf("%s:[", label);
//  for (i = 0; i < length; i++) {
//    printf("%d, ", v.i[i]);
//  }
//  printf("]\n");
//}

#endif

James Willis's avatar
James Willis committed
55
#ifdef WITH_VECTORIZATION
James Willis's avatar
James Willis committed
56
57
58
/**
 * @brief Compute the vector remainder interactions from the secondary cache.
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
59
 * @param int_cache (return) secondary #cache of interactions between two
James Willis's avatar
James Willis committed
60
 * particles.
James Willis's avatar
James Willis committed
61
 * @param icount Interaction count.
Matthieu Schaller's avatar
Matthieu Schaller committed
62
 * @param rhoSum (return) #vector holding the cumulative sum of the density
James Willis's avatar
James Willis committed
63
 * update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
64
 * @param rho_dhSum (return) #vector holding the cumulative sum of the density
James Willis's avatar
James Willis committed
65
 * gradient update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
66
 * @param wcountSum (return) #vector holding the cumulative sum of the wcount
James Willis's avatar
James Willis committed
67
 * update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
68
 * @param wcount_dhSum (return) #vector holding the cumulative sum of the wcount
James Willis's avatar
James Willis committed
69
 * gradient update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
70
 * @param div_vSum (return) #vector holding the cumulative sum of the divergence
James Willis's avatar
James Willis committed
71
 * update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
72
 * @param curlvxSum (return) #vector holding the cumulative sum of the curl of
James Willis's avatar
James Willis committed
73
 * vx update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
74
 * @param curlvySum (return) #vector holding the cumulative sum of the curl of
James Willis's avatar
James Willis committed
75
 * vy update on pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
76
 * @param curlvzSum (return) #vector holding the cumulative sum of the curl of
James Willis's avatar
James Willis committed
77
 * vz update on pi.
James Willis's avatar
James Willis committed
78
79
80
81
 * @param v_hi_inv #vector of 1/h for pi.
 * @param v_vix #vector of x velocity of pi.
 * @param v_viy #vector of y velocity of pi.
 * @param v_viz #vector of z velocity of pi.
Matthieu Schaller's avatar
Matthieu Schaller committed
82
 * @param icount_align (return) Interaction count after the remainder
James Willis's avatar
James Willis committed
83
 * interactions have been performed, should be a multiple of the vector length.
James Willis's avatar
James Willis committed
84
 */
James Willis's avatar
James Willis committed
85
__attribute__((always_inline)) INLINE static void calcRemInteractions(
Matthieu Schaller's avatar
Matthieu Schaller committed
86
87
88
89
90
    struct c2_cache *const int_cache, const int icount, vector *rhoSum,
    vector *rho_dhSum, vector *wcountSum, vector *wcount_dhSum,
    vector *div_vSum, vector *curlvxSum, vector *curlvySum, vector *curlvzSum,
    vector v_hi_inv, vector v_vix, vector v_viy, vector v_viz,
    int *icount_align) {
91
92
93
94
95

#ifdef HAVE_AVX512_F
  KNL_MASK_16 knl_mask, knl_mask2;
#endif
  vector int_mask, int_mask2;
James Willis's avatar
James Willis committed
96
97

  /* Work out the number of remainder interactions and pad secondary cache. */
98
99
100
101
102
103
  *icount_align = icount;
  int rem = icount % (NUM_VEC_PROC * VEC_SIZE);
  if (rem != 0) {
    int pad = (NUM_VEC_PROC * VEC_SIZE) - rem;
    *icount_align += pad;

James Willis's avatar
James Willis committed
104
/* Initialise masks to true. */
105
106
107
108
109
110
111
112
113
#ifdef HAVE_AVX512_F
    knl_mask = 0xFFFF;
    knl_mask2 = 0xFFFF;
    int_mask.m = vec_setint1(0xFFFFFFFF);
    int_mask2.m = vec_setint1(0xFFFFFFFF);
#else
    int_mask.m = vec_setint1(0xFFFFFFFF);
    int_mask2.m = vec_setint1(0xFFFFFFFF);
#endif
James Willis's avatar
James Willis committed
114
115
116
    /* Pad secondary cache so that there are no contributions in the interaction
     * function. */
    for (int i = icount; i < *icount_align; i++) {
117
118
119
120
121
122
123
124
      int_cache->mq[i] = 0.f;
      int_cache->r2q[i] = 1.f;
      int_cache->dxq[i] = 0.f;
      int_cache->dyq[i] = 0.f;
      int_cache->dzq[i] = 0.f;
      int_cache->vxq[i] = 0.f;
      int_cache->vyq[i] = 0.f;
      int_cache->vzq[i] = 0.f;
125
126
127
128
129
130
131
    }

    /* Zero parts of mask that represent the padded values.*/
    if (pad < VEC_SIZE) {
#ifdef HAVE_AVX512_F
      knl_mask2 = knl_mask2 >> pad;
#else
James Willis's avatar
James Willis committed
132
      for (int i = VEC_SIZE - pad; i < VEC_SIZE; i++) int_mask2.i[i] = 0;
133
#endif
James Willis's avatar
James Willis committed
134
    } else {
135
136
137
138
#ifdef HAVE_AVX512_F
      knl_mask = knl_mask >> (VEC_SIZE - rem);
      knl_mask2 = 0;
#else
James Willis's avatar
James Willis committed
139
      for (int i = rem; i < VEC_SIZE; i++) int_mask.i[i] = 0;
140
141
142
143
      int_mask2.v = vec_setzero();
#endif
    }

James Willis's avatar
James Willis committed
144
145
    /* Perform remainder interaction and remove remainder from aligned
     * interaction count. */
146
    *icount_align = icount - rem;
James Willis's avatar
James Willis committed
147
148
149
150
151
152
153
154
    runner_iact_nonsym_2_vec_density(
        &int_cache->r2q[*icount_align], &int_cache->dxq[*icount_align],
        &int_cache->dyq[*icount_align], &int_cache->dzq[*icount_align],
        v_hi_inv, v_vix, v_viy, v_viz, &int_cache->vxq[*icount_align],
        &int_cache->vyq[*icount_align], &int_cache->vzq[*icount_align],
        &int_cache->mq[*icount_align], rhoSum, rho_dhSum, wcountSum,
        wcount_dhSum, div_vSum, curlvxSum, curlvySum, curlvzSum, int_mask,
        int_mask2,
155
#ifdef HAVE_AVX512_F
James Willis's avatar
James Willis committed
156
        knl_mask, knl_mask2);
157
#else
James Willis's avatar
James Willis committed
158
        0, 0);
159
160
161
162
#endif
  }
}

James Willis's avatar
James Willis committed
163
/**
James Willis's avatar
James Willis committed
164
165
 * @brief Left-packs the values needed by an interaction into the secondary
 * cache (Supports AVX, AVX2 and AVX512 instruction sets).
James Willis's avatar
James Willis committed
166
167
 *
 * @param mask Contains which particles need to interact.
Matthieu Schaller's avatar
Matthieu Schaller committed
168
 * @param pjd Index of the particle to store into.
James Willis's avatar
James Willis committed
169
170
171
172
173
174
175
176
177
 * @param v_r2 #vector of the separation between two particles squared.
 * @param v_dx #vector of the x separation between two particles.
 * @param v_dy #vector of the y separation between two particles.
 * @param v_dz #vector of the z separation between two particles.
 * @param v_mj #vector of the mass of particle pj.
 * @param v_vjx #vector of x velocity of pj.
 * @param v_vjy #vector of y velocity of pj.
 * @param v_vjz #vector of z velocity of pj.
 * @param cell_cache #cache of all particles in the cell.
Matthieu Schaller's avatar
Matthieu Schaller committed
178
 * @param int_cache (return) secondary #cache of interactions between two
James Willis's avatar
James Willis committed
179
 * particles.
James Willis's avatar
James Willis committed
180
181
 * @param icount Interaction count.
 * @param rhoSum #vector holding the cumulative sum of the density update on pi.
James Willis's avatar
James Willis committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
 * @param rho_dhSum #vector holding the cumulative sum of the density gradient
 * update on pi.
 * @param wcountSum #vector holding the cumulative sum of the wcount update on
 * pi.
 * @param wcount_dhSum #vector holding the cumulative sum of the wcount gradient
 * update on pi.
 * @param div_vSum #vector holding the cumulative sum of the divergence update
 * on pi.
 * @param curlvxSum #vector holding the cumulative sum of the curl of vx update
 * on pi.
 * @param curlvySum #vector holding the cumulative sum of the curl of vy update
 * on pi.
 * @param curlvzSum #vector holding the cumulative sum of the curl of vz update
 * on pi.
James Willis's avatar
James Willis committed
196
197
198
199
200
 * @param v_hi_inv #vector of 1/h for pi.
 * @param v_vix #vector of x velocity of pi.
 * @param v_viy #vector of y velocity of pi.
 * @param v_viz #vector of z velocity of pi.
 */
James Willis's avatar
James Willis committed
201
202
__attribute__((always_inline)) INLINE static void storeInteractions(
    const int mask, const int pjd, vector *v_r2, vector *v_dx, vector *v_dy,
203
    vector *v_dz, const struct cache *const cell_cache, struct c2_cache *const int_cache,
James Willis's avatar
James Willis committed
204
205
206
207
208
209
210
    int *icount, vector *rhoSum, vector *rho_dhSum, vector *wcountSum,
    vector *wcount_dhSum, vector *div_vSum, vector *curlvxSum,
    vector *curlvySum, vector *curlvzSum, vector v_hi_inv, vector v_vix,
    vector v_viy, vector v_viz) {

/* Left-pack values needed into the secondary cache using the interaction mask.
 */
211
212
213
214
215
#if defined(HAVE_AVX2) || defined(HAVE_AVX512_F)
  int pack = 0;

#ifdef HAVE_AVX512_F
  pack += __builtin_popcount(mask);
James Willis's avatar
James Willis committed
216
217
218
219
  VEC_LEFT_PACK(v_r2->v, mask, &int_cache->r2q[*icount]);
  VEC_LEFT_PACK(v_dx->v, mask, &int_cache->dxq[*icount]);
  VEC_LEFT_PACK(v_dy->v, mask, &int_cache->dyq[*icount]);
  VEC_LEFT_PACK(v_dz->v, mask, &int_cache->dzq[*icount]);
220
221
222
223
  VEC_LEFT_PACK(vec_load(&cell_cache->m[pjd]), mask, &int_cache->mq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vx[pjd]), mask, &int_cache->vxq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vy[pjd]), mask, &int_cache->vyq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vz[pjd]), mask, &int_cache->vzq[*icount]);
224
225
#else
  vector v_mask;
226
  VEC_FORM_PACKED_MASK(mask, v_mask, pack);
James Willis's avatar
James Willis committed
227
228
229
230
231

  VEC_LEFT_PACK(v_r2->v, v_mask.m, &int_cache->r2q[*icount]);
  VEC_LEFT_PACK(v_dx->v, v_mask.m, &int_cache->dxq[*icount]);
  VEC_LEFT_PACK(v_dy->v, v_mask.m, &int_cache->dyq[*icount]);
  VEC_LEFT_PACK(v_dz->v, v_mask.m, &int_cache->dzq[*icount]);
232
233
234
235
  VEC_LEFT_PACK(vec_load(&cell_cache->m[pjd]), v_mask.m, &int_cache->mq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vx[pjd]), v_mask.m, &int_cache->vxq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vy[pjd]), v_mask.m, &int_cache->vyq[*icount]);
  VEC_LEFT_PACK(vec_load(&cell_cache->vz[pjd]), v_mask.m, &int_cache->vzq[*icount]);
236

237
#endif /* HAVE_AVX512_F */
238
239
240

  (*icount) += pack;
#else
James Willis's avatar
James Willis committed
241
  /* Quicker to do it serially in AVX rather than use intrinsics. */
James Willis's avatar
James Willis committed
242
  for (int bit_index = 0; bit_index < VEC_SIZE; bit_index++) {
243
244
    if (mask & (1 << bit_index)) {
      /* Add this interaction to the queue. */
245
246
247
248
249
250
251
252
      int_cache->r2q[*icount] = v_r2->f[bit_index];
      int_cache->dxq[*icount] = v_dx->f[bit_index];
      int_cache->dyq[*icount] = v_dy->f[bit_index];
      int_cache->dzq[*icount] = v_dz->f[bit_index];
      int_cache->mq[*icount] = cell_cache->m[pjd + bit_index];
      int_cache->vxq[*icount] = cell_cache->vx[pjd + bit_index];
      int_cache->vyq[*icount] = cell_cache->vy[pjd + bit_index];
      int_cache->vzq[*icount] = cell_cache->vz[pjd + bit_index];
253
254
255
256

      (*icount)++;
    }
  }
257

James Willis's avatar
James Willis committed
258
259
#endif /* defined(HAVE_AVX2) || defined(HAVE_AVX512_F) */

James Willis's avatar
James Willis committed
260
  /* Flush the c2 cache if it has reached capacity. */
James Willis's avatar
James Willis committed
261
  if (*icount >= (C2_CACHE_SIZE - (NUM_VEC_PROC * VEC_SIZE))) {
262
263

    int icount_align = *icount;
James Willis's avatar
James Willis committed
264

James Willis's avatar
James Willis committed
265
    /* Peform remainder interactions. */
Matthieu Schaller's avatar
Matthieu Schaller committed
266
267
268
    calcRemInteractions(int_cache, *icount, rhoSum, rho_dhSum, wcountSum,
                        wcount_dhSum, div_vSum, curlvxSum, curlvySum, curlvzSum,
                        v_hi_inv, v_vix, v_viy, v_viz, &icount_align);
269
270
271
272

    vector int_mask, int_mask2;
    int_mask.m = vec_setint1(0xFFFFFFFF);
    int_mask2.m = vec_setint1(0xFFFFFFFF);
James Willis's avatar
James Willis committed
273
274

    /* Perform interactions. */
James Willis's avatar
James Willis committed
275
276
277
278
279
280
281
    for (int pjd = 0; pjd < icount_align; pjd += (NUM_VEC_PROC * VEC_SIZE)) {
      runner_iact_nonsym_2_vec_density(
          &int_cache->r2q[pjd], &int_cache->dxq[pjd], &int_cache->dyq[pjd],
          &int_cache->dzq[pjd], v_hi_inv, v_vix, v_viy, v_viz,
          &int_cache->vxq[pjd], &int_cache->vyq[pjd], &int_cache->vzq[pjd],
          &int_cache->mq[pjd], rhoSum, rho_dhSum, wcountSum, wcount_dhSum,
          div_vSum, curlvxSum, curlvySum, curlvzSum, int_mask, int_mask2, 0, 0);
282
    }
James Willis's avatar
James Willis committed
283
284

    /* Reset interaction count. */
285
286
287
    *icount = 0;
  }
}
288

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/**
 * @brief Compute the vector remainder interactions from the secondary cache.
 *
 * @param int_cache (return) secondary #cache of interactions between two
 * particles.
 * @param icount Interaction count.
 * @param rhoSum (return) #vector holding the cumulative sum of the density
 * update on pi.
 * @param rho_dhSum (return) #vector holding the cumulative sum of the density
 * gradient update on pi.
 * @param wcountSum (return) #vector holding the cumulative sum of the wcount
 * update on pi.
 * @param wcount_dhSum (return) #vector holding the cumulative sum of the wcount
 * gradient update on pi.
 * @param div_vSum (return) #vector holding the cumulative sum of the divergence
 * update on pi.
 * @param curlvxSum (return) #vector holding the cumulative sum of the curl of
 * vx update on pi.
 * @param curlvySum (return) #vector holding the cumulative sum of the curl of
 * vy update on pi.
 * @param curlvzSum (return) #vector holding the cumulative sum of the curl of
 * vz update on pi.
 * @param v_hi_inv #vector of 1/h for pi.
 * @param v_vix #vector of x velocity of pi.
 * @param v_viy #vector of y velocity of pi.
 * @param v_viz #vector of z velocity of pi.
 * @param icount_align (return) Interaction count after the remainder
 * interactions have been performed, should be a multiple of the vector length.
 */
__attribute__((always_inline)) INLINE static void calcRemForceInteractions(
    struct c2_cache *const int_cache, const int icount, vector *a_hydro_xSum,
    vector *a_hydro_ySum, vector *a_hydro_zSum, vector *h_dtSum,
    vector *v_sigSum, vector *entropy_dtSum,
322
323
    vector *v_hi_inv, vector *v_vix, vector *v_viy, vector *v_viz,
    vector *v_rhoi, vector *v_grad_hi, vector *v_pOrhoi2, vector *v_balsara_i, vector *v_ci,
324
    int *icount_align, int num_vec_proc) {
325
326
327
328

#ifdef HAVE_AVX512_F
  KNL_MASK_16 knl_mask, knl_mask2;
#endif
329
  vector int_mask, int_mask2;
330
331
332

  /* Work out the number of remainder interactions and pad secondary cache. */
  *icount_align = icount;
333
  int rem = icount % (num_vec_proc * VEC_SIZE);
334
  if (rem != 0) {
335
    int pad = (num_vec_proc * VEC_SIZE) - rem;
336
337
338
339
340
341
342
343
344
345
    *icount_align += pad;

/* Initialise masks to true. */
#ifdef HAVE_AVX512_F
    knl_mask = 0xFFFF;
    knl_mask2 = 0xFFFF;
    int_mask.m = vec_setint1(0xFFFFFFFF);
    int_mask2.m = vec_setint1(0xFFFFFFFF);
#else
    int_mask.m = vec_setint1(0xFFFFFFFF);
346
    int_mask2.m = vec_setint1(0xFFFFFFFF);
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#endif
    /* Pad secondary cache so that there are no contributions in the interaction
     * function. */
    for (int i = icount; i < *icount_align; i++) {
      int_cache->mq[i] = 0.f;
      int_cache->r2q[i] = 1.f;
      int_cache->dxq[i] = 0.f;
      int_cache->dyq[i] = 0.f;
      int_cache->dzq[i] = 0.f;
      int_cache->vxq[i] = 0.f;
      int_cache->vyq[i] = 0.f;
      int_cache->vzq[i] = 0.f;
      int_cache->rhoq[i] = 1.f;
      int_cache->grad_hq[i] = 1.f;
      int_cache->pOrho2q[i] = 1.f;
      int_cache->balsaraq[i] = 1.f;
      int_cache->soundspeedq[i] = 1.f;
      int_cache->h_invq[i] = 1.f;
    }

    /* Zero parts of mask that represent the padded values.*/
    if (pad < VEC_SIZE) {
#ifdef HAVE_AVX512_F
      knl_mask2 = knl_mask2 >> pad;
#else
372
      for (int i = VEC_SIZE - pad; i < VEC_SIZE; i++) int_mask2.i[i] = 0;
373
374
375
376
377
378
379
#endif
    } else {
#ifdef HAVE_AVX512_F
      knl_mask = knl_mask >> (VEC_SIZE - rem);
      knl_mask2 = 0;
#else
      for (int i = rem; i < VEC_SIZE; i++) int_mask.i[i] = 0;
380
      int_mask2.v = vec_setzero();
381
382
383
384
385
386
387
#endif
    }

    /* Perform remainder interaction and remove remainder from aligned
     * interaction count. */
    *icount_align = icount - rem;

388
    runner_iact_nonsym_2_vec_force(
389
        &int_cache->r2q[*icount_align], &int_cache->dxq[*icount_align], &int_cache->dyq[*icount_align], &int_cache->dzq[*icount_align], v_vix, v_viy, v_viz, v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci,
390
391
        &int_cache->vxq[*icount_align], &int_cache->vyq[*icount_align], &int_cache->vzq[*icount_align], &int_cache->rhoq[*icount_align], &int_cache->grad_hq[*icount_align], &int_cache->pOrho2q[*icount_align], &int_cache->balsaraq[*icount_align], &int_cache->soundspeedq[*icount_align], &int_cache->mq[*icount_align], v_hi_inv, &int_cache->h_invq[*icount_align],
        a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum, int_mask, int_mask2
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
#ifdef HAVE_AVX512_F
        ,knl_mask, knl_mask2);
#else
        );
#endif
  }
}

/**
 * @brief Left-packs the values needed by an interaction into the secondary
 * cache (Supports AVX, AVX2 and AVX512 instruction sets).
 *
 * @param mask Contains which particles need to interact.
 * @param pjd Index of the particle to store into.
 * @param v_r2 #vector of the separation between two particles squared.
 * @param v_dx #vector of the x separation between two particles.
 * @param v_dy #vector of the y separation between two particles.
 * @param v_dz #vector of the z separation between two particles.
 * @param v_mj #vector of the mass of particle pj.
 * @param v_vjx #vector of x velocity of pj.
 * @param v_vjy #vector of y velocity of pj.
 * @param v_vjz #vector of z velocity of pj.
 * @param cell_cache #cache of all particles in the cell.
 * @param int_cache (return) secondary #cache of interactions between two
 * particles.
 * @param icount Interaction count.
 * @param rhoSum #vector holding the cumulative sum of the density update on pi.
 * @param rho_dhSum #vector holding the cumulative sum of the density gradient
 * update on pi.
 * @param wcountSum #vector holding the cumulative sum of the wcount update on
 * pi.
 * @param wcount_dhSum #vector holding the cumulative sum of the wcount gradient
 * update on pi.
 * @param div_vSum #vector holding the cumulative sum of the divergence update
 * on pi.
 * @param curlvxSum #vector holding the cumulative sum of the curl of vx update
 * on pi.
 * @param curlvySum #vector holding the cumulative sum of the curl of vy update
 * on pi.
 * @param curlvzSum #vector holding the cumulative sum of the curl of vz update
 * on pi.
 * @param v_hi_inv #vector of 1/h for pi.
 * @param v_vix #vector of x velocity of pi.
 * @param v_viy #vector of y velocity of pi.
 * @param v_viz #vector of z velocity of pi.
 */
__attribute__((always_inline)) INLINE static void storeForceInteractions(
    const int mask, const int pjd, vector *v_r2, vector *v_dx, vector *v_dy,
440
    vector *v_dz, const struct cache *const cell_cache, struct c2_cache *const int_cache,
441
442
    int *icount, vector *a_hydro_xSum, vector *a_hydro_ySum, vector *a_hydro_zSum,
    vector *h_dtSum, vector *v_sigSum, vector *entropy_dtSum,
443
    vector *v_hi_inv, vector *v_vix, vector *v_viy, vector *v_viz, vector *v_rhoi, vector *v_grad_hi, vector *v_pOrhoi2, vector *v_balsara_i, vector *v_ci) {
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

/* Left-pack values needed into the secondary cache using the interaction mask.
 */
#if defined(HAVE_AVX2) || defined(HAVE_AVX512_F)
  int pack = 0;

#ifdef HAVE_AVX512_F
  pack += __builtin_popcount(mask);
  VEC_LEFT_PACK(v_r2->v, mask, &int_cache->r2q[*icount]);
  VEC_LEFT_PACK(v_dx->v, mask, &int_cache->dxq[*icount]);
  VEC_LEFT_PACK(v_dy->v, mask, &int_cache->dyq[*icount]);
  VEC_LEFT_PACK(v_dz->v, mask, &int_cache->dzq[*icount]);
  VEC_LEFT_PACK(v_mj->v, mask, &int_cache->mq[*icount]);
  VEC_LEFT_PACK(v_vjx->v, mask, &int_cache->vxq[*icount]);
  VEC_LEFT_PACK(v_vjy->v, mask, &int_cache->vyq[*icount]);
  VEC_LEFT_PACK(v_vjz->v, mask, &int_cache->vzq[*icount]);
  
  VEC_LEFT_PACK(v_rhoj->v, mask, &int_cache->rhoq[*icount]);
  VEC_LEFT_PACK(v_grad_hj->v, mask, &int_cache->grad_hq[*icount]);
  VEC_LEFT_PACK(v_pOrhoj2->v, mask, &int_cache->pOrho2q[*icount]);
  VEC_LEFT_PACK(v_balsara_j->v, mask, &int_cache->balsaraq[*icount]);
  VEC_LEFT_PACK(v_cj->v, mask, &int_cache->soundspeedq[*icount]);
  VEC_LEFT_PACK(v_hj_inv->v, mask, &int_cache->h_invq[*icount]);
#else
  vector v_mask;
  VEC_FORM_PACKED_MASK(mask, v_mask.m, pack);

  VEC_LEFT_PACK(v_r2->v, v_mask.m, &int_cache->r2q[*icount]);
  VEC_LEFT_PACK(v_dx->v, v_mask.m, &int_cache->dxq[*icount]);
  VEC_LEFT_PACK(v_dy->v, v_mask.m, &int_cache->dyq[*icount]);
  VEC_LEFT_PACK(v_dz->v, v_mask.m, &int_cache->dzq[*icount]);
  VEC_LEFT_PACK(v_mj->v, v_mask.m, &int_cache->mq[*icount]);
  VEC_LEFT_PACK(v_vjx->v, v_mask.m, &int_cache->vxq[*icount]);
  VEC_LEFT_PACK(v_vjy->v, v_mask.m, &int_cache->vyq[*icount]);
  VEC_LEFT_PACK(v_vjz->v, v_mask.m, &int_cache->vzq[*icount]);

  VEC_LEFT_PACK(v_rhoj->v, v_mask.m, &int_cache->rhoq[*icount]);
  VEC_LEFT_PACK(v_grad_hj->v, v_mask.m, &int_cache->grad_hq[*icount]);
  VEC_LEFT_PACK(v_pOrhoj2->v, v_mask.m, &int_cache->pOrho2q[*icount]);
  VEC_LEFT_PACK(v_balsara_j->v, v_mask.m, &int_cache->balsaraq[*icount]);
  VEC_LEFT_PACK(v_cj->v, v_mask.m, &int_cache->soundspeedq[*icount]);
  VEC_LEFT_PACK(v_hj_inv->v, v_mask.m, &int_cache->h_invq[*icount]);

#endif /* HAVE_AVX512_F */

  (*icount) += pack;
#else
  /* Quicker to do it serially in AVX rather than use intrinsics. */
  for (int bit_index = 0; bit_index < VEC_SIZE; bit_index++) {
    if (mask & (1 << bit_index)) {
      /* Add this interaction to the queue. */
      int_cache->r2q[*icount] = v_r2->f[bit_index];
      int_cache->dxq[*icount] = v_dx->f[bit_index];
      int_cache->dyq[*icount] = v_dy->f[bit_index];
      int_cache->dzq[*icount] = v_dz->f[bit_index];
      int_cache->mq[*icount] = cell_cache->m[pjd + bit_index];
      int_cache->vxq[*icount] = cell_cache->vx[pjd + bit_index];
      int_cache->vyq[*icount] = cell_cache->vy[pjd + bit_index];
      int_cache->vzq[*icount] = cell_cache->vz[pjd + bit_index];
      
      int_cache->rhoq[*icount] = cell_cache->rho[pjd + bit_index];
      int_cache->grad_hq[*icount] = cell_cache->grad_h[pjd + bit_index];
      int_cache->pOrho2q[*icount] = cell_cache->pOrho2[pjd + bit_index];
      int_cache->balsaraq[*icount] = cell_cache->balsara[pjd + bit_index];
      int_cache->soundspeedq[*icount] = cell_cache->soundspeed[pjd + bit_index];
509
      int_cache->h_invq[*icount] = 1.f / cell_cache->h[pjd + bit_index];
510
511
512
513
514
515
516
517

      (*icount)++;
    }
  }

#endif /* defined(HAVE_AVX2) || defined(HAVE_AVX512_F) */

  /* Flush the c2 cache if it has reached capacity. */
518
  if (*icount >= (C2_CACHE_SIZE - (2 * VEC_SIZE))) {
519
520
521
522
523
524
525

    error("Flushing interaction cache...");

    int icount_align = *icount;

    /* Peform remainder interactions. */
    calcRemForceInteractions(int_cache, *icount, a_hydro_xSum, a_hydro_ySum, a_hydro_zSum,
526
527
                             h_dtSum, v_sigSum, entropy_dtSum, v_hi_inv, 
                             v_vix, v_viy, v_viz, v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci,
528
                             &icount_align, 2);
529
530


531
    vector int_mask, int_mask2;
532
    int_mask.m = vec_setint1(0xFFFFFFFF);
533
    int_mask2.m = vec_setint1(0xFFFFFFFF);
534
535

    /* Perform interactions. */
536
537
538
    for (int pjd = 0; pjd < icount_align; pjd += (2 * VEC_SIZE)) {

      runner_iact_nonsym_2_vec_force(
539
        &int_cache->r2q[pjd], &int_cache->dxq[pjd], &int_cache->dyq[pjd], &int_cache->dzq[pjd], v_vix, v_viy, v_viz, v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci,
540
541
542
543
544
545
546
        &int_cache->vxq[pjd], &int_cache->vyq[pjd], &int_cache->vzq[pjd], &int_cache->rhoq[pjd], &int_cache->grad_hq[pjd], &int_cache->pOrho2q[pjd], &int_cache->balsaraq[pjd], &int_cache->soundspeedq[pjd], &int_cache->mq[pjd], v_hi_inv, &int_cache->h_invq[pjd],
        a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum, int_mask, int_mask2
#ifdef HAVE_AVX512_F
          knl_mask, knl_mask2);
#else
          );
#endif
547
548
549
550
551
552
553
554

    }

    /* Reset interaction count. */
    *icount = 0;
  }
}

James Willis's avatar
James Willis committed
555
556
557
558
/* @brief Populates the arrays max_di and max_dj with the maximum distances of
 * particles into their neighbouring cells. Also finds the first pi that
 * interacts with any particle in cj and the last pj that interacts with any
 * particle in ci.
James Willis's avatar
James Willis committed
559
560
561
562
563
564
565
566
 * @param ci #cell pointer to ci
 * @param cj #cell pointer to cj
 * @param sort_i #entry array for particle distance in ci
 * @param sort_j #entry array for particle distance in cj
 * @param ci_cache #cache for cell ci
 * @param cj_cache #cache for cell cj
 * @param dx_max maximum particle movement allowed in cell
 * @param rshift cutoff shift
James Willis's avatar
James Willis committed
567
568
569
570
 * @param max_di array to hold the maximum distances of pi particles into cell
 * cj
 * @param max_dj array to hold the maximum distances of pj particles into cell
 * cj
James Willis's avatar
James Willis committed
571
572
573
 * @param init_pi first pi to interact with a pj particle
 * @param init_pj last pj to interact with a pi particle
 */
James Willis's avatar
James Willis committed
574
575
576
577
__attribute__((always_inline)) INLINE static void populate_max_d_no_cache(
    const struct cell *ci, const struct cell *cj,
    const struct entry *restrict sort_i, const struct entry *restrict sort_j,
    const float dx_max, const float rshift, float *max_di, float *max_dj,
578
    int *init_pi, int *init_pj, const struct engine *e) {
579
580
581
582
583

  struct part *restrict parts_i = ci->parts;
  struct part *restrict parts_j = cj->parts;
  struct part *p = &parts_i[sort_i[0].i];

584
  float h, d;
James Willis's avatar
James Willis committed
585

James Willis's avatar
James Willis committed
586
  /* Get the distance of the last pi and the first pj on the sorted axis.*/
587
588
589
590
591
  const float di_max = sort_i[ci->count - 1].d - rshift;
  const float dj_min = sort_j[0].d;

  int first_pi = 0, last_pj = cj->count - 1;

592
593
594
595
  /* Find the first active particle in ci to interact with any particle in cj. */
  /* Populate max_di with distances. */
  int active_id = ci->count - 1;
  for (int k = ci->count - 1; k >= 0; k--) {
596
597
598
    p = &parts_i[sort_i[k].i];
    h = p->h;
    d = sort_i[k].d + h * kernel_gamma + dx_max - rshift;
James Willis's avatar
James Willis committed
599

600
    max_di[k] = d;
601

602
603
604
605
606
607
608
609
    /* If the particle is out of range set the index to 
     * the last active particle within range. */
    if (d < dj_min) {
      first_pi = active_id;
      break;
    }
    else {
      if(part_is_active(p,e)) active_id = k;
610
611
612
    }
  }

613
614
615
  /* Find the maximum distance of pi particles into cj.*/
  for (int k = first_pi; k < ci->count; k++) {
    max_di[k] = fmaxf(max_di[k - 1],max_di[k]);
616
  }
James Willis's avatar
James Willis committed
617

618
  /* Find the last particle in cj to interact with any particle in ci. */
619
620
621
  /* Populate max_dj with distances. */
  active_id = 0;
  for (int k = 0; k < cj->count; k++) {
622
623
624
    p = &parts_j[sort_j[k].i];
    h = p->h;
    d = sort_j[k].d - h * kernel_gamma - dx_max - rshift;
625
626
627
628
629
630
631
    
    max_dj[k] = d;
    
    /* If the particle is out of range set the index to 
     * the last active particle within range. */
    if (d > di_max) {
      last_pj = active_id;
632
633
      break;
    }
634
635
636
637
638
639
640
641
    else {
      if(part_is_active(p,e)) active_id = k;
    }
  }

  /* Find the maximum distance of pj particles into ci.*/
  for (int k = 1; k <= last_pj; k++) {
    max_dj[k] = fmaxf(max_dj[k - 1], max_dj[k]);
642
643
  }

James Willis's avatar
James Willis committed
644
645
  *init_pi = first_pi;
  *init_pj = last_pj;
646
}
James Willis's avatar
James Willis committed
647
#endif /* WITH_VECTORIZATION */
648
649

/**
James Willis's avatar
James Willis committed
650
651
 * @brief Compute the cell self-interaction (non-symmetric) using vector
 * intrinsics with one particle pi at a time.
652
653
654
655
 *
 * @param r The #runner.
 * @param c The #cell.
 */
James Willis's avatar
James Willis committed
656
657
__attribute__((always_inline)) INLINE void runner_doself1_density_vec(
    struct runner *r, struct cell *restrict c) {
658
659

#ifdef WITH_VECTORIZATION
660
  const struct engine *e = r->e;
661
662
663
664
665
666
667
  int doi_mask;
  struct part *restrict pi;
  int count_align;
  int num_vec_proc = NUM_VEC_PROC;

  struct part *restrict parts = c->parts;
  const int count = c->count;
James Willis's avatar
James Willis committed
668

669
670
  vector v_hi, v_vix, v_viy, v_viz, v_hig2, v_r2;

James Willis's avatar
James Willis committed
671
  TIMER_TIC
672

673
674
  if (!cell_is_active(c, e)) return;

675
  if (!cell_is_drifted(c, e)) cell_drift_particles(c, e);
676

James Willis's avatar
James Willis committed
677
  /* Get the particle cache from the runner and re-allocate
678
   * the cache if it is not big enough for the cell. */
679
  struct cache *restrict cell_cache = &r->ci_cache;
James Willis's avatar
James Willis committed
680
681
682

  if (cell_cache->count < count) {
    cache_init(cell_cache, count);
683
684
  }

James Willis's avatar
James Willis committed
685
  /* Read the particles from the cell and store them locally in the cache. */
James Willis's avatar
James Willis committed
686
  cache_read_particles(c, cell_cache);
687
688
689
690

  /* Create secondary cache to store particle interactions. */
  struct c2_cache int_cache;
  int icount = 0, icount_align = 0;
691
692
693
694
695
696
697
698

  /* Loop over the particles in the cell. */
  for (int pid = 0; pid < count; pid++) {

    /* Get a pointer to the ith particle. */
    pi = &parts[pid];

    /* Is the ith particle active? */
699
    if (!part_is_active(pi, e)) continue;
700
701
702
703
704

    vector pix, piy, piz;

    const float hi = cell_cache->h[pid];

James Willis's avatar
James Willis committed
705
    /* Fill particle pi vectors. */
706
707
708
709
710
711
712
713
714
715
716
    pix.v = vec_set1(cell_cache->x[pid]);
    piy.v = vec_set1(cell_cache->y[pid]);
    piz.v = vec_set1(cell_cache->z[pid]);
    v_hi.v = vec_set1(hi);
    v_vix.v = vec_set1(cell_cache->vx[pid]);
    v_viy.v = vec_set1(cell_cache->vy[pid]);
    v_viz.v = vec_set1(cell_cache->vz[pid]);

    const float hig2 = hi * hi * kernel_gamma2;
    v_hig2.v = vec_set1(hig2);

James Willis's avatar
James Willis committed
717
    /* Reset cumulative sums of update vectors. */
James Willis's avatar
James Willis committed
718
719
720
    vector rhoSum, rho_dhSum, wcountSum, wcount_dhSum, div_vSum, curlvxSum,
        curlvySum, curlvzSum;

James Willis's avatar
James Willis committed
721
    /* Get the inverse of hi. */
722
    vector v_hi_inv;
James Willis's avatar
James Willis committed
723

724
    v_hi_inv = vec_reciprocal(v_hi);
James Willis's avatar
James Willis committed
725

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
    rhoSum.v = vec_setzero();
    rho_dhSum.v = vec_setzero();
    wcountSum.v = vec_setzero();
    wcount_dhSum.v = vec_setzero();
    div_vSum.v = vec_setzero();
    curlvxSum.v = vec_setzero();
    curlvySum.v = vec_setzero();
    curlvzSum.v = vec_setzero();

    /* Pad cache if there is a serial remainder. */
    count_align = count;
    int rem = count % (num_vec_proc * VEC_SIZE);
    if (rem != 0) {
      int pad = (num_vec_proc * VEC_SIZE) - rem;

      count_align += pad;
742
743
744
745
746
747
748
749

      /* Set positions to the same as particle pi so when the r2 > 0 mask is
       * applied these extra contributions are masked out.*/
      for (int i = count; i < count_align; i++) {
        cell_cache->x[i] = pix.f[0];
        cell_cache->y[i] = piy.f[0];
        cell_cache->z[i] = piz.f[0];
      }
750
751
752
753
754
    }

    vector pjx, pjy, pjz;
    vector pjx2, pjy2, pjz2;

James Willis's avatar
James Willis committed
755
756
    /* Find all of particle pi's interacions and store needed values in the
     * secondary cache.*/
757
758
759
760
761
762
    for (int pjd = 0; pjd < count_align; pjd += (num_vec_proc * VEC_SIZE)) {

      /* Load 2 sets of vectors from the particle cache. */
      pjx.v = vec_load(&cell_cache->x[pjd]);
      pjy.v = vec_load(&cell_cache->y[pjd]);
      pjz.v = vec_load(&cell_cache->z[pjd]);
763

764
765
766
      pjx2.v = vec_load(&cell_cache->x[pjd + VEC_SIZE]);
      pjy2.v = vec_load(&cell_cache->y[pjd + VEC_SIZE]);
      pjz2.v = vec_load(&cell_cache->z[pjd + VEC_SIZE]);
767
      
768
769
770
771
      /* Compute the pairwise distance. */
      vector v_dx_tmp, v_dy_tmp, v_dz_tmp;
      vector v_dx_tmp2, v_dy_tmp2, v_dz_tmp2, v_r2_2;

James Willis's avatar
James Willis committed
772
773
      v_dx_tmp.v = vec_sub(pix.v, pjx.v);
      v_dx_tmp2.v = vec_sub(pix.v, pjx2.v);
774
      v_dy_tmp.v = vec_sub(piy.v, pjy.v);
James Willis's avatar
James Willis committed
775
      v_dy_tmp2.v = vec_sub(piy.v, pjy2.v);
776
      v_dz_tmp.v = vec_sub(piz.v, pjz.v);
James Willis's avatar
James Willis committed
777
778
779
780
      v_dz_tmp2.v = vec_sub(piz.v, pjz2.v);

      v_r2.v = vec_mul(v_dx_tmp.v, v_dx_tmp.v);
      v_r2_2.v = vec_mul(v_dx_tmp2.v, v_dx_tmp2.v);
781
      v_r2.v = vec_fma(v_dy_tmp.v, v_dy_tmp.v, v_r2.v);
James Willis's avatar
James Willis committed
782
      v_r2_2.v = vec_fma(v_dy_tmp2.v, v_dy_tmp2.v, v_r2_2.v);
783
      v_r2.v = vec_fma(v_dz_tmp.v, v_dz_tmp.v, v_r2.v);
James Willis's avatar
James Willis committed
784
785
786
      v_r2_2.v = vec_fma(v_dz_tmp2.v, v_dz_tmp2.v, v_r2_2.v);

/* Form a mask from r2 < hig2 and r2 > 0.*/
787
#ifdef HAVE_AVX512_F
James Willis's avatar
James Willis committed
788
      // KNL_MASK_16 doi_mask, doi_mask_check, doi_mask2, doi_mask2_check;
789
790
      KNL_MASK_16 doi_mask_check, doi_mask2, doi_mask2_check;

James Willis's avatar
James Willis committed
791
      doi_mask_check = vec_cmp_gt(v_r2.v, vec_setzero());
792
793
      doi_mask = vec_cmp_lt(v_r2.v, v_hig2.v);

James Willis's avatar
James Willis committed
794
      doi_mask2_check = vec_cmp_gt(v_r2_2.v, vec_setzero());
795
796
797
798
799
800
801
802
803
      doi_mask2 = vec_cmp_lt(v_r2_2.v, v_hig2.v);

      doi_mask = doi_mask & doi_mask_check;
      doi_mask2 = doi_mask2 & doi_mask2_check;

#else
      vector v_doi_mask, v_doi_mask_check, v_doi_mask2, v_doi_mask2_check;
      int doi_mask2;

James Willis's avatar
James Willis committed
804
      /* Form r2 > 0 mask and r2 < hig2 mask. */
James Willis's avatar
James Willis committed
805
      v_doi_mask_check.v = vec_cmp_gt(v_r2.v, vec_setzero());
806
807
      v_doi_mask.v = vec_cmp_lt(v_r2.v, v_hig2.v);

James Willis's avatar
James Willis committed
808
      /* Form r2 > 0 mask and r2 < hig2 mask. */
James Willis's avatar
James Willis committed
809
      v_doi_mask2_check.v = vec_cmp_gt(v_r2_2.v, vec_setzero());
810
811
      v_doi_mask2.v = vec_cmp_lt(v_r2_2.v, v_hig2.v);

James Willis's avatar
James Willis committed
812
      /* Combine two masks and form integer mask. */
813
814
      doi_mask = vec_cmp_result(vec_and(v_doi_mask.v, v_doi_mask_check.v));
      doi_mask2 = vec_cmp_result(vec_and(v_doi_mask2.v, v_doi_mask2_check.v));
815
#endif /* HAVE_AVX512_F */
816

James Willis's avatar
James Willis committed
817
818
      /* If there are any interactions left pack interaction values into c2
       * cache. */
819
      if (doi_mask) {
James Willis's avatar
James Willis committed
820
        storeInteractions(doi_mask, pjd, &v_r2, &v_dx_tmp, &v_dy_tmp, &v_dz_tmp,
821
                          cell_cache, &int_cache,
James Willis's avatar
James Willis committed
822
823
824
                          &icount, &rhoSum, &rho_dhSum, &wcountSum,
                          &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum,
                          &curlvzSum, v_hi_inv, v_vix, v_viy, v_viz);
825
826
      }
      if (doi_mask2) {
James Willis's avatar
James Willis committed
827
828
        storeInteractions(
            doi_mask2, pjd + VEC_SIZE, &v_r2_2, &v_dx_tmp2, &v_dy_tmp2,
829
            &v_dz_tmp2, cell_cache, &int_cache,
James Willis's avatar
James Willis committed
830
831
            &icount, &rhoSum, &rho_dhSum, &wcountSum, &wcount_dhSum, &div_vSum,
            &curlvxSum, &curlvySum, &curlvzSum, v_hi_inv, v_vix, v_viy, v_viz);
832
833
834
      }
    }

James Willis's avatar
James Willis committed
835
    /* Perform padded vector remainder interactions if any are present. */
Matthieu Schaller's avatar
Matthieu Schaller committed
836
837
838
    calcRemInteractions(&int_cache, icount, &rhoSum, &rho_dhSum, &wcountSum,
                        &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum,
                        &curlvzSum, v_hi_inv, v_vix, v_viy, v_viz,
James Willis's avatar
James Willis committed
839
840
841
842
                        &icount_align);

    /* Initialise masks to true in case remainder interactions have been
     * performed. */
843
844
845
846
847
848
849
850
851
852
853
854
    vector int_mask, int_mask2;
#ifdef HAVE_AVX512_F
    KNL_MASK_16 knl_mask = 0xFFFF;
    KNL_MASK_16 knl_mask2 = 0xFFFF;
    int_mask.m = vec_setint1(0xFFFFFFFF);
    int_mask2.m = vec_setint1(0xFFFFFFFF);
#else
    int_mask.m = vec_setint1(0xFFFFFFFF);
    int_mask2.m = vec_setint1(0xFFFFFFFF);
#endif

    /* Perform interaction with 2 vectors. */
James Willis's avatar
James Willis committed
855
856
857
858
859
860
861
    for (int pjd = 0; pjd < icount_align; pjd += (num_vec_proc * VEC_SIZE)) {
      runner_iact_nonsym_2_vec_density(
          &int_cache.r2q[pjd], &int_cache.dxq[pjd], &int_cache.dyq[pjd],
          &int_cache.dzq[pjd], v_hi_inv, v_vix, v_viy, v_viz,
          &int_cache.vxq[pjd], &int_cache.vyq[pjd], &int_cache.vzq[pjd],
          &int_cache.mq[pjd], &rhoSum, &rho_dhSum, &wcountSum, &wcount_dhSum,
          &div_vSum, &curlvxSum, &curlvySum, &curlvzSum, int_mask, int_mask2,
862
#ifdef HAVE_AVX512_F
James Willis's avatar
James Willis committed
863
          knl_mask, knl_mask2);
864
#else
James Willis's avatar
James Willis committed
865
          0, 0);
866
867
868
#endif
    }

James Willis's avatar
James Willis committed
869
870
871
872
873
874
875
876
877
878
    /* Perform horizontal adds on vector sums and store result in particle pi.
     */
    VEC_HADD(rhoSum, pi->rho);
    VEC_HADD(rho_dhSum, pi->density.rho_dh);
    VEC_HADD(wcountSum, pi->density.wcount);
    VEC_HADD(wcount_dhSum, pi->density.wcount_dh);
    VEC_HADD(div_vSum, pi->density.div_v);
    VEC_HADD(curlvxSum, pi->density.rot_v[0]);
    VEC_HADD(curlvySum, pi->density.rot_v[1]);
    VEC_HADD(curlvzSum, pi->density.rot_v[2]);
879
880
881
882
883

    /* Reset interaction count. */
    icount = 0;
  } /* loop over all particles. */

James Willis's avatar
James Willis committed
884
  TIMER_TOC(timer_doself_density);
885
#endif /* WITH_VECTORIZATION */
886
887
}

888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
/**
 * @brief Compute the cell self-interaction (non-symmetric) using vector
 * intrinsics with one particle pi at a time.
 *
 * @param r The #runner.
 * @param c The #cell.
 */
__attribute__((always_inline)) INLINE void runner_doself2_force_vec(
    struct runner *r, struct cell *restrict c) {

#ifdef WITH_VECTORIZATION
  //static int intCount = 0;
  const struct engine *e = r->e;
  int doi_mask;
  struct part *restrict pi;
  int count_align;
  int num_vec_proc = 1;//NUM_VEC_PROC;

  struct part *piq[VEC_SIZE], *pjq[VEC_SIZE];

  struct part *restrict parts = c->parts;
  const int count = c->count;

  vector v_hi, v_hig2, v_r2;

  //TIMER_TIC

  if (!cell_is_active(c, e)) return;

  if (!cell_is_drifted(c, e)) cell_drift_particles(c, e);

  /* Get the particle cache from the runner and re-allocate
   * the cache if it is not big enough for the cell. */
  struct cache *restrict cell_cache = &r->ci_cache;

  if (cell_cache->count < count) {
    cache_init(cell_cache, count);
  }

  /* Read the particles from the cell and store them locally in the cache. */
  cache_read_particles(c, cell_cache);

  /* Create secondary cache to store particle interactions. */
  //struct c2_cache int_cache;
  //int icount = 0, icount_align = 0;

  /* Loop over the particles in the cell. */
  for (int pid = 0; pid < count; pid++) {

    /* Get a pointer to the ith particle. */
    pi = &parts[pid];

    /* Is the ith particle active? */
    if (!part_is_active(pi, e)) continue;

    vector pix, piy, piz;

    const float hi = cell_cache->h[pid];

    /* Fill particle pi vectors. */
    pix.v = vec_set1(cell_cache->x[pid]);
    piy.v = vec_set1(cell_cache->y[pid]);
    piz.v = vec_set1(cell_cache->z[pid]);
    v_hi.v = vec_set1(hi);

    const float hig2 = hi * hi * kernel_gamma2;
    v_hig2.v = vec_set1(hig2);

    /* Reset cumulative sums of update vectors. */
    vector a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum;

    /* Get the inverse of hi. */
    vector v_hi_inv;

    v_hi_inv = vec_reciprocal(v_hi);

    a_hydro_xSum.v = vec_setzero();
    a_hydro_ySum.v = vec_setzero();
    a_hydro_zSum.v = vec_setzero();
    h_dtSum.v = vec_setzero();
    v_sigSum.v = vec_set1(pi->force.v_sig);
    entropy_dtSum.v = vec_setzero();

    /* Pad cache if there is a serial remainder. */
    count_align = count;
    int rem = count % (num_vec_proc * VEC_SIZE);
    if (rem != 0) {
      int pad = (num_vec_proc * VEC_SIZE) - rem;

      count_align += pad;

      /* Set positions to the same as particle pi so when the r2 > 0 mask is
       * applied these extra contributions are masked out.*/
      for (int i = count; i < count_align; i++) {
        cell_cache->x[i] = pix.f[0];
        cell_cache->y[i] = piy.f[0];
        cell_cache->z[i] = piz.f[0];
      }
    }

    vector pjx, pjy, pjz;
    //vector pjvx, pjvy, pjvz, mj;
    vector hj, hjg2;
    //vector pjx2, pjy2, pjz2;
    //vector pjvx2, pjvy2, pjvz2, mj2, hj_2, hjg2_2;

    for(int k=0; k<VEC_SIZE; k++)
      piq[k] = pi;

    /* Find all of particle pi's interacions and store needed values in the
     * secondary cache.*/
    for (int pjd = 0; pjd < count_align; pjd += (num_vec_proc * VEC_SIZE)) {

      /* Load 2 sets of vectors from the particle cache. */
1002
1003
1004
      pjx.v = vec_load(&cell_cache->x[pjd]);
      pjy.v = vec_load(&cell_cache->y[pjd]);
      pjz.v = vec_load(&cell_cache->z[pjd]);
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
      //pjvx.v = vec_load(&cell_cache->vx[pjd]);
      //pjvy.v = vec_load(&cell_cache->vy[pjd]);
      //pjvz.v = vec_load(&cell_cache->vz[pjd]);
      //mj.v = vec_load(&cell_cache->m[pjd]);
    
      hj.v = vec_load(&cell_cache->h[pjd]);
      hjg2.v = vec_mul(vec_mul(hj.v,hj.v), kernel_gamma2_vec.v);

      //pjx2.v = vec_load(&cell_cache->x[pjd + VEC_SIZE]);
      //pjy2.v = vec_load(&cell_cache->y[pjd + VEC_SIZE]);
      //pjz2.v = vec_load(&cell_cache->z[pjd + VEC_SIZE]);
      //pjvx2.v = vec_load(&cell_cache->vx[pjd + VEC_SIZE]);
      //pjvy2.v = vec_load(&cell_cache->vy[pjd + VEC_SIZE]);
      //pjvz2.v = vec_load(&cell_cache->vz[pjd + VEC_SIZE]);
      //mj2.v = vec_load(&cell_cache->m[pjd + VEC_SIZE]);

      //hj_2.v = vec_load(&cell_cache->h[pjd + VEC_SIZE]);
      //hjg2_2.v = vec_mul(vec_mul(hj_2.v,hj_2.v), kernel_gamma2_vec.v);

      vector v_hj_inv;

      v_hj_inv = vec_reciprocal(hj);

      /* Compute the pairwise distance. */
      vector v_dx_tmp, v_dy_tmp, v_dz_tmp;
      //vector v_dx_tmp2, v_dy_tmp2, v_dz_tmp2, v_r2_2;

      v_dx_tmp.v = vec_sub(pix.v, pjx.v);
      //v_dx_tmp2.v = vec_sub(pix.v, pjx2.v);
      v_dy_tmp.v = vec_sub(piy.v, pjy.v);
      //v_dy_tmp2.v = vec_sub(piy.v, pjy2.v);
      v_dz_tmp.v = vec_sub(piz.v, pjz.v);
      //v_dz_tmp2.v = vec_sub(piz.v, pjz2.v);

      v_r2.v = vec_mul(v_dx_tmp.v, v_dx_tmp.v);
      //v_r2_2.v = vec_mul(v_dx_tmp2.v, v_dx_tmp2.v);
      v_r2.v = vec_fma(v_dy_tmp.v, v_dy_tmp.v, v_r2.v);
      //v_r2_2.v = vec_fma(v_dy_tmp2.v, v_dy_tmp2.v, v_r2_2.v);
      v_r2.v = vec_fma(v_dz_tmp.v, v_dz_tmp.v, v_r2.v);
      //v_r2_2.v = vec_fma(v_dz_tmp2.v, v_dz_tmp2.v, v_r2_2.v);

/* Form a mask from r2 < hig2 and r2 > 0.*/
#ifdef HAVE_AVX512_F
      // KNL_MASK_16 doi_mask, doi_mask_check, doi_mask2, doi_mask2_check;
      KNL_MASK_16 doi_mask_check, doi_mask2, doi_mask2_check;

      doi_mask_check = vec_cmp_gt(v_r2.v, vec_setzero());
      doi_mask = vec_cmp_lt(v_r2.v, v_hig2.v);

      doi_mask2_check = vec_cmp_gt(v_r2_2.v, vec_setzero());
      doi_mask2 = vec_cmp_lt(v_r2_2.v, v_hig2.v);

      doi_mask = doi_mask & doi_mask_check;
      doi_mask2 = doi_mask2 & doi_mask2_check;

#else
      vector v_doi_mask, v_doi_mask_check, v_doi_N3_mask;
      //vector v_doi_mask2, v_doi_mask2_check, v_doi_N3_mask2;
      //int doi_mask2;

      /* Form r2 > 0 mask, r2 < hig2 mask and r2 < hjg2 mask. */
      v_doi_mask_check.v = vec_cmp_gt(v_r2.v, vec_setzero());
      v_doi_mask.v = vec_cmp_lt(v_r2.v, v_hig2.v);
      v_doi_N3_mask.v = vec_cmp_lt(v_r2.v, hjg2.v);

      /* Form r2 > 0 mask and r2 < hig2 mask. */
      //v_doi_mask2_check.v = vec_cmp_gt(v_r2_2.v, vec_setzero());
      //v_doi_mask2.v = vec_cmp_lt(v_r2_2.v, v_hig2.v);
      //v_doi_N3_mask2.v = vec_cmp_lt(v_r2_2.v, v_hjg2_2.v);

      v_doi_mask.v = vec_and(vec_add(v_doi_mask.v, v_doi_N3_mask.v), v_doi_mask_check.v);
      
      /* Combine two masks and form integer mask. */
      doi_mask = vec_cmp_result(v_doi_mask.v);
      //doi_mask2 = vec_cmp_result(vec_add(vec_and(v_doi_mask2.v, v_doi_mask2_check.v), v_doi_N3_mask2.v));
      
#endif /* HAVE_AVX512_F */

      for(int k=0; k<VEC_SIZE; k++)
        pjq[k] = &parts[pjd + k];

      /* If there are any interactions left pack interaction values into c2
       * cache. */
      if (doi_mask) {
        for(int k=0; k<VEC_SIZE; k++) {
          if( v_r2.f[k] == 0.f) v_r2.f[k] = 1.f;
        }
        
        //intCount += __builtin_popcount(doi_mask);

        runner_iact_nonsym_1_vec_force(&v_r2, &v_dx_tmp, &v_dy_tmp, &v_dz_tmp,
                          v_hi_inv, v_hj_inv, piq, pjq, 
                          &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum,
                          &h_dtSum, &v_sigSum, &entropy_dtSum, v_doi_mask);
      }
      
    }
    
    VEC_HADD(a_hydro_xSum, pi->a_hydro[0]);
    VEC_HADD(a_hydro_ySum, pi->a_hydro[1]);
    VEC_HADD(a_hydro_zSum, pi->a_hydro[2]);
    VEC_HADD(h_dtSum, pi->force.h_dt);
    /* TODO: Implement a horizontal max of a vector. */
    for(int k=0; k<VEC_SIZE; k++)
      pi->force.v_sig = max(pi->force.v_sig, v_sigSum.f[k]);
    VEC_HADD(entropy_dtSum, pi->entropy_dt);
    
  } /* loop over all particles. */

  //TIMER_TOC(timer_doself_force);
#endif /* WITH_VECTORIZATION */
}

/**
 * @brief Compute the cell self-interaction (non-symmetric) using vector
 * intrinsics with one particle pi at a time.
 *
 * @param r The #runner.
 * @param c The #cell.
 */
__attribute__((always_inline)) INLINE void runner_doself2_force_vec_2(
    struct runner *r, struct cell *restrict c) {

#ifdef WITH_VECTORIZATION
  //static int intCount = 0;
  const struct engine *e = r->e;
  int doi_mask;
  struct part *restrict pi;
  int count_align;
1134
  int num_vec_proc = 2;//NUM_VEC_PROC;
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222

  struct part *restrict parts = c->parts;
  const int count = c->count;

  vector v_hi, v_vix, v_viy, v_viz, v_hig2, v_r2;
  vector v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci;

  //TIMER_TIC

  if (!cell_is_active(c, e)) return;

  if (!cell_is_drifted(c, e)) cell_drift_particles(c, e);

  /* Get the particle cache from the runner and re-allocate
   * the cache if it is not big enough for the cell. */
  struct cache *restrict cell_cache = &r->ci_cache;

  if (cell_cache->count < count) {
    cache_init(cell_cache, count);
  }

  /* Read the particles from the cell and store them locally in the cache. */
  cache_read_particles(c, cell_cache);

  /* Create secondary cache to store particle interactions. */
  //struct c2_cache int_cache;
  //int icount = 0, icount_align = 0;

  /* Loop over the particles in the cell. */
  for (int pid = 0; pid < count; pid++) {

    /* Get a pointer to the ith particle. */
    pi = &parts[pid];

    /* Is the ith particle active? */
    if (!part_is_active(pi, e)) continue;

    vector pix, piy, piz;

    const float hi = cell_cache->h[pid];

    /* Fill particle pi vectors. */
    pix.v = vec_set1(cell_cache->x[pid]);
    piy.v = vec_set1(cell_cache->y[pid]);
    piz.v = vec_set1(cell_cache->z[pid]);
    v_hi.v = vec_set1(hi);
    v_vix.v = vec_set1(cell_cache->vx[pid]);
    v_viy.v = vec_set1(cell_cache->vy[pid]);
    v_viz.v = vec_set1(cell_cache->vz[pid]);
    
    v_rhoi.v = vec_set1(cell_cache->rho[pid]);
    v_grad_hi.v = vec_set1(cell_cache->grad_h[pid]);
    v_pOrhoi2.v = vec_set1(cell_cache->pOrho2[pid]);
    v_balsara_i.v = vec_set1(cell_cache->balsara[pid]);
    v_ci.v = vec_set1(cell_cache->soundspeed[pid]);

    const float hig2 = hi * hi * kernel_gamma2;
    v_hig2.v = vec_set1(hig2);

    /* Reset cumulative sums of update vectors. */
    vector a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum;

    /* Get the inverse of hi. */
    vector v_hi_inv;

    v_hi_inv = vec_reciprocal(v_hi);

    a_hydro_xSum.v = vec_setzero();
    a_hydro_ySum.v = vec_setzero();
    a_hydro_zSum.v = vec_setzero();
    h_dtSum.v = vec_setzero();
    v_sigSum.v = vec_set1(pi->force.v_sig);
    entropy_dtSum.v = vec_setzero();

    /* Pad cache if there is a serial remainder. */
    count_align = count;
    int rem = count % (num_vec_proc * VEC_SIZE);
    if (rem != 0) {
      int pad = (num_vec_proc * VEC_SIZE) - rem;

      count_align += pad;

      /* Set positions to the same as particle pi so when the r2 > 0 mask is
       * applied these extra contributions are masked out.*/
      for (int i = count; i < count_align; i++) {
        cell_cache->x[i] = pix.f[0];
        cell_cache->y[i] = piy.f[0];
        cell_cache->z[i] = piz.f[0];
1223
        cell_cache->h[i] = 1.f;
1224
1225
1226
1227
      }
    }

    vector pjx, pjy, pjz;
1228
    vector hj, hjg2;
1229
1230
    vector pjx2, pjy2, pjz2;
    vector hj_2, hjg2_2;
1231
1232
1233
1234
1235
1236
1237
1238
1239

    /* Find all of particle pi's interacions and store needed values in the
     * secondary cache.*/
    for (int pjd = 0; pjd < count_align; pjd += (num_vec_proc * VEC_SIZE)) {

      /* Load 2 sets of vectors from the particle cache. */
      pjx.v = vec_load(&cell_cache->x[pjd]);
      pjy.v = vec_load(&cell_cache->y[pjd]);
      pjz.v = vec_load(&cell_cache->z[pjd]);
1240
      
1241
1242
1243
      hj.v = vec_load(&cell_cache->h[pjd]);
      hjg2.v = vec_mul(vec_mul(hj.v,hj.v), kernel_gamma2_vec.v);

1244
1245
1246
      pjx2.v = vec_load(&cell_cache->x[pjd + VEC_SIZE]);
      pjy2.v = vec_load(&cell_cache->y[pjd + VEC_SIZE]);
      pjz2.v = vec_load(&cell_cache->z[pjd + VEC_SIZE]);
1247
1248
1249
1250
1251
      //pjvx2.v = vec_load(&cell_cache->vx[pjd + VEC_SIZE]);
      //pjvy2.v = vec_load(&cell_cache->vy[pjd + VEC_SIZE]);
      //pjvz2.v = vec_load(&cell_cache->vz[pjd + VEC_SIZE]);
      //mj2.v = vec_load(&cell_cache->m[pjd + VEC_SIZE]);

1252
1253
      hj_2.v = vec_load(&cell_cache->h[pjd + VEC_SIZE]);
      hjg2_2.v = vec_mul(vec_mul(hj_2.v,hj_2.v), kernel_gamma2_vec.v);
1254
      
1255
1256
      /* Compute the pairwise distance. */
      vector v_dx_tmp, v_dy_tmp, v_dz_tmp;
1257
      vector v_dx_tmp2, v_dy_tmp2, v_dz_tmp2, v_r2_2;
1258
1259

      v_dx_tmp.v = vec_sub(pix.v, pjx.v);
1260
      v_dx_tmp2.v = vec_sub(pix.v, pjx2.v);
1261
      v_dy_tmp.v = vec_sub(piy.v, pjy.v);
1262
      v_dy_tmp2.v = vec_sub(piy.v, pjy2.v);
1263
      v_dz_tmp.v = vec_sub(piz.v, pjz.v);
1264
      v_dz_tmp2.v = vec_sub(piz.v, pjz2.v);
1265
1266

      v_r2.v = vec_mul(v_dx_tmp.v, v_dx_tmp.v);
1267
      v_r2_2.v = vec_mul(v_dx_tmp2.v, v_dx_tmp2.v);
1268
      v_r2.v = vec_fma(v_dy_tmp.v, v_dy_tmp.v, v_r2.v);
1269
      v_r2_2.v = vec_fma(v_dy_tmp2.v, v_dy_tmp2.v, v_r2_2.v);
1270
      v_r2.v = vec_fma(v_dz_tmp.v, v_dz_tmp.v, v_r2.v);
1271
      v_r2_2.v = vec_fma(v_dz_tmp2.v, v_dz_tmp2.v, v_r2_2.v);
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288

/* Form a mask from r2 < hig2 and r2 > 0.*/
#ifdef HAVE_AVX512_F
      // KNL_MASK_16 doi_mask, doi_mask_check, doi_mask2, doi_mask2_check;
      KNL_MASK_16 doi_mask_check, doi_mask2, doi_mask2_check;

      doi_mask_check = vec_cmp_gt(v_r2.v, vec_setzero());
      doi_mask = vec_cmp_lt(v_r2.v, v_hig2.v);

      doi_mask2_check = vec_cmp_gt(v_r2_2.v, vec_setzero());
      doi_mask2 = vec_cmp_lt(v_r2_2.v, v_hig2.v);

      doi_mask = doi_mask & doi_mask_check;
      doi_mask2 = doi_mask2 & doi_mask2_check;

#else
      vector v_doi_mask, v_doi_mask_check, v_doi_N3_mask;
1289
1290
      vector v_doi_mask2, v_doi_mask2_check, v_doi_N3_mask2;
      int doi_mask2;
1291
1292
1293
1294
1295
1296
1297

      /* Form r2 > 0 mask, r2 < hig2 mask and r2 < hjg2 mask. */
      v_doi_mask_check.v = vec_cmp_gt(v_r2.v, vec_setzero());
      v_doi_mask.v = vec_cmp_lt(v_r2.v, v_hig2.v);
      v_doi_N3_mask.v = vec_cmp_lt(v_r2.v, hjg2.v);

      /* Form r2 > 0 mask and r2 < hig2 mask. */
1298
1299
1300
      v_doi_mask2_check.v = vec_cmp_gt(v_r2_2.v, vec_setzero());
      v_doi_mask2.v = vec_cmp_lt(v_r2_2.v, v_hig2.v);
      v_doi_N3_mask2.v = vec_cmp_lt(v_r2_2.v, hjg2_2.v);
1301
1302

      v_doi_mask.v = vec_and(vec_add(v_doi_mask.v, v_doi_N3_mask.v), v_doi_mask_check.v);
1303
      v_doi_mask2.v = vec_and(vec_add(v_doi_mask2.v, v_doi_N3_mask2.v), v_doi_mask2_check.v);
1304
1305
1306
      
      /* Combine two masks and form integer mask. */
      doi_mask = vec_cmp_result(v_doi_mask.v);
1307
      doi_mask2 = vec_cmp_result(v_doi_mask2.v);
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
      
#endif /* HAVE_AVX512_F */

      /* If there are any interactions left pack interaction values into c2
       * cache. */
      if (doi_mask) {
        for(int k=0; k<VEC_SIZE; k++) {
          if( v_r2.f[k] == 0.f) v_r2.f[k] = 1.f;
        }
        
        //intCount += __builtin_popcount(doi_mask);

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
        vector pjvx, pjvy, pjvz, mj, v_hj_inv;
        vector v_rhoj, v_grad_hj, v_pOrhoj2, v_balsara_j, v_cj;

        v_hj_inv = vec_reciprocal(hj);
        mj.v = vec_load(&cell_cache->m[pjd]);
        pjvx.v = vec_load(&cell_cache->vx[pjd]);
        pjvy.v = vec_load(&cell_cache->vy[pjd]);
        pjvz.v = vec_load(&cell_cache->vz[pjd]);

        v_rhoj.v = vec_load(&cell_cache->rho[pjd]);
        v_grad_hj.v = vec_load(&cell_cache->grad_h[pjd]);
        v_pOrhoj2.v = vec_load(&cell_cache->pOrho2[pjd]);
        v_balsara_j.v = vec_load(&cell_cache->balsara[pjd]);
        v_cj.v = vec_load(&cell_cache->soundspeed[pjd]);

1335
1336
1337
1338
1339
1340
1341
        runner_iact_nonsym_1_vec_force_2(&v_r2, &v_dx_tmp, &v_dy_tmp, &v_dz_tmp,
                          &v_vix, &v_viy, &v_viz, &v_rhoi, &v_grad_hi, &v_pOrhoi2, &v_balsara_i, &v_ci,
                          &pjvx, &pjvy, &pjvz, &v_rhoj, &v_grad_hj, &v_pOrhoj2, &v_balsara_j, &v_cj, &mj,
                          v_hi_inv, v_hj_inv, 
                          &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum,
                          &h_dtSum, &v_sigSum, &entropy_dtSum, v_doi_mask);
      }
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
      if (doi_mask2) {
        for(int k=0; k<VEC_SIZE; k++) {
          if( v_r2_2.f[k] == 0.f) v_r2_2.f[k] = 1.f;
        }
        
        vector pjvx, pjvy, pjvz, mj, v_hj_inv;
        vector v_rhoj, v_grad_hj, v_pOrhoj2, v_balsara_j, v_cj;

        v_hj_inv = vec_reciprocal(hj_2);
        mj.v = vec_load(&cell_cache->m[pjd + VEC_SIZE]);
        pjvx.v = vec_load(&cell_cache->vx[pjd + VEC_SIZE]);
        pjvy.v = vec_load(&cell_cache->vy[pjd + VEC_SIZE]);
        pjvz.v = vec_load(&cell_cache->vz[pjd + VEC_SIZE]);

        v_rhoj.v = vec_load(&cell_cache->rho[pjd + VEC_SIZE]);
        v_grad_hj.v = vec_load(&cell_cache->grad_h[pjd + VEC_SIZE]);
        v_pOrhoj2.v = vec_load(&cell_cache->pOrho2[pjd + VEC_SIZE]);
        v_balsara_j.v = vec_load(&cell_cache->balsara[pjd + VEC_SIZE]);
        v_cj.v = vec_load(&cell_cache->soundspeed[pjd + VEC_SIZE]);

        runner_iact_nonsym_1_vec_force_2(&v_r2_2, &v_dx_tmp2, &v_dy_tmp2, &v_dz_tmp2,
                          &v_vix, &v_viy, &v_viz, &v_rhoi, &v_grad_hi, &v_pOrhoi2, &v_balsara_i, &v_ci,
                          &pjvx, &pjvy, &pjvz, &v_rhoj, &v_grad_hj, &v_pOrhoj2, &v_balsara_j, &v_cj, &mj,
                          v_hi_inv, v_hj_inv, 
                          &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum,
                          &h_dtSum, &v_sigSum, &entropy_dtSum, v_doi_mask2);
      }
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
      
    }
    
    VEC_HADD(a_hydro_xSum, pi->a_hydro[0]);
    VEC_HADD(a_hydro_ySum, pi->a_hydro[1]);
    VEC_HADD(a_hydro_zSum, pi->a_hydro[2]);
    VEC_HADD(h_dtSum, pi->force.h_dt);
    /* TODO: Implement a horizontal max of a vector. */
    for(int k=0; k<VEC_SIZE; k++)
      pi->force.v_sig = max(pi->force.v_sig, v_sigSum.f[k]);
    VEC_HADD(entropy_dtSum, pi->entropy_dt);
    
  } /* loop over all particles. */

  //message("No. of force interactions: %d", intCount);
  //TIMER_TOC(timer_doself_force);
#endif /* WITH_VECTORIZATION */
}

/**
 * @brief Compute the cell self-interaction (non-symmetric) using vector
 * intrinsics with one particle pi at a time.
 *
 * @param r The #runner.
 * @param c The #cell.
 */
__attribute__((always_inline)) INLINE void runner_doself2_force_vec_3(
    struct runner *r, struct cell *restrict c) {

#ifdef WITH_VECTORIZATION
  const struct engine *e = r->e;
  int doi_mask;
  struct part *restrict pi;
  int count_align;
1403
  int num_vec_proc = 1;//NUM_VEC_PROC;
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491

  struct part *restrict parts = c->parts;
  const int count = c->count;

  vector v_hi, v_vix, v_viy, v_viz, v_hig2, v_r2;
  vector v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci;

  //TIMER_TIC

  if (!cell_is_active(c, e)) return;

  if (!cell_is_drifted(c, e))