hydro_iact.h 43.9 KB
Newer Older
1
2
/*******************************************************************************
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
5
 *
6
7
8
9
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
10
 *
11
12
13
14
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
15
 *
16
17
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18
 *
19
 ******************************************************************************/
20
21
#ifndef SWIFT_GADGET2_HYDRO_IACT_H
#define SWIFT_GADGET2_HYDRO_IACT_H
22
23

/**
24
 * @file Gadget2/hydro_iact.h
25
26
 * @brief SPH interaction functions following the Gadget-2 version of SPH.
 *
27
 * The interactions computed here are the ones presented in the Gadget-2 paper
28
29
 * Springel, V., MNRAS, Volume 364, Issue 4, pp. 1105-1134.
 * We use the same numerical coefficients as the Gadget-2 code. When used with
30
31
32
 * the Spline-3 kernel, the results should be equivalent to the ones obtained
 * with Gadget-2 up to the rounding errors and interactions missed by the
 * Gadget-2 tree-code neighbours search.
33
34
 */

35
36
#include "minmax.h"

37
38
39
/**
 * @brief Density loop
 */
40
41
42
__attribute__((always_inline)) INLINE static void runner_iact_density(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

43
44
  float wi, wi_dx;
  float wj, wj_dx;
45
  float dv[3], curlvr[3];
46

47
  /* Get the masses. */
48
  const float mi = pi->mass;
49
50
51
52
53
54
55
56
57
58
59
60
61
  const float mj = pj->mass;

  /* Get r and r inverse. */
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Compute the kernel function for pi */
  const float hi_inv = 1.f / hi;
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);

  /* Compute contribution to the density */
  pi->rho += mj * wi;
62
  pi->density.rho_dh -= mj * (hydro_dimension * wi + ui * wi_dx);
63

64
65
66
67
68
69
70
71
72
73
74
  /* Compute contribution to the number of neighbours */
  pi->density.wcount += wi;
  pi->density.wcount_dh -= ui * wi_dx;

  /* Compute the kernel function for pj */
  const float hj_inv = 1.f / hj;
  const float uj = r * hj_inv;
  kernel_deval(uj, &wj, &wj_dx);

  /* Compute contribution to the density */
  pj->rho += mi * wj;
75
  pj->density.rho_dh -= mi * (hydro_dimension * wj + uj * wj_dx);
76

77
78
79
  /* Compute contribution to the number of neighbours */
  pj->density.wcount += wj;
  pj->density.wcount_dh -= uj * wj_dx;
80

81
82
  const float faci = mj * wi_dx * r_inv;
  const float facj = mi * wj_dx * r_inv;
83

84
85
86
87
  /* Compute dv dot r */
  dv[0] = pi->v[0] - pj->v[0];
  dv[1] = pi->v[1] - pj->v[1];
  dv[2] = pi->v[2] - pj->v[2];
88
89
  const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];

90
91
  pi->density.div_v -= faci * dvdr;
  pj->density.div_v -= facj * dvdr;
92
93
94
95
96
97

  /* Compute dv cross r */
  curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
  curlvr[1] = dv[2] * dx[0] - dv[0] * dx[2];
  curlvr[2] = dv[0] * dx[1] - dv[1] * dx[0];

98
99
100
  pi->density.rot_v[0] += faci * curlvr[0];
  pi->density.rot_v[1] += faci * curlvr[1];
  pi->density.rot_v[2] += faci * curlvr[2];
101

102
103
104
  pj->density.rot_v[0] += facj * curlvr[0];
  pj->density.rot_v[1] += facj * curlvr[1];
  pj->density.rot_v[2] += facj * curlvr[2];
105
106
}

107
108
109
110
111
112
/**
 * @brief Density loop (Vectorized version)
 */
__attribute__((always_inline)) INLINE static void runner_iact_vec_density(
    float *R2, float *Dx, float *Hi, float *Hj, struct part **pi,
    struct part **pj) {
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

#ifdef WITH_VECTORIZATION

  vector r, ri, r2, xi, xj, hi, hj, hi_inv, hj_inv, wi, wj, wi_dx, wj_dx;
  vector rhoi, rhoj, rhoi_dh, rhoj_dh, wcounti, wcountj, wcounti_dh, wcountj_dh;
  vector mi, mj;
  vector dx[3], dv[3];
  vector vi[3], vj[3];
  vector dvdr, div_vi, div_vj;
  vector curlvr[3], curl_vi[3], curl_vj[3];
  int k, j;

#if VEC_SIZE == 8
  /* Get the masses. */
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass,
                 pi[4]->mass, pi[5]->mass, pi[6]->mass, pi[7]->mass);
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass,
                 pj[4]->mass, pj[5]->mass, pj[6]->mass, pj[7]->mass);
  /* Get each velocity component. */
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k],
                      pi[4]->v[k], pi[5]->v[k], pi[6]->v[k], pi[7]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k],
                      pj[4]->v[k], pj[5]->v[k], pj[6]->v[k], pj[7]->v[k]);
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
138
139
  /* Get each component of particle separation.
   * (Dx={dx1,dy1,dz1,dx2,dy2,dz2,...,dxn,dyn,dzn})*/
140
141
142
143
144
145
146
147
148
149
150
151
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k], Dx[12 + k],
                      Dx[15 + k], Dx[18 + k], Dx[21 + k]);
#elif VEC_SIZE == 4
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass);
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass);
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k]);
152
153
#else
  error("Unknown vector size.")
154
155
156
157
#endif

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
158
  ri = vec_reciprocal_sqrt(r2);
159
160
161
  r.v = r2.v * ri.v;

  hi.v = vec_load(Hi);
162
  hi_inv = vec_reciprocal(hi);
163
164
165
  xi.v = r.v * hi_inv.v;

  hj.v = vec_load(Hj);
166
  hj_inv = vec_reciprocal(hj);
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
  xj.v = r.v * hj_inv.v;

  /* Compute the kernel function. */
  kernel_deval_vec(&xi, &wi, &wi_dx);
  kernel_deval_vec(&xj, &wj, &wj_dx);

  /* Compute dv. */
  dv[0].v = vi[0].v - vj[0].v;
  dv[1].v = vi[1].v - vj[1].v;
  dv[2].v = vi[2].v - vj[2].v;

  /* Compute dv dot r */
  dvdr.v = (dv[0].v * dx[0].v) + (dv[1].v * dx[1].v) + (dv[2].v * dx[2].v);
  dvdr.v = dvdr.v * ri.v;

  /* Compute dv cross r */
  curlvr[0].v = dv[1].v * dx[2].v - dv[2].v * dx[1].v;
  curlvr[1].v = dv[2].v * dx[0].v - dv[0].v * dx[2].v;
  curlvr[2].v = dv[0].v * dx[1].v - dv[1].v * dx[0].v;
  for (k = 0; k < 3; k++) curlvr[k].v *= ri.v;

  /* Compute density of pi. */
  rhoi.v = mj.v * wi.v;
190
  rhoi_dh.v = mj.v * (vec_set1(hydro_dimension) * wi.v + xi.v * wi_dx.v);
191
192
193
194
195
196
197
  wcounti.v = wi.v;
  wcounti_dh.v = xi.v * wi_dx.v;
  div_vi.v = mj.v * dvdr.v * wi_dx.v;
  for (k = 0; k < 3; k++) curl_vi[k].v = mj.v * curlvr[k].v * wi_dx.v;

  /* Compute density of pj. */
  rhoj.v = mi.v * wj.v;
198
  rhoj_dh.v = mi.v * (vec_set1(hydro_dimension) * wj.v + xj.v * wj_dx.v);
199
200
201
202
203
204
205
206
  wcountj.v = wj.v;
  wcountj_dh.v = xj.v * wj_dx.v;
  div_vj.v = mi.v * dvdr.v * wj_dx.v;
  for (k = 0; k < 3; k++) curl_vj[k].v = mi.v * curlvr[k].v * wj_dx.v;

  /* Update particles. */
  for (k = 0; k < VEC_SIZE; k++) {
    pi[k]->rho += rhoi.f[k];
207
    pi[k]->density.rho_dh -= rhoi_dh.f[k];
208
209
    pi[k]->density.wcount += wcounti.f[k];
    pi[k]->density.wcount_dh -= wcounti_dh.f[k];
210
    pi[k]->density.div_v -= div_vi.f[k];
211
212
    for (j = 0; j < 3; j++) pi[k]->density.rot_v[j] += curl_vi[j].f[k];
    pj[k]->rho += rhoj.f[k];
213
    pj[k]->density.rho_dh -= rhoj_dh.f[k];
214
215
    pj[k]->density.wcount += wcountj.f[k];
    pj[k]->density.wcount_dh -= wcountj_dh.f[k];
216
    pj[k]->density.div_v -= div_vj.f[k];
217
218
219
220
221
    for (j = 0; j < 3; j++) pj[k]->density.rot_v[j] += curl_vj[j].f[k];
  }

#else

Matthieu Schaller's avatar
Matthieu Schaller committed
222
223
  error(
      "The Gadget2 serial version of runner_iact_density was called when the "
224
      "vectorised version should have been used.");
225
226

#endif
227
228
}

229
230
231
/**
 * @brief Density loop (non-symmetric version)
 */
232
233
234
235
236
237
238
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_density(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

  float wi, wi_dx;
  float dv[3], curlvr[3];

  /* Get the masses. */
239
  const float mj = pj->mass;
240
241

  /* Get r and r inverse. */
242
243
  const float r = sqrtf(r2);
  const float ri = 1.0f / r;
244

245
  /* Compute the kernel function */
246
247
248
  const float hi_inv = 1.0f / hi;
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
249
250
251

  /* Compute contribution to the density */
  pi->rho += mj * wi;
252
  pi->density.rho_dh -= mj * (hydro_dimension * wi + ui * wi_dx);
253
254
255

  /* Compute contribution to the number of neighbours */
  pi->density.wcount += wi;
256
  pi->density.wcount_dh -= ui * wi_dx;
257

258
  const float fac = mj * wi_dx * ri;
259

260
261
262
263
264
  /* Compute dv dot r */
  dv[0] = pi->v[0] - pj->v[0];
  dv[1] = pi->v[1] - pj->v[1];
  dv[2] = pi->v[2] - pj->v[2];
  const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];
265
  pi->density.div_v -= fac * dvdr;
266

267
268
269
270
271
  /* Compute dv cross r */
  curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
  curlvr[1] = dv[2] * dx[0] - dv[0] * dx[2];
  curlvr[2] = dv[0] * dx[1] - dv[1] * dx[0];

272
273
274
  pi->density.rot_v[0] += fac * curlvr[0];
  pi->density.rot_v[1] += fac * curlvr[1];
  pi->density.rot_v[2] += fac * curlvr[2];
275
276
}

277
278
279
280
281
282
/**
 * @brief Density loop (non-symmetric vectorized version)
 */
__attribute__((always_inline)) INLINE static void
runner_iact_nonsym_vec_density(float *R2, float *Dx, float *Hi, float *Hj,
                               struct part **pi, struct part **pj) {
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

#ifdef WITH_VECTORIZATION

  vector r, ri, r2, xi, hi, hi_inv, wi, wi_dx;
  vector rhoi, rhoi_dh, wcounti, wcounti_dh, div_vi;
  vector mj;
  vector dx[3], dv[3];
  vector vi[3], vj[3];
  vector dvdr;
  vector curlvr[3], curl_vi[3];
  int k, j;

#if VEC_SIZE == 8
  /* Get the masses. */
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass,
                 pj[4]->mass, pj[5]->mass, pj[6]->mass, pj[7]->mass);
  /* Get each velocity component. */
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k],
                      pi[4]->v[k], pi[5]->v[k], pi[6]->v[k], pi[7]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k],
                      pj[4]->v[k], pj[5]->v[k], pj[6]->v[k], pj[7]->v[k]);
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
306
307
  /* Get each component of particle separation.
   * (Dx={dx1,dy1,dz1,dx2,dy2,dz2,...,dxn,dyn,dzn})*/
308
309
310
311
312
313
314
315
316
317
318
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k], Dx[12 + k],
                      Dx[15 + k], Dx[18 + k], Dx[21 + k]);
#elif VEC_SIZE == 4
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass);
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k]);
319
320
#else
  error("Unknown vector size.")
321
322
323
324
#endif

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
325
  ri = vec_reciprocal_sqrt(r2);
326
327
328
  r.v = r2.v * ri.v;

  hi.v = vec_load(Hi);
329
  hi_inv = vec_reciprocal(hi);
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
  xi.v = r.v * hi_inv.v;

  kernel_deval_vec(&xi, &wi, &wi_dx);

  /* Compute dv. */
  dv[0].v = vi[0].v - vj[0].v;
  dv[1].v = vi[1].v - vj[1].v;
  dv[2].v = vi[2].v - vj[2].v;

  /* Compute dv dot r */
  dvdr.v = (dv[0].v * dx[0].v) + (dv[1].v * dx[1].v) + (dv[2].v * dx[2].v);
  dvdr.v = dvdr.v * ri.v;

  /* Compute dv cross r */
  curlvr[0].v = dv[1].v * dx[2].v - dv[2].v * dx[1].v;
  curlvr[1].v = dv[2].v * dx[0].v - dv[0].v * dx[2].v;
  curlvr[2].v = dv[0].v * dx[1].v - dv[1].v * dx[0].v;
  for (k = 0; k < 3; k++) curlvr[k].v *= ri.v;

  /* Compute density of pi. */
  rhoi.v = mj.v * wi.v;
351
  rhoi_dh.v = mj.v * (vec_set1(hydro_dimension) * wi.v + xi.v * wi_dx.v);
352
353
354
355
356
357
358
359
  wcounti.v = wi.v;
  wcounti_dh.v = xi.v * wi_dx.v;
  div_vi.v = mj.v * dvdr.v * wi_dx.v;
  for (k = 0; k < 3; k++) curl_vi[k].v = mj.v * curlvr[k].v * wi_dx.v;

  /* Update particles. */
  for (k = 0; k < VEC_SIZE; k++) {
    pi[k]->rho += rhoi.f[k];
360
    pi[k]->density.rho_dh -= rhoi_dh.f[k];
361
362
    pi[k]->density.wcount += wcounti.f[k];
    pi[k]->density.wcount_dh -= wcounti_dh.f[k];
363
    pi[k]->density.div_v -= div_vi.f[k];
364
365
366
367
368
    for (j = 0; j < 3; j++) pi[k]->density.rot_v[j] += curl_vi[j].f[k];
  }

#else

Matthieu Schaller's avatar
Matthieu Schaller committed
369
370
  error(
      "The Gadget2 serial version of runner_iact_nonsym_density was called "
371
      "when the vectorised version should have been used.");
372
373

#endif
374
375
}

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
#ifdef WITH_VECTORIZATION
/**
 * @brief Density interaction computed using 2 interleaved vectors
 * (non-symmetric vectorized version).
 */
__attribute__((always_inline)) INLINE static void
runner_iact_nonsym_1_vec_density(
    float *R2, float *Dx, float *Dy, float *Dz, vector hi_inv, vector vix,
    vector viy, vector viz, float *Vjx, float *Vjy, float *Vjz, float *Mj,
    vector *rhoSum, vector *rho_dhSum, vector *wcountSum, vector *wcount_dhSum,
    vector *div_vSum, vector *curlvxSum, vector *curlvySum, vector *curlvzSum,
    vector mask, vector mask2, int knlMask, int knlMask2) {

  vector r, ri, r2, xi, wi, wi_dx;
  vector mj;
  vector dx, dy, dz, dvx, dvy, dvz;
  vector vjx, vjy, vjz;
  vector dvdr;
  vector curlvrx, curlvry, curlvrz;
  
  /* Fill the vectors. */
  mj.v = vec_load(Mj);
  vjx.v = vec_load(Vjx);
  vjy.v = vec_load(Vjy);
  vjz.v = vec_load(Vjz);
  dx.v = vec_load(Dx);
  dy.v = vec_load(Dy);
  dz.v = vec_load(Dz);

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
  ri = vec_reciprocal_sqrt(r2);
  r.v = vec_mul(r2.v, ri.v);

  xi.v = vec_mul(r.v, hi_inv.v);

  /* Calculate the kernel for two particles. */
  kernel_deval_1_vec(&xi, &wi, &wi_dx);

  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvz.v = vec_sub(viz.v, vjz.v);

  /* Compute dv dot r */
  dvdr.v = vec_fma(dvx.v, dx.v, vec_fma(dvy.v, dy.v, vec_mul(dvz.v, dz.v)));
  dvdr.v = vec_mul(dvdr.v, ri.v);

  /* Compute dv cross r */
  curlvrx.v =
      vec_fma(dvy.v, dz.v, vec_mul(vec_set1(-1.0f), vec_mul(dvz.v, dy.v)));
  curlvry.v =
      vec_fma(dvz.v, dx.v, vec_mul(vec_set1(-1.0f), vec_mul(dvx.v, dz.v)));
  curlvrz.v =
      vec_fma(dvx.v, dy.v, vec_mul(vec_set1(-1.0f), vec_mul(dvy.v, dx.v)));
  curlvrx.v = vec_mul(curlvrx.v, ri.v);
  curlvry.v = vec_mul(curlvry.v, ri.v);
  curlvrz.v = vec_mul(curlvrz.v, ri.v);

/* Mask updates to intermediate vector sums for particle pi. */
#ifdef HAVE_AVX512_F
  rhoSum->v =
      _mm512_mask_add_ps(rhoSum->v, knlMask, vec_mul(mj.v, wi.v), rhoSum->v);

  rho_dhSum->v =
      _mm512_mask_sub_ps(rho_dhSum->v, knlMask, rho_dhSum->v,
                         vec_mul(mj.v, vec_fma(vec_set1(hydro_dimension), wi.v,
                                               vec_mul(xi.v, wi_dx.v))));

  wcountSum->v = _mm512_mask_add_ps(wcountSum->v, knlMask, wi.v, wcountSum->v);

  wcount_dhSum->v = _mm512_mask_sub_ps(wcount_dhSum->v, knlMask,
                                       wcount_dhSum->v, vec_mul(xi.v, wi_dx.v));

  div_vSum->v = _mm512_mask_sub_ps(div_vSum->v, knlMask, div_vSum->v,
                                   vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)));

  curlvxSum->v = _mm512_mask_add_ps(curlvxSum->v, knlMask,
                                    vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)),
                                    curlvxSum->v);
  
  curlvySum->v = _mm512_mask_add_ps(curlvySum->v, knlMask,
                                    vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)),
                                    curlvySum->v);
  
  curlvzSum->v = _mm512_mask_add_ps(curlvzSum->v, knlMask,
                                    vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)),
                                    curlvzSum->v);
  #else
  rhoSum->v += vec_and(vec_mul(mj.v, wi.v), mask.v);
  rho_dhSum->v -= vec_and(vec_mul(mj.v, vec_fma(vec_set1(hydro_dimension), wi.v,
                                                vec_mul(xi.v, wi_dx.v))),
                          mask.v);
  wcountSum->v += vec_and(wi.v, mask.v);
  wcount_dhSum->v -= vec_and(vec_mul(xi.v, wi_dx.v), mask.v);
  div_vSum->v -= vec_and(vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)), mask.v);
  curlvxSum->v += vec_and(vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)), mask.v);
  curlvySum->v += vec_and(vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)), mask.v);
  curlvzSum->v += vec_and(vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)), mask.v);
#endif
}
#endif

James Willis's avatar
James Willis committed
479
#ifdef WITH_VECTORIZATION
480
/**
James Willis's avatar
James Willis committed
481
482
 * @brief Density interaction computed using 2 interleaved vectors
 * (non-symmetric vectorized version).
483
484
 */
__attribute__((always_inline)) INLINE static void
James Willis's avatar
James Willis committed
485
486
487
488
489
490
runner_iact_nonsym_2_vec_density(
    float *R2, float *Dx, float *Dy, float *Dz, vector hi_inv, vector vix,
    vector viy, vector viz, float *Vjx, float *Vjy, float *Vjz, float *Mj,
    vector *rhoSum, vector *rho_dhSum, vector *wcountSum, vector *wcount_dhSum,
    vector *div_vSum, vector *curlvxSum, vector *curlvySum, vector *curlvzSum,
    vector mask, vector mask2, int knlMask, int knlMask2) {
491
492
493
494
495
496
497
498
499
500
501
502
503
504

  vector r, ri, r2, xi, wi, wi_dx;
  vector mj;
  vector dx, dy, dz, dvx, dvy, dvz;
  vector vjx, vjy, vjz;
  vector dvdr;
  vector curlvrx, curlvry, curlvrz;
  vector r_2, ri2, r2_2, xi2, wi2, wi_dx2;
  vector mj2;
  vector dx2, dy2, dz2, dvx2, dvy2, dvz2;
  vector vjx2, vjy2, vjz2;
  vector dvdr2;
  vector curlvrx2, curlvry2, curlvrz2;

James Willis's avatar
James Willis committed
505
  /* Fill the vectors. */
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
  mj.v = vec_load(Mj);
  mj2.v = vec_load(&Mj[VEC_SIZE]);
  vjx.v = vec_load(Vjx);
  vjx2.v = vec_load(&Vjx[VEC_SIZE]);
  vjy.v = vec_load(Vjy);
  vjy2.v = vec_load(&Vjy[VEC_SIZE]);
  vjz.v = vec_load(Vjz);
  vjz2.v = vec_load(&Vjz[VEC_SIZE]);
  dx.v = vec_load(Dx);
  dx2.v = vec_load(&Dx[VEC_SIZE]);
  dy.v = vec_load(Dy);
  dy2.v = vec_load(&Dy[VEC_SIZE]);
  dz.v = vec_load(Dz);
  dz2.v = vec_load(&Dz[VEC_SIZE]);

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
  r2_2.v = vec_load(&R2[VEC_SIZE]);
524
525
  ri = vec_reciprocal_sqrt(r2);
  ri2 = vec_reciprocal_sqrt(r2_2);
526
527
528
529
530
531
  r.v = vec_mul(r2.v, ri.v);
  r_2.v = vec_mul(r2_2.v, ri2.v);

  xi.v = vec_mul(r.v, hi_inv.v);
  xi2.v = vec_mul(r_2.v, hi_inv.v);

James Willis's avatar
James Willis committed
532
  /* Calculate the kernel for two particles. */
James Willis's avatar
James Willis committed
533
  kernel_deval_2_vec(&xi, &wi, &wi_dx, &xi2, &wi2, &wi_dx2);
534
535
536
537
538
539
540
541
542
543
544

  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvx2.v = vec_sub(vix.v, vjx2.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvy2.v = vec_sub(viy.v, vjy2.v);
  dvz.v = vec_sub(viz.v, vjz.v);
  dvz2.v = vec_sub(viz.v, vjz2.v);

  /* Compute dv dot r */
  dvdr.v = vec_fma(dvx.v, dx.v, vec_fma(dvy.v, dy.v, vec_mul(dvz.v, dz.v)));
James Willis's avatar
James Willis committed
545
546
  dvdr2.v =
      vec_fma(dvx2.v, dx2.v, vec_fma(dvy2.v, dy2.v, vec_mul(dvz2.v, dz2.v)));
547
548
549
550
  dvdr.v = vec_mul(dvdr.v, ri.v);
  dvdr2.v = vec_mul(dvdr2.v, ri2.v);

  /* Compute dv cross r */
James Willis's avatar
James Willis committed
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
  curlvrx.v =
      vec_fma(dvy.v, dz.v, vec_mul(vec_set1(-1.0f), vec_mul(dvz.v, dy.v)));
  curlvrx2.v =
      vec_fma(dvy2.v, dz2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvz2.v, dy2.v)));
  curlvry.v =
      vec_fma(dvz.v, dx.v, vec_mul(vec_set1(-1.0f), vec_mul(dvx.v, dz.v)));
  curlvry2.v =
      vec_fma(dvz2.v, dx2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvx2.v, dz2.v)));
  curlvrz.v =
      vec_fma(dvx.v, dy.v, vec_mul(vec_set1(-1.0f), vec_mul(dvy.v, dx.v)));
  curlvrz2.v =
      vec_fma(dvx2.v, dy2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvy2.v, dx2.v)));
  curlvrx.v = vec_mul(curlvrx.v, ri.v);
  curlvrx2.v = vec_mul(curlvrx2.v, ri2.v);
  curlvry.v = vec_mul(curlvry.v, ri.v);
  curlvry2.v = vec_mul(curlvry2.v, ri2.v);
  curlvrz.v = vec_mul(curlvrz.v, ri.v);
  curlvrz2.v = vec_mul(curlvrz2.v, ri2.v);

/* Mask updates to intermediate vector sums for particle pi. */
571
#ifdef HAVE_AVX512_F
James Willis's avatar
James Willis committed
572
573
574
575
576
577
578
579
580
581
582
583
584
  rhoSum->v =
      _mm512_mask_add_ps(rhoSum->v, knlMask, vec_mul(mj.v, wi.v), rhoSum->v);
  rhoSum->v =
      _mm512_mask_add_ps(rhoSum->v, knlMask2, vec_mul(mj2.v, wi2.v), rhoSum->v);

  rho_dhSum->v =
      _mm512_mask_sub_ps(rho_dhSum->v, knlMask, rho_dhSum->v,
                         vec_mul(mj.v, vec_fma(vec_set1(hydro_dimension), wi.v,
                                               vec_mul(xi.v, wi_dx.v))));
  rho_dhSum->v = _mm512_mask_sub_ps(
      rho_dhSum->v, knlMask2, rho_dhSum->v,
      vec_mul(mj2.v, vec_fma(vec_set1(hydro_dimension), wi2.v,
                             vec_mul(xi2.v, wi_dx2.v))));
585
586

  wcountSum->v = _mm512_mask_add_ps(wcountSum->v, knlMask, wi.v, wcountSum->v);
James Willis's avatar
James Willis committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
  wcountSum->v =
      _mm512_mask_add_ps(wcountSum->v, knlMask2, wi2.v, wcountSum->v);

  wcount_dhSum->v = _mm512_mask_sub_ps(wcount_dhSum->v, knlMask,
                                       wcount_dhSum->v, vec_mul(xi.v, wi_dx.v));
  wcount_dhSum->v = _mm512_mask_sub_ps(
      wcount_dhSum->v, knlMask2, wcount_dhSum->v, vec_mul(xi2.v, wi_dx2.v));

  div_vSum->v = _mm512_mask_sub_ps(div_vSum->v, knlMask, div_vSum->v,
                                   vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)));
  div_vSum->v = _mm512_mask_sub_ps(div_vSum->v, knlMask2, div_vSum->v,
                                   vec_mul(mj2.v, vec_mul(dvdr2.v, wi_dx2.v)));

  curlvxSum->v = _mm512_mask_add_ps(curlvxSum->v, knlMask,
                                    vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)),
                                    curlvxSum->v);
  curlvxSum->v = _mm512_mask_add_ps(
      curlvxSum->v, knlMask2, vec_mul(mj2.v, vec_mul(curlvrx2.v, wi_dx2.v)),
      curlvxSum->v);

  curlvySum->v = _mm512_mask_add_ps(curlvySum->v, knlMask,
                                    vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)),
                                    curlvySum->v);
  curlvySum->v = _mm512_mask_add_ps(
      curlvySum->v, knlMask2, vec_mul(mj2.v, vec_mul(curlvry2.v, wi_dx2.v)),
      curlvySum->v);

  curlvzSum->v = _mm512_mask_add_ps(curlvzSum->v, knlMask,
                                    vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)),
                                    curlvzSum->v);
  curlvzSum->v = _mm512_mask_add_ps(
      curlvzSum->v, knlMask2, vec_mul(mj2.v, vec_mul(curlvrz2.v, wi_dx2.v)),
      curlvzSum->v);
620
#else
James Willis's avatar
James Willis committed
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
  rhoSum->v += vec_and(vec_mul(mj.v, wi.v), mask.v);
  rhoSum->v += vec_and(vec_mul(mj2.v, wi2.v), mask2.v);
  rho_dhSum->v -= vec_and(vec_mul(mj.v, vec_fma(vec_set1(hydro_dimension), wi.v,
                                                vec_mul(xi.v, wi_dx.v))),
                          mask.v);
  rho_dhSum->v -=
      vec_and(vec_mul(mj2.v, vec_fma(vec_set1(hydro_dimension), wi2.v,
                                     vec_mul(xi2.v, wi_dx2.v))),
              mask2.v);
  wcountSum->v += vec_and(wi.v, mask.v);
  wcountSum->v += vec_and(wi2.v, mask2.v);
  wcount_dhSum->v -= vec_and(vec_mul(xi.v, wi_dx.v), mask.v);
  wcount_dhSum->v -= vec_and(vec_mul(xi2.v, wi_dx2.v), mask2.v);
  div_vSum->v -= vec_and(vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)), mask.v);
  div_vSum->v -= vec_and(vec_mul(mj2.v, vec_mul(dvdr2.v, wi_dx2.v)), mask2.v);
  curlvxSum->v += vec_and(vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)), mask.v);
  curlvxSum->v +=
      vec_and(vec_mul(mj2.v, vec_mul(curlvrx2.v, wi_dx2.v)), mask2.v);
  curlvySum->v += vec_and(vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)), mask.v);
  curlvySum->v +=
      vec_and(vec_mul(mj2.v, vec_mul(curlvry2.v, wi_dx2.v)), mask2.v);
  curlvzSum->v += vec_and(vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)), mask.v);
  curlvzSum->v +=
      vec_and(vec_mul(mj2.v, vec_mul(curlvrz2.v, wi_dx2.v)), mask2.v);
645
646
#endif
}
James Willis's avatar
James Willis committed
647
#endif
648

649
650
651
/**
 * @brief Force loop
 */
652
653
654
__attribute__((always_inline)) INLINE static void runner_iact_force(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

655
656
657
  float wi, wj, wi_dx, wj_dx;

  const float fac_mu = 1.f; /* Will change with cosmological integration */
658

659
660
661
662
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Get some values in local variables. */
663
  const float mi = pi->mass;
664
665
666
667
668
669
  const float mj = pj->mass;
  const float rhoi = pi->rho;
  const float rhoj = pj->rho;

  /* Get the kernel for hi. */
  const float hi_inv = 1.0f / hi;
670
  const float hid_inv = pow_dimension_plus_one(hi_inv); /* 1/h^(d+1) */
671
672
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
673
  const float wi_dr = hid_inv * wi_dx;
674
675
676

  /* Get the kernel for hj. */
  const float hj_inv = 1.0f / hj;
677
  const float hjd_inv = pow_dimension_plus_one(hj_inv); /* 1/h^(d+1) */
678
679
  const float xj = r * hj_inv;
  kernel_deval(xj, &wj, &wj_dx);
680
  const float wj_dr = hjd_inv * wj_dx;
681

682
683
684
685
686
  /* Compute h-gradient terms */
  const float f_i = pi->force.f;
  const float f_j = pj->force.f;

  /* Compute pressure terms */
687
688
  const float P_over_rho2_i = pi->force.P_over_rho2;
  const float P_over_rho2_j = pj->force.P_over_rho2;
689
690

  /* Compute sound speeds */
691
692
  const float ci = pi->force.soundspeed;
  const float cj = pj->force.soundspeed;
693

694
  /* Compute dv dot r. */
695
696
697
  const float dvdr = (pi->v[0] - pj->v[0]) * dx[0] +
                     (pi->v[1] - pj->v[1]) * dx[1] +
                     (pi->v[2] - pj->v[2]) * dx[2];
698

699
  /* Balsara term */
700
701
  const float balsara_i = pi->force.balsara;
  const float balsara_j = pj->force.balsara;
Matthieu Schaller's avatar
Matthieu Schaller committed
702

703
  /* Are the particles moving towards each others ? */
704
  const float omega_ij = (dvdr < 0.f) ? dvdr : 0.f;
705
706
707
708
709
710
711
712
713
  const float mu_ij = fac_mu * r_inv * omega_ij; /* This is 0 or negative */

  /* Signal velocity */
  const float v_sig = ci + cj - 3.f * mu_ij;

  /* Now construct the full viscosity term */
  const float rho_ij = 0.5f * (rhoi + rhoj);
  const float visc = -0.25f * const_viscosity_alpha * v_sig * mu_ij *
                     (balsara_i + balsara_j) / rho_ij;
714
715

  /* Now, convolve with the kernel */
716
  const float visc_term = 0.5f * visc * (wi_dr + wj_dr) * r_inv;
717
  const float sph_term =
718
      (f_i * P_over_rho2_i * wi_dr + f_j * P_over_rho2_j * wj_dr) * r_inv;
719
720
721
722
723

  /* Eventually got the acceleration */
  const float acc = visc_term + sph_term;

  /* Use the force Luke ! */
724
725
726
  pi->a_hydro[0] -= mj * acc * dx[0];
  pi->a_hydro[1] -= mj * acc * dx[1];
  pi->a_hydro[2] -= mj * acc * dx[2];
727

728
729
730
  pj->a_hydro[0] += mi * acc * dx[0];
  pj->a_hydro[1] += mi * acc * dx[1];
  pj->a_hydro[2] += mi * acc * dx[2];
731

732
  /* Get the time derivative for h. */
733
734
  pi->force.h_dt -= mj * dvdr * r_inv / rhoj * wi_dr;
  pj->force.h_dt -= mi * dvdr * r_inv / rhoi * wj_dr;
735

736
  /* Update the signal velocity. */
737
738
  pi->force.v_sig = (pi->force.v_sig > v_sig) ? pi->force.v_sig : v_sig;
  pj->force.v_sig = (pj->force.v_sig > v_sig) ? pj->force.v_sig : v_sig;
739

740
  /* Change in entropy */
741
742
  pi->entropy_dt += mj * visc_term * dvdr;
  pj->entropy_dt += mi * visc_term * dvdr;
743
}
744

745
746
747
748
749
750
/**
 * @brief Force loop (Vectorized version)
 */
__attribute__((always_inline)) INLINE static void runner_iact_vec_force(
    float *R2, float *Dx, float *Hi, float *Hj, struct part **pi,
    struct part **pj) {
751
752
753
754
755
756

#ifdef WITH_VECTORIZATION

  vector r, r2, ri;
  vector xi, xj;
  vector hi, hj, hi_inv, hj_inv;
757
  vector hid_inv, hjd_inv;
758
  vector wi, wj, wi_dx, wj_dx, wi_dr, wj_dr, dvdr;
759
  vector piPOrho2, pjPOrho2, pirho, pjrho;
760
761
  vector mi, mj;
  vector f;
762
  vector grad_hi, grad_hj;
763
764
765
766
767
768
769
770
771
772
773
  vector dx[3];
  vector vi[3], vj[3];
  vector pia[3], pja[3];
  vector pih_dt, pjh_dt;
  vector ci, cj, v_sig;
  vector omega_ij, mu_ij, fac_mu, balsara;
  vector rho_ij, visc, visc_term, sph_term, acc, entropy_dt;
  int j, k;

  fac_mu.v = vec_set1(1.f); /* Will change with cosmological integration */

Matthieu Schaller's avatar
Matthieu Schaller committed
774
/* Load stuff. */
775
776
777
778
779
#if VEC_SIZE == 8
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass,
                 pi[4]->mass, pi[5]->mass, pi[6]->mass, pi[7]->mass);
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass,
                 pj[4]->mass, pj[5]->mass, pj[6]->mass, pj[7]->mass);
780
  piPOrho2.v = vec_set(pi[0]->force.P_over_rho2, pi[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
781
782
783
                       pi[2]->force.P_over_rho2, pi[3]->force.P_over_rho2,
                       pi[4]->force.P_over_rho2, pi[5]->force.P_over_rho2,
                       pi[6]->force.P_over_rho2, pi[7]->force.P_over_rho2);
784
  pjPOrho2.v = vec_set(pj[0]->force.P_over_rho2, pj[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
785
786
787
788
789
790
791
792
793
                       pj[2]->force.P_over_rho2, pj[3]->force.P_over_rho2,
                       pj[4]->force.P_over_rho2, pj[5]->force.P_over_rho2,
                       pj[6]->force.P_over_rho2, pj[7]->force.P_over_rho2);
  grad_hi.v =
      vec_set(pi[0]->force.f, pi[1]->force.f, pi[2]->force.f, pi[3]->force.f,
              pi[4]->force.f, pi[5]->force.f, pi[6]->force.f, pi[7]->force.f);
  grad_hj.v =
      vec_set(pj[0]->force.f, pj[1]->force.f, pj[2]->force.f, pj[3]->force.f,
              pj[4]->force.f, pj[5]->force.f, pj[6]->force.f, pj[7]->force.f);
794
795
796
797
  pirho.v = vec_set(pi[0]->rho, pi[1]->rho, pi[2]->rho, pi[3]->rho, pi[4]->rho,
                    pi[5]->rho, pi[6]->rho, pi[7]->rho);
  pjrho.v = vec_set(pj[0]->rho, pj[1]->rho, pj[2]->rho, pj[3]->rho, pj[4]->rho,
                    pj[5]->rho, pj[6]->rho, pj[7]->rho);
Matthieu Schaller's avatar
Matthieu Schaller committed
798
799
800
801
802
803
804
805
  ci.v = vec_set(pi[0]->force.soundspeed, pi[1]->force.soundspeed,
                 pi[2]->force.soundspeed, pi[3]->force.soundspeed,
                 pi[4]->force.soundspeed, pi[5]->force.soundspeed,
                 pi[6]->force.soundspeed, pi[7]->force.soundspeed);
  cj.v = vec_set(pj[0]->force.soundspeed, pj[1]->force.soundspeed,
                 pj[2]->force.soundspeed, pj[3]->force.soundspeed,
                 pj[4]->force.soundspeed, pj[5]->force.soundspeed,
                 pj[6]->force.soundspeed, pj[7]->force.soundspeed);
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k],
                      pi[4]->v[k], pi[5]->v[k], pi[6]->v[k], pi[7]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k],
                      pj[4]->v[k], pj[5]->v[k], pj[6]->v[k], pj[7]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k], Dx[12 + k],
                      Dx[15 + k], Dx[18 + k], Dx[21 + k]);
  balsara.v =
      vec_set(pi[0]->force.balsara, pi[1]->force.balsara, pi[2]->force.balsara,
              pi[3]->force.balsara, pi[4]->force.balsara, pi[5]->force.balsara,
              pi[6]->force.balsara, pi[7]->force.balsara) +
      vec_set(pj[0]->force.balsara, pj[1]->force.balsara, pj[2]->force.balsara,
              pj[3]->force.balsara, pj[4]->force.balsara, pj[5]->force.balsara,
              pj[6]->force.balsara, pj[7]->force.balsara);
#elif VEC_SIZE == 4
823
  mi.v = vec_set(pi[0]->mass, pi[1]->mass, pi[2]->mass, pi[3]->mass);
824
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass);
825
  piPOrho2.v = vec_set(pi[0]->force.P_over_rho2, pi[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
826
                       pi[2]->force.P_over_rho2, pi[3]->force.P_over_rho2);
827
  pjPOrho2.v = vec_set(pj[0]->force.P_over_rho2, pj[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
828
829
830
831
832
                       pj[2]->force.P_over_rho2, pj[3]->force.P_over_rho2);
  grad_hi.v =
      vec_set(pi[0]->force.f, pi[1]->force.f, pi[2]->force.f, pi[3]->force.f);
  grad_hj.v =
      vec_set(pj[0]->force.f, pj[1]->force.f, pj[2]->force.f, pj[3]->force.f);
833
834
  pirho.v = vec_set(pi[0]->rho, pi[1]->rho, pi[2]->rho, pi[3]->rho);
  pjrho.v = vec_set(pj[0]->rho, pj[1]->rho, pj[2]->rho, pj[3]->rho);
Matthieu Schaller's avatar
Matthieu Schaller committed
835
836
837
838
  ci.v = vec_set(pi[0]->force.soundspeed, pi[1]->force.soundspeed,
                 pi[2]->force.soundspeed, pi[3]->force.soundspeed);
  cj.v = vec_set(pj[0]->force.soundspeed, pj[1]->force.soundspeed,
                 pj[2]->force.soundspeed, pj[3]->force.soundspeed);
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
  for (k = 0; k < 3; k++) {
    vi[k].v = vec_set(pi[0]->v[k], pi[1]->v[k], pi[2]->v[k], pi[3]->v[k]);
    vj[k].v = vec_set(pj[0]->v[k], pj[1]->v[k], pj[2]->v[k], pj[3]->v[k]);
  }
  for (k = 0; k < 3; k++)
    dx[k].v = vec_set(Dx[0 + k], Dx[3 + k], Dx[6 + k], Dx[9 + k]);
  balsara.v = vec_set(pi[0]->force.balsara, pi[1]->force.balsara,
                      pi[2]->force.balsara, pi[3]->force.balsara) +
              vec_set(pj[0]->force.balsara, pj[1]->force.balsara,
                      pj[2]->force.balsara, pj[3]->force.balsara);
#else
  error("Unknown vector size.")
#endif

  /* Get the radius and inverse radius. */
  r2.v = vec_load(R2);
855
  ri = vec_reciprocal_sqrt(r2);
856
857
858
859
  r.v = r2.v * ri.v;

  /* Get the kernel for hi. */
  hi.v = vec_load(Hi);
860
  hi_inv = vec_reciprocal(hi);
861
  hid_inv = pow_dimension_plus_one_vec(hi_inv); /* 1/h^(d+1) */
862
863
  xi.v = r.v * hi_inv.v;
  kernel_deval_vec(&xi, &wi, &wi_dx);
864
  wi_dr.v = hid_inv.v * wi_dx.v;
865
866
867

  /* Get the kernel for hj. */
  hj.v = vec_load(Hj);
868
  hj_inv = vec_reciprocal(hj);
869
  hjd_inv = pow_dimension_plus_one_vec(hj_inv); /* 1/h^(d+1) */
870
871
  xj.v = r.v * hj_inv.v;
  kernel_deval_vec(&xj, &wj, &wj_dx);
872
  wj_dr.v = hjd_inv.v * wj_dx.v;
873
874
875
876

  /* Compute dv dot r. */
  dvdr.v = ((vi[0].v - vj[0].v) * dx[0].v) + ((vi[1].v - vj[1].v) * dx[1].v) +
           ((vi[2].v - vj[2].v) * dx[2].v);
Matthieu Schaller's avatar
Matthieu Schaller committed
877
  // dvdr.v = dvdr.v * ri.v;
878
879
880
881
882

  /* Compute the relative velocity. (This is 0 if the particles move away from
   * each other and negative otherwise) */
  omega_ij.v = vec_fmin(dvdr.v, vec_set1(0.0f));
  mu_ij.v = fac_mu.v * ri.v * omega_ij.v; /* This is 0 or negative */
Matthieu Schaller's avatar
Matthieu Schaller committed
883

884
885
  /* Compute signal velocity */
  v_sig.v = ci.v + cj.v - vec_set1(3.0f) * mu_ij.v;
Matthieu Schaller's avatar
Matthieu Schaller committed
886

887
888
  /* Now construct the full viscosity term */
  rho_ij.v = vec_set1(0.5f) * (pirho.v + pjrho.v);
Matthieu Schaller's avatar
Matthieu Schaller committed
889
890
  visc.v = vec_set1(-0.25f) * vec_set1(const_viscosity_alpha) * v_sig.v *
           mu_ij.v * balsara.v / rho_ij.v;
891
892
893

  /* Now, convolve with the kernel */
  visc_term.v = vec_set1(0.5f) * visc.v * (wi_dr.v + wj_dr.v) * ri.v;
James Willis's avatar
James Willis committed
894
895
896
  sph_term.v =
      (grad_hi.v * piPOrho2.v * wi_dr.v + grad_hj.v * pjPOrho2.v * wj_dr.v) *
      ri.v;
897
898
899

  /* Eventually get the acceleration */
  acc.v = visc_term.v + sph_term.v;
Matthieu Schaller's avatar
Matthieu Schaller committed
900

901
902
903
904
905
906
907
908
909
910
911
912
  /* Use the force, Luke! */
  for (k = 0; k < 3; k++) {
    f.v = dx[k].v * acc.v;
    pia[k].v = mj.v * f.v;
    pja[k].v = mi.v * f.v;
  }

  /* Get the time derivative for h. */
  pih_dt.v = mj.v * dvdr.v * ri.v / pjrho.v * wi_dr.v;
  pjh_dt.v = mi.v * dvdr.v * ri.v / pirho.v * wj_dr.v;

  /* Change in entropy */
913
  entropy_dt.v = visc_term.v * dvdr.v;
Matthieu Schaller's avatar
Matthieu Schaller committed
914

915
916
917
918
919
920
  /* Store the forces back on the particles. */
  for (k = 0; k < VEC_SIZE; k++) {
    for (j = 0; j < 3; j++) {
      pi[k]->a_hydro[j] -= pia[j].f[k];
      pj[k]->a_hydro[j] += pja[j].f[k];
    }
921
922
    pi[k]->force.h_dt -= pih_dt.f[k];
    pj[k]->force.h_dt -= pjh_dt.f[k];
923
924
    pi[k]->force.v_sig = max(pi[k]->force.v_sig, v_sig.f[k]);
    pj[k]->force.v_sig = max(pj[k]->force.v_sig, v_sig.f[k]);
925
    pi[k]->entropy_dt += entropy_dt.f[k] * mj.f[k];
926
    pj[k]->entropy_dt += entropy_dt.f[k] * mi.f[k];
927
928
  }

Matthieu Schaller's avatar
Matthieu Schaller committed
929
#else
930

Matthieu Schaller's avatar
Matthieu Schaller committed
931
932
  error(
      "The Gadget2 serial version of runner_iact_nonsym_force was called when "
933
      "the vectorised version should have been used.");
934
935

#endif
936
937
}

938
939
940
/**
 * @brief Force loop (non-symmetric version)
 */
941
942
943
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_force(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

944
945
946
  float wi, wj, wi_dx, wj_dx;

  const float fac_mu = 1.f; /* Will change with cosmological integration */
947

948
949
950
951
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Get some values in local variables. */
952
  // const float mi = pi->mass;
953
954
955
956
957
958
  const float mj = pj->mass;
  const float rhoi = pi->rho;
  const float rhoj = pj->rho;

  /* Get the kernel for hi. */
  const float hi_inv = 1.0f / hi;
959
  const float hid_inv = pow_dimension_plus_one(hi_inv); /* 1/h^(d+1) */
960
961
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
962
  const float wi_dr = hid_inv * wi_dx;
963
964
965

  /* Get the kernel for hj. */
  const float hj_inv = 1.0f / hj;
966
  const float hjd_inv = pow_dimension_plus_one(hj_inv); /* 1/h^(d+1) */
967
968
  const float xj = r * hj_inv;
  kernel_deval(xj, &wj, &wj_dx);
969
  const float wj_dr = hjd_inv * wj_dx;
970

971
972
973
974
975
  /* Compute h-gradient terms */
  const float f_i = pi->force.f;
  const float f_j = pj->force.f;

  /* Compute pressure terms */
976
977
  const float P_over_rho2_i = pi->force.P_over_rho2;
  const float P_over_rho2_j = pj->force.P_over_rho2;
978
979

  /* Compute sound speeds */
980
981
  const float ci = pi->force.soundspeed;
  const float cj = pj->force.soundspeed;
982

983
  /* Compute dv dot r. */
984
985
986
  const float dvdr = (pi->v[0] - pj->v[0]) * dx[0] +
                     (pi->v[1] - pj->v[1]) * dx[1] +
                     (pi->v[2] - pj->v[2]) * dx[2];
987

988
  /* Balsara term */
989
990
  const float balsara_i = pi->force.balsara;
  const float balsara_j = pj->force.balsara;
991
992

  /* Are the particles moving towards each others ? */
993
  const float omega_ij = (dvdr < 0.f) ? dvdr : 0.f;
994
995
996
997
998
999
1000
1001
1002
  const float mu_ij = fac_mu * r_inv * omega_ij; /* This is 0 or negative */

  /* Signal velocity */
  const float v_sig = ci + cj - 3.f * mu_ij;

  /* Now construct the full viscosity term */
  const float rho_ij = 0.5f * (rhoi + rhoj);
  const float visc = -0.25f * const_viscosity_alpha * v_sig * mu_ij *
                     (balsara_i + balsara_j) / rho_ij;
1003
1004

  /* Now, convolve with the kernel */
1005
  const float visc_term = 0.5f * visc * (wi_dr + wj_dr) * r_inv;
1006
  const float sph_term =
1007
      (f_i * P_over_rho2_i * wi_dr + f_j * P_over_rho2_j * wj_dr) * r_inv;
1008
1009
1010

  /* Eventually got the acceleration */
  const float acc = visc_term + sph_term;
1011

1012
  /* Use the force Luke ! */
1013
1014
1015
  pi->a_hydro[0] -= mj * acc * dx[0];
  pi->a_hydro[1] -= mj * acc * dx[1];
  pi->a_hydro[2] -= mj * acc * dx[2];
1016

1017
  /* Get the time derivative for h. */
1018
  pi->force.h_dt -= mj * dvdr * r_inv / rhoj * wi_dr;
1019

1020
  /* Update the signal velocity. */
1021
  pi->force.v_sig = (pi->force.v_sig > v_sig) ? pi->force.v_sig : v_sig;
1022

1023
  /* Change in entropy */
1024
  pi->entropy_dt += mj * visc_term * dvdr;
1025
}
1026

1027
1028
1029
1030
1031
1032
/**
 * @brief Force loop (Vectorized non-symmetric version)
 */
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_vec_force(
    float *R2, float *Dx, float *Hi, float *Hj, struct part **pi,
    struct part **pj) {
1033

Matthieu Schaller's avatar
Matthieu Schaller committed
1034
#ifdef WITH_VECTORIZATION
1035
1036
1037
1038

  vector r, r2, ri;
  vector xi, xj;
  vector hi, hj, hi_inv, hj_inv;
1039
  vector hid_inv, hjd_inv;
1040
  vector wi, wj, wi_dx, wj_dx, wi_dr, wj_dr, dvdr;
1041
  vector piPOrho2, pjPOrho2, pirho, pjrho;
1042
1043
  vector mj;
  vector f;
1044
  vector grad_hi, grad_hj;
1045
1046
1047
1048
  vector dx[3];
  vector vi[3], vj[3];
  vector pia[3];
  vector pih_dt;
1049
1050
  vector ci, cj, v_sig;
  vector omega_ij, mu_ij, fac_mu, balsara;
1051
1052
1053
1054
1055
  vector rho_ij, visc, visc_term, sph_term, acc, entropy_dt;
  int j, k;

  fac_mu.v = vec_set1(1.f); /* Will change with cosmological integration */

Matthieu Schaller's avatar
Matthieu Schaller committed
1056
/* Load stuff. */
1057
1058
1059
#if VEC_SIZE == 8
  mj.v = vec_set(pj[0]->mass, pj[1]->mass, pj[2]->mass, pj[3]->mass,
                 pj[4]->mass, pj[5]->mass, pj[6]->mass, pj[7]->mass);
1060
  piPOrho2.v = vec_set(pi[0]->force.P_over_rho2, pi[1]->force.P_over_rho2,
James Willis's avatar
James Willis committed
1061
1062
1063
                       pi[2]->force.P_over_rho2, pi[3]->force.P_over_rho2,
                       pi[4]->force.P_over_rho2, pi[5]->force.P_over_rho2,
                       pi[6]->force.P_over_rho2, pi