space.c 40.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program.  If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
19
20
21
22
23
24
25
26

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
27
#include <string.h>
28
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
29

30
31
/* MPI headers. */
#ifdef WITH_MPI
32
#include <mpi.h>
33
34
#endif

35
36
37
/* This object's header. */
#include "space.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
38
/* Local headers. */
39
#include "atomic.h"
40
#include "engine.h"
41
#include "error.h"
42
43
#include "kernel.h"
#include "lock.h"
44
#include "minmax.h"
45
#include "runner.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
46

47
48
49
/* Shared sort structure. */
struct parallel_sort space_sort_struct;

Pedro Gonnet's avatar
Pedro Gonnet committed
50
51
/* Split size. */
int space_splitsize = space_splitsize_default;
52
int space_subsize = space_subsize_default;
53
int space_maxsize = space_maxsize_default;
Pedro Gonnet's avatar
Pedro Gonnet committed
54
55
56

/* Map shift vector to sortlist. */
const int sortlistID[27] = {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    /* ( -1 , -1 , -1 ) */ 0,
    /* ( -1 , -1 ,  0 ) */ 1,
    /* ( -1 , -1 ,  1 ) */ 2,
    /* ( -1 ,  0 , -1 ) */ 3,
    /* ( -1 ,  0 ,  0 ) */ 4,
    /* ( -1 ,  0 ,  1 ) */ 5,
    /* ( -1 ,  1 , -1 ) */ 6,
    /* ( -1 ,  1 ,  0 ) */ 7,
    /* ( -1 ,  1 ,  1 ) */ 8,
    /* (  0 , -1 , -1 ) */ 9,
    /* (  0 , -1 ,  0 ) */ 10,
    /* (  0 , -1 ,  1 ) */ 11,
    /* (  0 ,  0 , -1 ) */ 12,
    /* (  0 ,  0 ,  0 ) */ 0,
    /* (  0 ,  0 ,  1 ) */ 12,
    /* (  0 ,  1 , -1 ) */ 11,
    /* (  0 ,  1 ,  0 ) */ 10,
    /* (  0 ,  1 ,  1 ) */ 9,
    /* (  1 , -1 , -1 ) */ 8,
    /* (  1 , -1 ,  0 ) */ 7,
    /* (  1 , -1 ,  1 ) */ 6,
    /* (  1 ,  0 , -1 ) */ 5,
    /* (  1 ,  0 ,  0 ) */ 4,
    /* (  1 ,  0 ,  1 ) */ 3,
    /* (  1 ,  1 , -1 ) */ 2,
    /* (  1 ,  1 ,  0 ) */ 1,
    /* (  1 ,  1 ,  1 ) */ 0};

85
86
87
88
89
90
91
92
93
94
95
96
/**
 * @brief Get the shift-id of the given pair of cells, swapping them
 *      if need be.
 *
 * @param s The space
 * @param ci Pointer to first #cell.
 * @param cj Pointer second #cell.
 * @param shift Vector from ci to cj.
 *
 * @return The shift ID and set shift, may or may not swap ci and cj.
 */

97
98
99
100
int space_getsid(struct space *s, struct cell **ci, struct cell **cj,
                 double *shift) {

  /* Get the relative distance between the pairs, wrapping. */
101
102
103
  const int periodic = s->periodic;
  double dx[3];
  for (int k = 0; k < 3; k++) {
104
105
106
107
108
109
110
111
112
113
114
    dx[k] = (*cj)->loc[k] - (*ci)->loc[k];
    if (periodic && dx[k] < -s->dim[k] / 2)
      shift[k] = s->dim[k];
    else if (periodic && dx[k] > s->dim[k] / 2)
      shift[k] = -s->dim[k];
    else
      shift[k] = 0.0;
    dx[k] += shift[k];
  }

  /* Get the sorting index. */
115
  int sid = 0;
116
  for (int k = 0; k < 3; k++)
117
118
119
120
    sid = 3 * sid + ((dx[k] < 0.0) ? 0 : ((dx[k] > 0.0) ? 2 : 1));

  /* Switch the cells around? */
  if (runner_flip[sid]) {
121
    struct cell *temp = *ci;
122
123
    *ci = *cj;
    *cj = temp;
124
    for (int k = 0; k < 3; k++) shift[k] = -shift[k];
125
126
127
128
129
130
  }
  sid = sortlistID[sid];

  /* Return the sort ID. */
  return sid;
}
131

132
/**
133
 * @brief Recursively dismantle a cell tree.
134
135
 *
 */
136
137
138
139

void space_rebuild_recycle(struct space *s, struct cell *c) {

  if (c->split)
140
    for (int k = 0; k < 8; k++)
141
142
143
144
145
146
147
      if (c->progeny[k] != NULL) {
        space_rebuild_recycle(s, c->progeny[k]);
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      }
}

148
/**
149
 * @brief Re-build the cell grid.
150
 *
151
152
 * @param s The #space.
 * @param cell_max Maximum cell edge length.
153
 * @param verbose Print messages to stdout or not.
154
 */
155

156
void space_regrid(struct space *s, double cell_max, int verbose) {
157

158
159
  float h_max = s->cell_min / kernel_gamma / space_stretch;
  const size_t nr_parts = s->nr_parts;
160
  struct cell *restrict c;
161
  ticks tic = getticks();
162
163
164
165

  /* Run through the parts and get the current h_max. */
  // tic = getticks();
  if (s->cells != NULL) {
166
    for (int k = 0; k < s->nr_cells; k++) {
167
      if (s->cells[k].h_max > h_max) h_max = s->cells[k].h_max;
168
    }
169
  } else {
170
    for (int k = 0; k < nr_parts; k++) {
171
172
173
174
175
176
177
178
179
180
181
182
      if (s->parts[k].h > h_max) h_max = s->parts[k].h;
    }
    s->h_max = h_max;
  }

/* If we are running in parallel, make sure everybody agrees on
   how large the largest cell should be. */
#ifdef WITH_MPI
  {
    float buff;
    if (MPI_Allreduce(&h_max, &buff, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD) !=
        MPI_SUCCESS)
183
      error("Failed to aggregate the rebuild flag across nodes.");
184
185
186
    h_max = buff;
  }
#endif
187
  if (verbose) message("h_max is %.3e (cell_max=%.3e).", h_max, cell_max);
188
189

  /* Get the new putative cell dimensions. */
190
  int cdim[3];
191
  for (int k = 0; k < 3; k++)
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    cdim[k] =
        floor(s->dim[k] / fmax(h_max * kernel_gamma * space_stretch, cell_max));

  /* Check if we have enough cells for periodicity. */
  if (s->periodic && (cdim[0] < 3 || cdim[1] < 3 || cdim[2] < 3))
    error(
        "Must have at least 3 cells in each spatial dimension when periodicity "
        "is switched on.");

/* In MPI-Land, we're not allowed to change the top-level cell size. */
#ifdef WITH_MPI
  if (cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2])
    error("Root-level change of cell size not allowed.");
#endif

  /* Do we need to re-build the upper-level cells? */
  // tic = getticks();
  if (s->cells == NULL || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] ||
      cdim[2] < s->cdim[2]) {

    /* Free the old cells, if they were allocated. */
    if (s->cells != NULL) {
214
      for (int k = 0; k < s->nr_cells; k++) {
215
216
217
218
219
220
221
222
        space_rebuild_recycle(s, &s->cells[k]);
        if (s->cells[k].sort != NULL) free(s->cells[k].sort);
      }
      free(s->cells);
      s->maxdepth = 0;
    }

    /* Set the new cell dimensions only if smaller. */
223
    for (int k = 0; k < 3; k++) {
224
225
226
227
      s->cdim[k] = cdim[k];
      s->h[k] = s->dim[k] / cdim[k];
      s->ih[k] = 1.0 / s->h[k];
    }
228
    const float dmin = fminf(s->h[0], fminf(s->h[1], s->h[2]));
229
230
231
232
233
234
235

    /* Allocate the highest level of cells. */
    s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2];
    if (posix_memalign((void *)&s->cells, 64,
                       s->nr_cells * sizeof(struct cell)) != 0)
      error("Failed to allocate cells.");
    bzero(s->cells, s->nr_cells * sizeof(struct cell));
236
    for (int k = 0; k < s->nr_cells; k++)
237
238
239
      if (lock_init(&s->cells[k].lock) != 0) error("Failed to init spinlock.");

    /* Set the cell location and sizes. */
240
241
242
    for (int i = 0; i < cdim[0]; i++)
      for (int j = 0; j < cdim[1]; j++)
        for (int k = 0; k < cdim[2]; k++) {
243
244
245
246
247
248
249
250
251
252
253
254
255
          c = &s->cells[cell_getid(cdim, i, j, k)];
          c->loc[0] = i * s->h[0];
          c->loc[1] = j * s->h[1];
          c->loc[2] = k * s->h[2];
          c->h[0] = s->h[0];
          c->h[1] = s->h[1];
          c->h[2] = s->h[2];
          c->dmin = dmin;
          c->depth = 0;
          c->count = 0;
          c->gcount = 0;
          c->super = c;
          lock_init(&c->lock);
Pedro Gonnet's avatar
Pedro Gonnet committed
256
        }
257
258

    /* Be verbose about the change. */
259
260
261
    if (verbose)
      message("set cell dimensions to [ %i %i %i ].", cdim[0], cdim[1],
              cdim[2]);
262
263
264
    fflush(stdout);

  } /* re-build upper-level cells? */
265
266
  // message( "rebuilding upper-level cells took %.3f %s." ,
  // clocks_from_ticks(double)(getticks() - tic), clocks_getunit());
267
268
269
270
271

  /* Otherwise, just clean up the cells. */
  else {

    /* Free the old cells, if they were allocated. */
272
    for (int k = 0; k < s->nr_cells; k++) {
273
274
275
276
277
278
279
280
281
282
283
      space_rebuild_recycle(s, &s->cells[k]);
      s->cells[k].sorts = NULL;
      s->cells[k].nr_tasks = 0;
      s->cells[k].nr_density = 0;
      s->cells[k].nr_force = 0;
      s->cells[k].density = NULL;
      s->cells[k].force = NULL;
      s->cells[k].dx_max = 0.0f;
      s->cells[k].sorted = 0;
      s->cells[k].count = 0;
      s->cells[k].gcount = 0;
Matthieu Schaller's avatar
Matthieu Schaller committed
284
      s->cells[k].init = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
285
      s->cells[k].ghost = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
286
287
      s->cells[k].drift = NULL;
      s->cells[k].kick = NULL;
288
      s->cells[k].super = &s->cells[k];
289
    }
290
291
    s->maxdepth = 0;
  }
292
293
294
295

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
296
}
297
298
299
300
301
302

/**
 * @brief Re-build the cells as well as the tasks.
 *
 * @param s The #space in which to update the cells.
 * @param cell_max Maximal cell size.
303
 * @param verbose Print messages to stdout or not
304
305
 *
 */
306

307
void space_rebuild(struct space *s, double cell_max, int verbose) {
308

Matthieu Schaller's avatar
Matthieu Schaller committed
309
  const ticks tic = getticks();
310
311
312
313
314

  /* Be verbose about this. */
  // message( "re)building space..." ); fflush(stdout);

  /* Re-grid if necessary, or just re-set the cell data. */
315
  space_regrid(s, cell_max, verbose);
316

317
318
319
320
  int nr_parts = s->nr_parts;
  int nr_gparts = s->nr_gparts;
  struct cell *restrict cells = s->cells;

Matthieu Schaller's avatar
Matthieu Schaller committed
321
322
323
  const double ih[3] = {s->ih[0], s->ih[1], s->ih[2]};
  const double dim[3] = {s->dim[0], s->dim[1], s->dim[2]};
  const int cdim[3] = {s->cdim[0], s->cdim[1], s->cdim[2]};
324
325
326
327

  /* Run through the particles and get their cell index. */
  // tic = getticks();
  const size_t ind_size = s->size_parts;
328
329
  int *ind;
  if ((ind = (int *)malloc(sizeof(int) * ind_size)) == NULL)
330
331
332
333
    error("Failed to allocate temporary particle indices.");
  for (int k = 0; k < nr_parts; k++) {
    struct part *restrict p = &s->parts[k];
    for (int j = 0; j < 3; j++)
334
335
336
337
      if (p->x[j] < 0.0)
        p->x[j] += dim[j];
      else if (p->x[j] >= dim[j])
        p->x[j] -= dim[j];
338
    ind[k] =
339
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
340
    cells[ind[k]].count++;
341
  }
Pedro Gonnet's avatar
Pedro Gonnet committed
342
343
  // message( "getting particle indices took %.3f %s." ,
  // clocks_from_ticks(getticks() - tic), clocks_getunit()):
344

345
346
347
348
349
350
351
  /* Run through the gravity particles and get their cell index. */
  // tic = getticks();
  const size_t gind_size = s->size_gparts;
  int *gind;
  if ((gind = (int *)malloc(sizeof(int) * gind_size)) == NULL)
    error("Failed to allocate temporary g-particle indices.");
  for (int k = 0; k < nr_gparts; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
352
    struct gpart *restrict gp = &s->gparts[k];
353
354
355
356
357
358
359
360
361
    for (int j = 0; j < 3; j++)
      if (gp->x[j] < 0.0)
        gp->x[j] += dim[j];
      else if (gp->x[j] >= dim[j])
        gp->x[j] -= dim[j];
    gind[k] =
        cell_getid(cdim, gp->x[0] * ih[0], gp->x[1] * ih[1], gp->x[2] * ih[2]);
    cells[gind[k]].gcount++;
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
362
// message( "getting particle indices took %.3f %s." ,
363
// clocks_from_ticks(getticks() - tic), clocks_getunit());
364
365
366

#ifdef WITH_MPI
  /* Move non-local parts to the end of the list. */
367
  const int local_nodeID = s->e->nodeID;
368
  for (int k = 0; k < nr_parts; k++)
369
    if (cells[ind[k]].nodeID != local_nodeID) {
370
371
      cells[ind[k]].count -= 1;
      nr_parts -= 1;
Matthieu Schaller's avatar
Bug fix    
Matthieu Schaller committed
372
      const struct part tp = s->parts[k];
373
374
      s->parts[k] = s->parts[nr_parts];
      s->parts[nr_parts] = tp;
375
376
377
378
379
380
      if (s->parts[k].gpart != NULL) {
        s->parts[k].gpart->part = &s->parts[k];
      }
      if (s->parts[nr_parts].gpart != NULL) {
        s->parts[nr_parts].gpart->part = &s->parts[nr_parts];
      }
Matthieu Schaller's avatar
Bug fix    
Matthieu Schaller committed
381
      const struct xpart txp = s->xparts[k];
382
383
      s->xparts[k] = s->xparts[nr_parts];
      s->xparts[nr_parts] = txp;
Matthieu Schaller's avatar
Bug fix    
Matthieu Schaller committed
384
      const int t = ind[k];
385
386
      ind[k] = ind[nr_parts];
      ind[nr_parts] = t;
387
388
    }

389
390
  /* Move non-local gparts to the end of the list. */
  for (int k = 0; k < nr_gparts; k++)
Matthieu Schaller's avatar
Bug fix    
Matthieu Schaller committed
391
392
    if (cells[gind[k]].nodeID != local_nodeID) {
      cells[gind[k]].gcount -= 1;
393
      nr_gparts -= 1;
Matthieu Schaller's avatar
Bug fix    
Matthieu Schaller committed
394
      const struct gpart tp = s->gparts[k];
395
396
      s->gparts[k] = s->gparts[nr_gparts];
      s->gparts[nr_gparts] = tp;
397
398
399
400
401
402
      if (s->gparts[k].id > 0) {
        s->gparts[k].part->gpart = &s->gparts[k];
      }
      if (s->gparts[nr_gparts].id > 0) {
        s->gparts[nr_gparts].part->gpart = &s->gparts[nr_gparts];
      }
Matthieu Schaller's avatar
Bug fix    
Matthieu Schaller committed
403
404
405
      const int t = gind[k];
      gind[k] = gind[nr_gparts];
      gind[nr_gparts] = t;
406
407
    }

408
409
  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
410
411
412
  /* TODO: This function also exchanges gparts, but this is shorted-out
     until they are fully implemented. */
  size_t nr_parts_exchanged = s->nr_parts - nr_parts;
413
  size_t nr_gparts_exchanged = s->nr_gparts - nr_gparts;
Pedro Gonnet's avatar
Pedro Gonnet committed
414
415
416
  engine_exchange_strays(s->e, nr_parts, &ind[nr_parts], &nr_parts_exchanged,
                         nr_gparts, &gind[nr_gparts], &nr_gparts_exchanged);

417
  /* Add post-processing, i.e. re-linking/creating of gparts here. */
Pedro Gonnet's avatar
Pedro Gonnet committed
418
419

  /* Set the new particle counts. */
420
  s->nr_parts = nr_parts + nr_parts_exchanged;
421
  s->nr_gparts = nr_gparts + nr_gparts_exchanged;
422
423

  /* Re-allocate the index array if needed.. */
424
  if (s->nr_parts > ind_size) {
425
426
    int *ind_new;
    if ((ind_new = (int *)malloc(sizeof(int) * s->nr_parts)) == NULL)
427
      error("Failed to allocate temporary particle indices.");
428
    memcpy(ind_new, ind, sizeof(size_t) * nr_parts);
429
430
    free(ind);
    ind = ind_new;
431
432
433
  }

  /* Assign each particle to its cell. */
434
  for (int k = nr_parts; k < s->nr_parts; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
435
    const struct part *const p = &s->parts[k];
436
    ind[k] =
437
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
438
439
440
441
    cells[ind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
442
  }
443
  nr_parts = s->nr_parts;
444
445
446
#endif

  /* Sort the parts according to their cells. */
447
  space_parts_sort(s, ind, nr_parts, 0, s->nr_cells - 1, verbose);
448
449

  /* Re-link the gparts. */
450
  for (int k = 0; k < nr_parts; k++)
451
    if (s->parts[k].gpart != NULL) s->parts[k].gpart->part = &s->parts[k];
452

453
  /* Verify space_sort_struct. */
454
  /* for ( k = 1 ; k < nr_parts ; k++ ) {
455
      if ( ind[k-1] > ind[k] ) {
456
457
          error( "Sort failed!" );
          }
458
      else if ( ind[k] != cell_getid( cdim , parts[k].x[0]*ih[0] ,
459
460
461
462
463
     parts[k].x[1]*ih[1] , parts[k].x[2]*ih[2] ) )
          error( "Incorrect indices!" );
      } */

  /* We no longer need the indices as of here. */
464
  free(ind);
465

466
467
468
469
#ifdef WITH_MPI

  /* Re-allocate the index array if needed.. */
  if (s->nr_gparts > gind_size) {
470
471
    int *gind_new;
    if ((gind_new = (int *)malloc(sizeof(int) * s->nr_gparts)) == NULL)
472
      error("Failed to allocate temporary g-particle indices.");
473
    memcpy(gind_new, gind, sizeof(int) * nr_gparts);
474
475
476
477
478
    free(gind);
    gind = gind_new;
  }

  /* Assign each particle to its cell. */
479
  for (int k = nr_gparts; k < s->nr_gparts; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
480
    const struct gpart *const p = &s->gparts[k];
481
482
483
484
485
486
487
488
489
490
    gind[k] =
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
    cells[gind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
  }
  nr_gparts = s->nr_gparts;

#endif
491
492

  /* Sort the parts according to their cells. */
493
  space_gparts_sort(s->gparts, gind, nr_gparts, 0, s->nr_cells - 1);
494
495

  /* Re-link the parts. */
496
  for (int k = 0; k < nr_gparts; k++)
497
    if (s->gparts[k].id > 0) s->gparts[k].part->gpart = &s->gparts[k];
498
499

  /* We no longer need the indices as of here. */
500
  free(gind);
501
502
503

  /* Hook the cells up to the parts. */
  // tic = getticks();
504
505
506
  struct part *finger = s->parts;
  struct xpart *xfinger = s->xparts;
  struct gpart *gfinger = s->gparts;
507
508
  for (int k = 0; k < s->nr_cells; k++) {
    struct cell *restrict c = &cells[k];
509
510
511
512
513
514
515
    c->parts = finger;
    c->xparts = xfinger;
    c->gparts = gfinger;
    finger = &finger[c->count];
    xfinger = &xfinger[c->count];
    gfinger = &gfinger[c->gcount];
  }
516
  // message( "hooking up cells took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
517
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
518
519
520

  /* At this point, we have the upper-level cells, old or new. Now make
     sure that the parts in each cell are ok. */
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
  space_split(s, cells, verbose);

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
}

/**
 * @brief Split particles between cells of a hierarchy
 *
 * @param s The #space.
 * @param cells The cell hierarchy
 * @param verbose Are we talkative ?
 */
void space_split(struct space *s, struct cell *cells, int verbose) {

Matthieu Schaller's avatar
Matthieu Schaller committed
537
  const ticks tic = getticks();
538
539

  for (int k = 0; k < s->nr_cells; k++)
540
541
    scheduler_addtask(&s->e->sched, task_type_split_cell, task_subtype_none, k,
                      0, &cells[k], NULL, 0);
542
  engine_launch(s->e, s->e->nr_threads, 1 << task_type_split_cell, 0);
543

544
545
546
  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
547
}
548

549
/**
550
551
 * @brief Sort the particles and condensed particles according to the given
 *indices.
552
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
553
 * @param s The #space.
554
555
556
557
 * @param ind The indices with respect to which the parts are sorted.
 * @param N The number of parts
 * @param min Lowest index.
 * @param max highest index.
558
 * @param verbose Are we talkative ?
559
 */
560

561
void space_parts_sort(struct space *s, int *ind, size_t N, int min, int max,
562
563
                      int verbose) {

Matthieu Schaller's avatar
Matthieu Schaller committed
564
  const ticks tic = getticks();
565
566

  /*Populate the global parallel_sort structure with the input data */
567
568
569
  space_sort_struct.parts = s->parts;
  space_sort_struct.xparts = s->xparts;
  space_sort_struct.ind = ind;
570
  space_sort_struct.stack_size = 2 * (max - min + 1) + 10 + s->e->nr_threads;
571
572
573
574
575
576
  if ((space_sort_struct.stack = malloc(sizeof(struct qstack) *
                                        space_sort_struct.stack_size)) == NULL)
    error("Failed to allocate sorting stack.");
  for (int i = 0; i < space_sort_struct.stack_size; i++)
    space_sort_struct.stack[i].ready = 0;

577
  /* Add the first interval. */
578
579
580
581
582
583
584
585
586
  space_sort_struct.stack[0].i = 0;
  space_sort_struct.stack[0].j = N - 1;
  space_sort_struct.stack[0].min = min;
  space_sort_struct.stack[0].max = max;
  space_sort_struct.stack[0].ready = 1;
  space_sort_struct.first = 0;
  space_sort_struct.last = 1;
  space_sort_struct.waiting = 1;

587
  /* Launch the sorting tasks. */
588
  engine_launch(s->e, s->e->nr_threads, (1 << task_type_part_sort), 0);
589
590

  /* Verify space_sort_struct. */
591
  /* for (int i = 1; i < N; i++)
592
    if (ind[i - 1] > ind[i])
593
594
      error("Sorting failed (ind[%i]=%i,ind[%i]=%i), min=%i, max=%i.", i - 1,
  ind[i - 1], i,
595
596
            ind[i], min, max);
  message("Sorting succeeded."); */
597

598
  /* Clean up. */
599
  free(space_sort_struct.stack);
600
601
602
603

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
604
}
605

606
void space_do_parts_sort() {
607

608
  /* Pointers to the sorting data. */
609
  int *ind = space_sort_struct.ind;
610
611
  struct part *parts = space_sort_struct.parts;
  struct xpart *xparts = space_sort_struct.xparts;
612

613
  /* Main loop. */
614
  while (space_sort_struct.waiting) {
615

616
    /* Grab an interval off the queue. */
617
618
    int qid =
        atomic_inc(&space_sort_struct.first) % space_sort_struct.stack_size;
619

620
    /* Wait for the entry to be ready, or for the sorting do be done. */
621
622
    while (!space_sort_struct.stack[qid].ready)
      if (!space_sort_struct.waiting) return;
623

624
    /* Get the stack entry. */
625
626
    ptrdiff_t i = space_sort_struct.stack[qid].i;
    ptrdiff_t j = space_sort_struct.stack[qid].j;
627
628
    int min = space_sort_struct.stack[qid].min;
    int max = space_sort_struct.stack[qid].max;
629
    space_sort_struct.stack[qid].ready = 0;
630

631
632
    /* Loop over sub-intervals. */
    while (1) {
633

634
      /* Bring beer. */
635
      const int pivot = (min + max) / 2;
636
637
      /* message("Working on interval [%i,%i] with min=%i, max=%i, pivot=%i.",
              i, j, min, max, pivot); */
638
639

      /* One pass of QuickSort's partitioning. */
640
641
      ptrdiff_t ii = i;
      ptrdiff_t jj = j;
642
643
644
645
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
646
          size_t temp_i = ind[ii];
647
648
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
649
          struct part temp_p = parts[ii];
650
651
          parts[ii] = parts[jj];
          parts[jj] = temp_p;
652
          struct xpart temp_xp = xparts[ii];
653
654
655
656
          xparts[ii] = xparts[jj];
          xparts[jj] = temp_xp;
        }
      }
657

658
      /* Verify space_sort_struct. */
659
660
661
662
663
664
665
666
667
668
669
670
      /* for (int k = i; k <= jj; k++)
        if (ind[k] > pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (<=pivot).");
        }
      for (int k = jj + 1; k <= j; k++)
        if (ind[k] <= pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (>pivot).");
        } */
671
672
673
674
675
676

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
677
678
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
679
680
          while (space_sort_struct.stack[qid].ready)
            ;
681
682
683
684
685
686
687
          space_sort_struct.stack[qid].i = i;
          space_sort_struct.stack[qid].j = jj;
          space_sort_struct.stack[qid].min = min;
          space_sort_struct.stack[qid].max = pivot;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
688
          space_sort_struct.stack[qid].ready = 1;
689
        }
690

691
692
693
694
695
696
697
698
699
700
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;

      } else {

        /* Recurse on the right? */
701
        if (pivot + 1 < max) {
702
703
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
704
705
          while (space_sort_struct.stack[qid].ready)
            ;
706
707
708
709
710
711
712
          space_sort_struct.stack[qid].i = jj + 1;
          space_sort_struct.stack[qid].j = j;
          space_sort_struct.stack[qid].min = pivot + 1;
          space_sort_struct.stack[qid].max = max;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
713
          space_sort_struct.stack[qid].ready = 1;
714
        }
715

716
717
718
719
720
721
722
        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }
723

724
725
    } /* loop over sub-intervals. */

726
    atomic_dec(&space_sort_struct.waiting);
727
728

  } /* main loop. */
729
730
}

731
732
733
734
735
/**
 * @brief Sort the g-particles and condensed particles according to the given
 *indices.
 *
 * @param s The #space.
Matthieu Schaller's avatar
Matthieu Schaller committed
736
737
 * @param ind The indices with respect to which the gparts are sorted.
 * @param N The number of gparts
738
739
740
741
742
743
744
 * @param min Lowest index.
 * @param max highest index.
 * @param verbose Are we talkative ?
 */
void space_gparts_sort(struct space *s, size_t *ind, size_t N, int min, int max,
                       int verbose) {

Matthieu Schaller's avatar
Matthieu Schaller committed
745
  const ticks tic = getticks();
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790

  /*Populate the global parallel_sort structure with the input data */
  space_sort_struct.gparts = s->gparts;
  space_sort_struct.ind = ind;
  space_sort_struct.stack_size = 2 * (max - min + 1) + 10 + s->e->nr_threads;
  if ((space_sort_struct.stack = malloc(sizeof(struct qstack) *
                                        space_sort_struct.stack_size)) == NULL)
    error("Failed to allocate sorting stack.");
  for (int i = 0; i < space_sort_struct.stack_size; i++)
    space_sort_struct.stack[i].ready = 0;

  /* Add the first interval. */
  space_sort_struct.stack[0].i = 0;
  space_sort_struct.stack[0].j = N - 1;
  space_sort_struct.stack[0].min = min;
  space_sort_struct.stack[0].max = max;
  space_sort_struct.stack[0].ready = 1;
  space_sort_struct.first = 0;
  space_sort_struct.last = 1;
  space_sort_struct.waiting = 1;

  /* Launch the sorting tasks. */
  engine_launch(s->e, s->e->nr_threads, (1 << task_type_gpart_sort), 0);

  /* Verify space_sort_struct. */
  /* for (int i = 1; i < N; i++)
    if (ind[i - 1] > ind[i])
      error("Sorting failed (ind[%i]=%i,ind[%i]=%i), min=%i, max=%i.", i - 1,
  ind[i - 1], i,
            ind[i], min, max);
  message("Sorting succeeded."); */

  /* Clean up. */
  free(space_sort_struct.stack);

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
}

void space_do_gparts_sort() {

  /* Pointers to the sorting data. */
  size_t *ind = space_sort_struct.ind;
  struct gpart *gparts = space_sort_struct.gparts;
791

792
  /* Main loop. */
793
  while (space_sort_struct.waiting) {
794

795
    /* Grab an interval off the queue. */
796
797
798
799
800
801
    int qid =
        atomic_inc(&space_sort_struct.first) % space_sort_struct.stack_size;

    /* Wait for the entry to be ready, or for the sorting do be done. */
    while (!space_sort_struct.stack[qid].ready)
      if (!space_sort_struct.waiting) return;
802

803
    /* Get the stack entry. */
804
805
806
807
808
    ptrdiff_t i = space_sort_struct.stack[qid].i;
    ptrdiff_t j = space_sort_struct.stack[qid].j;
    int min = space_sort_struct.stack[qid].min;
    int max = space_sort_struct.stack[qid].max;
    space_sort_struct.stack[qid].ready = 0;
809
810
811

    /* Loop over sub-intervals. */
    while (1) {
812

813
      /* Bring beer. */
814
815
816
      const int pivot = (min + max) / 2;
      /* message("Working on interval [%i,%i] with min=%i, max=%i, pivot=%i.",
              i, j, min, max, pivot); */
817
818

      /* One pass of QuickSort's partitioning. */
819
820
      ptrdiff_t ii = i;
      ptrdiff_t jj = j;
821
822
823
824
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
825
          size_t temp_i = ind[ii];
826
827
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
828
          struct gpart temp_p = gparts[ii];
829
830
831
832
          gparts[ii] = gparts[jj];
          gparts[jj] = temp_p;
        }
      }
833

834
      /* Verify space_sort_struct. */
835
836
837
838
839
840
841
842
843
844
845
846
      /* for (int k = i; k <= jj; k++)
        if (ind[k] > pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (<=pivot).");
        }
      for (int k = jj + 1; k <= j; k++)
        if (ind[k] <= pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (>pivot).");
        } */
847
848
849
850
851
852

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
853
854
855
856
857
858
859
860
861
862
863
864
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
          while (space_sort_struct.stack[qid].ready)
            ;
          space_sort_struct.stack[qid].i = i;
          space_sort_struct.stack[qid].j = jj;
          space_sort_struct.stack[qid].min = min;
          space_sort_struct.stack[qid].max = pivot;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
          space_sort_struct.stack[qid].ready = 1;
865
        }
866

867
868
869
870
871
872
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;
873

874
875
876
      } else {

        /* Recurse on the right? */
877
        if (pivot + 1 < max) {
878
879
880
881
882
883
884
885
886
887
888
889
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
          while (space_sort_struct.stack[qid].ready)
            ;
          space_sort_struct.stack[qid].i = jj + 1;
          space_sort_struct.stack[qid].j = j;
          space_sort_struct.stack[qid].min = pivot + 1;
          space_sort_struct.stack[qid].max = max;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
          space_sort_struct.stack[qid].ready = 1;
890
891
892
893
894
895
896
897
898
899
900
901
        }

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }

    } /* loop over sub-intervals. */

902
    atomic_dec(&space_sort_struct.waiting);
903
904

  } /* main loop. */
905

906
  /* Verify space_sort_struct. */
907
908
909
910
911
912
913
914
  /* for ( i = 1 ; i < N ; i++ )
      if ( ind[i-1] > ind[i] )
          error( "Sorting failed (ind[%i]=%i,ind[%i]=%i)." , i-1 , ind[i-1] , i
     , ind[i] ); */

  /* Clean up. */
  free(qstack);
}
915

Pedro Gonnet's avatar
Pedro Gonnet committed
916
/**
917
 * @brief Mapping function to free the sorted indices buffers.
Pedro Gonnet's avatar
Pedro Gonnet committed
918
919
 */

920
void space_map_clearsort(struct cell *c, void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
921

922
923
924
925
926
  if (c->sort != NULL) {
    free(c->sort);
    c->sort = NULL;
  }
}
Pedro Gonnet's avatar
Pedro Gonnet committed
927

928
929
930
/**
 * @brief Map a function to all particles in a cell recursively.
 *
931
 * @param c The #cell we are working in.
932
933
934
935
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */

Pedro Gonnet's avatar
Pedro Gonnet committed
936
937
938
939
static void rec_map_parts(struct cell *c,
                          void (*fun)(struct part *p, struct cell *c,
                                      void *data),
                          void *data) {
940
941
942
943
944
945

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
946

947
948
949
950
951
952
  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts(c->progeny[k], fun, data);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
953
/**
954
 * @brief Map a function to all particles in a space.
Pedro Gonnet's avatar
Pedro Gonnet committed
955
956
 *
 * @param s The #space we are working in.
957
958
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
959
960
 */

961
962
963
void space_map_parts(struct space *s,
                     void (*fun)(struct part *p, struct cell *c, void *data),
                     void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
964

965
966
  int cid = 0;

967
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
968
969
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts(&s->cells[cid], fun, data);
970
}
971

972
973
974
975
976
977
978
979
/**
 * @brief Map a function to all particles in a cell recursively.
 *
 * @param c The #cell we are working in.
 * @param fun Function pointer to apply on the cells.
 */

static void rec_map_parts_xparts(struct cell *c,
980
981
                                 void (*fun)(struct part *p, struct xpart *xp,
                                             struct cell *c)) {
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], &c->xparts[k], c);

  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts_xparts(c->progeny[k], fun);
}

/**
 * @brief Map a function to all particles (#part and #xpart) in a space.
 *
 * @param s The #space we are working in.
 * @param fun Function pointer to apply on the particles in the cells.
 */

void space_map_parts_xparts(struct space *s,
1003
1004
                            void (*fun)(struct part *p, struct xpart *xp,
                                        struct cell *c)) {
1005
1006
1007
1008
1009
1010
1011
1012

  int cid = 0;

  /* Call the recursive function on all higher-level cells. */
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts_xparts(&s->cells[cid], fun);
}

1013
1014
1015
/**
 * @brief Map a function to all particles in a cell recursively.
 *
1016
 * @param c The #cell we are working in.
1017
1018
1019
1020
 * @param full Map to all cells, including cells with sub-cells.
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */
1021

Pedro Gonnet's avatar
Pedro Gonnet committed
1022
1023
1024
static void rec_map_cells_post(struct cell *c, int full,
                               void (*fun)(struct cell *c, void *data),
                               void *data) {
1025

1026
1027
1028
1029
1030
  int k;

  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
1031
1032
1033
      if (c->progeny[k] != NULL)
        rec_map_cells_post(c->progeny[k], full, fun, data);

1034
1035
  /* No progeny? */
  if (full || !c->split) fun(c, data);
1036
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1037
1038

/**
1039
 * @brief Map a function to all particles in a aspace.
Pedro Gonnet's avatar
Pedro Gonnet committed
1040
1041
 *
 * @param s The #space we are working in.
1042
 * @param full Map to all cells, including cells with sub-cells.
1043
1044
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
1045
 */
1046

1047
void space_map_cells_post(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
1048
                          void (*fun)(struct cell *c, void *data), void *data) {
1049

1050
  int cid = 0;
1051

1052
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1053
1054
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_post(&s->cells[cid], full, fun, data);
1055
}
1056

Pedro Gonnet's avatar
Pedro Gonnet committed
1057
1058
1059
static void rec_map_cells_pre(struct cell *c, int full,
                              void (*fun)(struct cell *c, void *data),
                              void *data) {
1060

1061
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
1062

1063
1064
  /* No progeny? */
  if (full || !c->split) fun(c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
1065

1066
1067
1068
  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)