testPeriodicBC.c 19.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (C) 2015 Matthieu Schaller (matthieu.schaller@durham.ac.uk).
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <fenv.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

/* Local headers. */
#include "swift.h"

#define ACC_THRESHOLD 1e-5

#if defined(WITH_VECTORIZATION)
#define DOSELF1 runner_doself1_density_vec
37
#define DOPAIR1 runner_dopair1_branch_density
38
39
40
41
42
43
44
45
46
47
#define DOSELF1_NAME "runner_doself1_density_vec"
#define DOPAIR1_NAME "runner_dopair1_density_vec"
#endif

#ifndef DOSELF1
#define DOSELF1 runner_doself1_density
#define DOSELF1_NAME "runner_doself1_density"
#endif

#ifndef DOPAIR1
48
#define DOPAIR1 runner_dopair1_branch_density
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#define DOPAIR1_NAME "runner_dopair1_density"
#endif

enum velocity_types {
  velocity_zero,
  velocity_random,
  velocity_divergent,
  velocity_rotating
};

/**
 * @brief Constructs a cell and all of its particle in a valid state prior to
 * a DOPAIR or DOSELF calcuation.
 *
 * @param n The cube root of the number of particles.
 * @param offset The position of the cell offset from (0,0,0).
 * @param size The cell size.
 * @param h The smoothing length of the particles in units of the inter-particle
 *separation.
 * @param density The density of the fluid.
 * @param partId The running counter of IDs.
 * @param pert The perturbation to apply to the particles in the cell in units
 *of the inter-particle separation.
 * @param vel The type of velocity field (0, random, divergent, rotating)
 */
struct cell *make_cell(size_t n, double *offset, double size, double h,
75
76
                       double density, long long *partId, double pert,
                       enum velocity_types vel) {
77
78
79
80
81
82
  const size_t count = n * n * n;
  const double volume = size * size * size;
  struct cell *cell = malloc(sizeof(struct cell));
  bzero(cell, sizeof(struct cell));

  if (posix_memalign((void **)&cell->parts, part_align,
83
                     count * sizeof(struct part)) != 0) {
84
85
86
87
88
89
90
91
92
93
94
95
    error("couldn't allocate particles, no. of particles: %d", (int)count);
  }
  bzero(cell->parts, count * sizeof(struct part));

  float h_max = 0.f;

  /* Construct the parts */
  struct part *part = cell->parts;
  for (size_t x = 0; x < n; ++x) {
    for (size_t y = 0; y < n; ++y) {
      for (size_t z = 0; z < n; ++z) {
        part->x[0] =
96
97
            offset[0] +
            size * (x + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
98
        part->x[1] =
99
100
            offset[1] +
            size * (y + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
101
        part->x[2] =
102
103
            offset[2] +
            size * (z + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        switch (vel) {
          case velocity_zero:
            part->v[0] = 0.f;
            part->v[1] = 0.f;
            part->v[2] = 0.f;
            break;
          case velocity_random:
            part->v[0] = random_uniform(-0.05, 0.05);
            part->v[1] = random_uniform(-0.05, 0.05);
            part->v[2] = random_uniform(-0.05, 0.05);
            break;
          case velocity_divergent:
            part->v[0] = part->x[0] - 1.5 * size;
            part->v[1] = part->x[1] - 1.5 * size;
            part->v[2] = part->x[2] - 1.5 * size;
            break;
          case velocity_rotating:
            part->v[0] = part->x[1];
            part->v[1] = -part->x[0];
            part->v[2] = 0.f;
            break;
        }
        part->h = size * h / (float)n;
        h_max = fmax(h_max, part->h);
        part->id = ++(*partId);

#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
        part->conserved.mass = density * volume / count;

#ifdef SHADOWFAX_SPH
        double anchor[3] = {0., 0., 0.};
        double side[3] = {1., 1., 1.};
        voronoi_cell_init(&part->cell, part->x, anchor, side);
#endif

#else
        part->mass = density * volume / count;
#endif

#if defined(HOPKINS_PE_SPH)
        part->entropy = 1.f;
        part->entropy_one_over_gamma = 1.f;
#endif

        part->time_bin = 1;

#ifdef SWIFT_DEBUG_CHECKS
        part->ti_drift = 8;
        part->ti_kick = 8;
#endif

        ++part;
      }
    }
  }

  /* Cell properties */
  cell->split = 0;
  cell->h_max = h_max;
  cell->count = count;
  cell->dx_max_part = 0.;
  cell->dx_max_sort = 0.;
  cell->width[0] = size;
  cell->width[1] = size;
  cell->width[2] = size;
  cell->loc[0] = offset[0];
  cell->loc[1] = offset[1];
  cell->loc[2] = offset[2];

  cell->ti_old_part = 8;
  cell->ti_end_min = 8;
  cell->ti_end_max = 8;

  shuffle_particles(cell->parts, cell->count);

  cell->sorted = 0;
Matthieu Schaller's avatar
Matthieu Schaller committed
180
  for (int k = 0; k < 13; k++) cell->sort[k] = NULL;
181
182
183
184
185
186

  return cell;
}

void clean_up(struct cell *ci) {
  free(ci->parts);
187
  for (int k = 0; k < 13; k++)
Matthieu Schaller's avatar
Matthieu Schaller committed
188
    if (ci->sort[k] != NULL) free(ci->sort[k]);
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
  free(ci);
}

/**
 * @brief Initializes all particles field to be ready for a density calculation
 */
void zero_particle_fields(struct cell *c) {
  for (int pid = 0; pid < c->count; pid++) {
    hydro_init_part(&c->parts[pid], NULL);
  }
}

/**
 * @brief Ends the loop by adding the appropriate coefficients
 */
void end_calculation(struct cell *c) {
  for (int pid = 0; pid < c->count; pid++) {
    hydro_end_density(&c->parts[pid]);
  }
}

/**
 * @brief Dump all the particles to a file
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
213
214
void dump_particle_fields(char *fileName, struct cell *main_cell, int i, int j,
                          int k) {
215
  FILE *file = fopen(fileName, "a");
216
217
218

  /* Write header */
  fprintf(file,
219
220
221
222
          "# %4s %10s %10s %10s %10s %10s %10s %13s %13s %13s %13s %13s "
          "%13s %13s %13s\n",
          "ID", "pos_x", "pos_y", "pos_z", "v_x", "v_y", "v_z", "rho", "rho_dh",
          "wcount", "wcount_dh", "div_v", "curl_vx", "curl_vy", "curl_vz");
223

Matthieu Schaller's avatar
Matthieu Schaller committed
224
225
  fprintf(file, "# Centre cell at (i,j,k)=(%d, %d, %d) ---------------------\n",
          i, j, k);
226
227
228
229

  /* Write main cell */
  for (int pid = 0; pid < main_cell->count; pid++) {
    fprintf(file,
230
231
232
233
234
235
236
            "%6llu %10f %10f %10f %10f %10f %10f %13e %13e %13e %13e %13e "
            "%13e %13e %13e\n",
            main_cell->parts[pid].id, main_cell->parts[pid].x[0],
            main_cell->parts[pid].x[1], main_cell->parts[pid].x[2],
            main_cell->parts[pid].v[0], main_cell->parts[pid].v[1],
            main_cell->parts[pid].v[2],
            hydro_get_density(&main_cell->parts[pid]),
237
#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
238
            0.f,
239
#else
240
            main_cell->parts[pid].density.rho_dh,
241
#endif
242
243
            main_cell->parts[pid].density.wcount,
            main_cell->parts[pid].density.wcount_dh,
244
#if defined(GADGET2_SPH) || defined(DEFAULT_SPH) || defined(HOPKINS_PE_SPH)
245
246
247
248
            main_cell->parts[pid].density.div_v,
            main_cell->parts[pid].density.rot_v[0],
            main_cell->parts[pid].density.rot_v[1],
            main_cell->parts[pid].density.rot_v[2]
249
#else
250
            0., 0., 0., 0.
251
#endif
252
            );
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
  }
  fclose(file);
}

/**
 * @brief Compares the vectorised result against
 * the serial result of the interaction.
 *
 * @param serial_parts Particle array that has been interacted serially
 * @param vec_parts Particle array to be interacted using vectors
 * @param count No. of particles that have been interacted
 * @param threshold Level of accuracy needed
 *
 * @return Non-zero value if difference found, 0 otherwise
 */
int check_results(struct part *serial_parts, struct part *vec_parts, int count,
269
                  double threshold) {
270
271
272
273
274
275
276
277
278
279
280
  int result = 0;

  for (int i = 0; i < count; i++)
    result += compare_particles(serial_parts[i], vec_parts[i], threshold);

  return result;
}

/* Just a forward declaration... */
void runner_doself1_density(struct runner *r, struct cell *ci);
void runner_doself1_density_vec(struct runner *r, struct cell *ci);
281
282
void runner_dopair1_branch_density(struct runner *r, struct cell *ci,
                                   struct cell *cj);
283

284
285
286
287
void test_boundary_conditions(struct cell **cells, struct runner runner,
                              const int loc_i, const int loc_j, const int loc_k,
                              const int dim, char *swiftOutputFileName,
                              char *bruteForceOutputFileName) {
288
289

  /* Store the main cell for future use */
290
  struct cell *main_cell = cells[loc_i * (dim * dim) + loc_j * dim + loc_k];
291
292

  /* Zero the fields */
James Willis's avatar
James Willis committed
293
  for (int j = 0; j < dim * dim * dim; ++j) zero_particle_fields(cells[j]);
294

295
/* Run all the pairs */
296
297
298
299
300
301
302
303
304
#if !(defined(MINIMAL_SPH) && defined(WITH_VECTORIZATION))

#ifdef WITH_VECTORIZATION
  runner.ci_cache.count = 0;
  cache_init(&runner.ci_cache, 512);
  runner.cj_cache.count = 0;
  cache_init(&runner.cj_cache, 512);
#endif

305
  /* Now loop over all the neighbours of this cell
306
307
308
309
310
311
312
313
314
315
316
317
   * and perform the pair interactions. */
  for (int ii = -1; ii < 2; ii++) {
    int iii = loc_i + ii;
    iii = (iii + dim) % dim;
    for (int jj = -1; jj < 2; jj++) {
      int jjj = loc_j + jj;
      jjj = (jjj + dim) % dim;
      for (int kk = -1; kk < 2; kk++) {
        int kkk = loc_k + kk;
        kkk = (kkk + dim) % dim;

        /* Get the neighbouring cell */
318
        struct cell *cj = cells[iii * (dim * dim) + jjj * dim + kkk];
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

        if (cj != main_cell) DOPAIR1(&runner, main_cell, cj);
      }
    }
  }

  /* And now the self-interaction */

  DOSELF1(&runner, main_cell);

#endif

  /* Let's get physical ! */
  end_calculation(main_cell);

  /* Dump particles from the main cell. */
335
  dump_particle_fields(swiftOutputFileName, main_cell, loc_i, loc_j, loc_k);
336
337
338
339

  /* Now perform a brute-force version for accuracy tests */

  /* Zero the fields */
James Willis's avatar
James Willis committed
340
  for (int i = 0; i < dim * dim * dim; ++i) zero_particle_fields(cells[i]);
341
342
343

#if !(defined(MINIMAL_SPH) && defined(WITH_VECTORIZATION))

344
  /* Now loop over all the neighbours of this cell
345
346
347
348
349
350
351
352
353
354
355
356
   * and perform the pair interactions. */
  for (int ii = -1; ii < 2; ii++) {
    int iii = loc_i + ii;
    iii = (iii + dim) % dim;
    for (int jj = -1; jj < 2; jj++) {
      int jjj = loc_j + jj;
      jjj = (jjj + dim) % dim;
      for (int kk = -1; kk < 2; kk++) {
        int kkk = loc_k + kk;
        kkk = (kkk + dim) % dim;

        /* Get the neighbouring cell */
357
        struct cell *cj = cells[iii * (dim * dim) + jjj * dim + kkk];
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

        if (cj != main_cell) pairs_all_density(&runner, main_cell, cj);
      }
    }
  }

  /* And now the self-interaction */
  self_all_density(&runner, main_cell);

#endif

  /* Let's get physical ! */
  end_calculation(main_cell);

  /* Dump */
Matthieu Schaller's avatar
Matthieu Schaller committed
373
374
  dump_particle_fields(bruteForceOutputFileName, main_cell, loc_i, loc_j,
                       loc_k);
375
376
}

377
378
379
380
381
382
383
384
385
/* And go... */
int main(int argc, char *argv[]) {

  engine_pin();
  size_t runs = 0, particles = 0;
  double h = 1.23485, size = 1., rho = 1.;
  double perturbation = 0.;
  double threshold = ACC_THRESHOLD;
  char outputFileNameExtension[200] = "";
386
387
  char swiftOutputFileName[200] = "";
  char bruteForceOutputFileName[200] = "";
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
  enum velocity_types vel = velocity_zero;

  /* Initialize CPU frequency, this also starts time. */
  unsigned long long cpufreq = 0;
  clocks_set_cpufreq(cpufreq);

  /* Choke on FP-exceptions */
  feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);

  /* Get some randomness going */
  srand(0);

  char c;
  while ((c = getopt(argc, argv, "m:s:h:n:r:t:d:f:v:a:")) != -1) {
    switch (c) {
      case 'h':
        sscanf(optarg, "%lf", &h);
        break;
      case 's':
        sscanf(optarg, "%lf", &size);
        break;
      case 'n':
        sscanf(optarg, "%zu", &particles);
        break;
      case 'r':
        sscanf(optarg, "%zu", &runs);
        break;
      case 'd':
        sscanf(optarg, "%lf", &perturbation);
        break;
      case 'm':
        sscanf(optarg, "%lf", &rho);
        break;
      case 'f':
        strcpy(outputFileNameExtension, optarg);
        break;
      case 'v':
        sscanf(optarg, "%d", (int *)&vel);
        break;
      case 'a':
        sscanf(optarg, "%lf", &threshold);
        break;
      case '?':
        error("Unknown option.");
        break;
    }
  }

  if (h < 0 || particles == 0 || runs == 0) {
    printf(
        "\nUsage: %s -n PARTICLES_PER_AXIS -r NUMBER_OF_RUNS [OPTIONS...]\n"
        "\nGenerates 27 cells, filled with particles on a Cartesian grid."
        "\nThese are then interacted using runner_dopair1_density() and "
        "runner_doself1_density()."
        "\n\nOptions:"
        "\n-h DISTANCE=1.2348 - Smoothing length in units of <x>"
        "\n-m rho             - Physical density in the cell"
        "\n-s size            - Physical size of the cell"
        "\n-d pert            - Perturbation to apply to the particles [0,1["
        "\n-v type (0,1,2,3)  - Velocity field: (zero, random, divergent, "
        "rotating)"
        "\n-f fileName        - Part of the file name used to save the dumps\n",
        argv[0]);
    exit(1);
  }

  /* Help users... */
  message("DOSELF1 function called: %s", DOSELF1_NAME);
  message("DOPAIR1 function called: %s", DOPAIR1_NAME);
  message("Vector size: %d", VEC_SIZE);
  message("Adiabatic index: ga = %f", hydro_gamma);
  message("Hydro implementation: %s", SPH_IMPLEMENTATION);
  message("Smoothing length: h = %f", h * size);
  message("Kernel:               %s", kernel_name);
  message("Neighbour target: N = %f", pow_dimension(h) * kernel_norm);
  message("Density target: rho = %f", rho);
  message("div_v target:   div = %f", vel == 2 ? 3.f : 0.f);
  message("curl_v target: curl = [0., 0., %f]", vel == 3 ? -2.f : 0.f);

  printf("\n");

  /* Build the infrastructure */
470
  const int dim = 8;
471
472
  struct space space;
  space.periodic = 1;
473
474
475
  space.dim[0] = dim;
  space.dim[1] = dim;
  space.dim[2] = dim;
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

  struct hydro_props hp;
  hp.h_max = FLT_MAX;

  struct engine engine;
  engine.s = &space;
  engine.time = 0.1f;
  engine.ti_current = 8;
  engine.max_active_bin = num_time_bins;
  engine.hydro_properties = &hp;

  struct runner runner;
  runner.e = &engine;

  /* Construct some cells */
James Willis's avatar
James Willis committed
491
  struct cell *cells[dim * dim * dim];
492
493
494
495
496
  static long long partId = 0;
  for (int i = 0; i < dim; ++i) {
    for (int j = 0; j < dim; ++j) {
      for (int k = 0; k < dim; ++k) {
        double offset[3] = {i * size, j * size, k * size};
497
498
        cells[i * (dim * dim) + j * dim + k] = make_cell(
            particles, offset, size, h, rho, &partId, perturbation, vel);
499

500
        runner_do_drift_part(&runner, cells[i * (dim * dim) + j * dim + k], 0);
501

502
        runner_do_sort(&runner, cells[i * (dim * dim) + j * dim + k], 0x1FFF, 0,
503
                       0);
504
505
506
507
      }
    }
  }

508
509
  /* Create output file names. */
  sprintf(swiftOutputFileName, "swift_periodic_BC_%s.dat",
510
          outputFileNameExtension);
511
  sprintf(bruteForceOutputFileName, "brute_force_periodic_BC_%s.dat",
512
          outputFileNameExtension);
513

514
515
516
  /* Delete files if they already exist. */
  remove(swiftOutputFileName);
  remove(bruteForceOutputFileName);
517

518
519
  const int half_dim = (dim - 1) / 2;

James Willis's avatar
James Willis committed
520
521
  /* Test the periodic boundary conditions for each of the 8 corners. Interact
   * each corner with all of its 26 neighbours.*/
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
  test_boundary_conditions(cells, runner, 0, 0, 0, dim, swiftOutputFileName,
                           bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, 0, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, 0, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, 0, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, dim - 1, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, dim - 1, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, dim - 1, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, dim - 1, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);

  /* Test the boundary conditions for cells at the centre of each face of the
   * box. */
  test_boundary_conditions(cells, runner, half_dim, half_dim, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, half_dim, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, half_dim, half_dim, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, half_dim, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, half_dim, 0, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, half_dim, dim - 1, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);

  /* Test the boundary conditions for cells at the centre of each edge of the
   * box. */
  test_boundary_conditions(cells, runner, half_dim, dim - 1, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, dim - 1, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, half_dim, dim - 1, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, dim - 1, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);

  test_boundary_conditions(cells, runner, 0, half_dim, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, half_dim, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, half_dim, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, half_dim, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);

  test_boundary_conditions(cells, runner, half_dim, 0, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, 0, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, half_dim, 0, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, 0, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
582
583

  /* Clean things to make the sanitizer happy ... */
James Willis's avatar
James Willis committed
584
  for (int i = 0; i < dim * dim * dim; ++i) clean_up(cells[i]);
585
586
587

  return 0;
}