space.c 151 KB
Newer Older
1
/*******************************************************************************
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
 * This file is part of SWIFT.
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
23
24
25
26
27
28
29
30

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
#include <stdlib.h>
32
#include <string.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
33

34
35
/* MPI headers. */
#ifdef WITH_MPI
36
#include <mpi.h>
37
38
#endif

39
40
41
/* This object's header. */
#include "space.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
42
/* Local headers. */
43
#include "atomic.h"
44
#include "chemistry.h"
45
#include "const.h"
46
#include "cooling.h"
47
#include "debug.h"
48
#include "engine.h"
49
#include "error.h"
50
51
#include "gravity.h"
#include "hydro.h"
52
#include "kernel_hydro.h"
53
#include "lock.h"
54
#include "memswap.h"
55
#include "minmax.h"
56
#include "multipole.h"
57
#include "restart.h"
58
#include "sort_part.h"
59
#include "stars.h"
60
#include "threadpool.h"
61
#include "tools.h"
62
#include "tracers.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
63
64
65

/* Split size. */
int space_splitsize = space_splitsize_default;
66
67
68
int space_subsize_pair_hydro = space_subsize_pair_hydro_default;
int space_subsize_self_hydro = space_subsize_self_hydro_default;
int space_subsize_pair_grav = space_subsize_pair_grav_default;
69
int space_subsize_self_grav = space_subsize_self_grav_default;
70
int space_subdepth_diff_grav = space_subdepth_diff_grav_default;
71
int space_maxsize = space_maxsize_default;
72

73
74
75
/*! Number of extra #part we allocate memory for per top-level cell */
int space_extra_parts = space_extra_parts_default;

76
77
78
/*! Number of extra #spart we allocate memory for per top-level cell */
int space_extra_sparts = space_extra_sparts_default;

79
80
81
/*! Number of extra #gpart we allocate memory for per top-level cell */
int space_extra_gparts = space_extra_gparts_default;

82
83
/*! Expected maximal number of strays received at a rebuild */
int space_expected_max_nr_strays = space_expected_max_nr_strays_default;
84
85
86
#ifdef SWIFT_DEBUG_CHECKS
int last_cell_id;
#endif
Pedro Gonnet's avatar
Pedro Gonnet committed
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
/**
 * @brief Interval stack necessary for parallel particle sorting.
 */
struct qstack {
  volatile ptrdiff_t i, j;
  volatile int min, max;
  volatile int ready;
};

/**
 * @brief Parallel particle-sorting stack
 */
struct parallel_sort {
  struct part *parts;
  struct gpart *gparts;
  struct xpart *xparts;
104
  struct spart *sparts;
105
106
107
108
109
110
  int *ind;
  struct qstack *stack;
  unsigned int stack_size;
  volatile unsigned int first, last, waiting;
};

111
112
113
114
115
116
/**
 * @brief Information required to compute the particle cell indices.
 */
struct index_data {
  struct space *s;
  int *ind;
117
  int *cell_counts;
118
119
120
121
122
123
  size_t count_inhibited_part;
  size_t count_inhibited_gpart;
  size_t count_inhibited_spart;
  size_t count_extra_part;
  size_t count_extra_gpart;
  size_t count_extra_spart;
124
125
};

126
/**
127
 * @brief Recursively dismantle a cell tree.
128
 *
129
130
 * @param s The #space.
 * @param c The #cell to recycle.
Matthieu Schaller's avatar
Matthieu Schaller committed
131
132
133
134
135
136
 * @param cell_rec_begin Pointer to the start of the list of cells to recycle.
 * @param cell_rec_end Pointer to the end of the list of cells to recycle.
 * @param multipole_rec_begin Pointer to the start of the list of multipoles to
 * recycle.
 * @param multipole_rec_end Pointer to the end of the list of multipoles to
 * recycle.
137
 */
138
void space_rebuild_recycle_rec(struct space *s, struct cell *c,
139
140
                               struct cell **cell_rec_begin,
                               struct cell **cell_rec_end,
141
142
                               struct gravity_tensors **multipole_rec_begin,
                               struct gravity_tensors **multipole_rec_end) {
143
  if (c->split)
144
    for (int k = 0; k < 8; k++)
145
      if (c->progeny[k] != NULL) {
146
147
148
149
150
151
        space_rebuild_recycle_rec(s, c->progeny[k], cell_rec_begin,
                                  cell_rec_end, multipole_rec_begin,
                                  multipole_rec_end);

        c->progeny[k]->next = *cell_rec_begin;
        *cell_rec_begin = c->progeny[k];
152

153
        if (s->with_self_gravity) {
154
155
          c->progeny[k]->grav.multipole->next = *multipole_rec_begin;
          *multipole_rec_begin = c->progeny[k]->grav.multipole;
156
        }
157
158

        if (*cell_rec_end == NULL) *cell_rec_end = *cell_rec_begin;
159
        if (s->with_self_gravity && *multipole_rec_end == NULL)
160
161
          *multipole_rec_end = *multipole_rec_begin;

162
        c->progeny[k]->grav.multipole = NULL;
163
164
165
166
        c->progeny[k] = NULL;
      }
}

167
168
169
170
171
172
173
174
void space_rebuild_recycle_mapper(void *map_data, int num_elements,
                                  void *extra_data) {

  struct space *s = (struct space *)extra_data;
  struct cell *cells = (struct cell *)map_data;

  for (int k = 0; k < num_elements; k++) {
    struct cell *c = &cells[k];
175
    struct cell *cell_rec_begin = NULL, *cell_rec_end = NULL;
176
177
    struct gravity_tensors *multipole_rec_begin = NULL,
                           *multipole_rec_end = NULL;
178
179
180
181
182
    space_rebuild_recycle_rec(s, c, &cell_rec_begin, &cell_rec_end,
                              &multipole_rec_begin, &multipole_rec_end);
    if (cell_rec_begin != NULL)
      space_recycle_list(s, cell_rec_begin, cell_rec_end, multipole_rec_begin,
                         multipole_rec_end);
183
    c->hydro.sorts = NULL;
184
185
    c->stars.sorts_local = NULL;
    c->stars.sorts_foreign = NULL;
186
    c->nr_tasks = 0;
187
188
189
190
    c->grav.nr_mm_tasks = 0;
    c->hydro.density = NULL;
    c->hydro.gradient = NULL;
    c->hydro.force = NULL;
191
    c->hydro.limiter = NULL;
192
193
    c->grav.grav = NULL;
    c->grav.mm = NULL;
194
195
    c->hydro.dx_max_part = 0.0f;
    c->hydro.dx_max_sort = 0.0f;
Loic Hausammann's avatar
Loic Hausammann committed
196
    c->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
197
    c->stars.dx_max_sort = 0.f;
198
    c->hydro.sorted = 0;
Loic Hausammann's avatar
Loic Hausammann committed
199
    c->stars.sorted = 0;
200
    c->hydro.count = 0;
201
    c->hydro.count_total = 0;
202
203
    c->hydro.updated = 0;
    c->hydro.inhibited = 0;
204
    c->grav.count = 0;
205
    c->grav.count_total = 0;
206
207
    c->grav.updated = 0;
    c->grav.inhibited = 0;
208
    c->stars.count = 0;
209
    c->stars.count_total = 0;
210
211
    c->stars.updated = 0;
    c->stars.inhibited = 0;
212
213
214
215
216
217
    c->grav.init = NULL;
    c->grav.init_out = NULL;
    c->hydro.extra_ghost = NULL;
    c->hydro.ghost_in = NULL;
    c->hydro.ghost_out = NULL;
    c->hydro.ghost = NULL;
218
219
220
221
    c->stars.ghost_in = NULL;
    c->stars.ghost_out = NULL;
    c->stars.ghost = NULL;
    c->stars.density = NULL;
Alexei Borissov's avatar
Alexei Borissov committed
222
    c->stars.feedback = NULL;
223
224
    c->kick1 = NULL;
    c->kick2 = NULL;
225
    c->timestep = NULL;
226
    c->timestep_limiter = NULL;
227
    c->end_force = NULL;
228
    c->hydro.drift = NULL;
229
    c->stars.drift = NULL;
230
    c->grav.drift = NULL;
231
    c->grav.drift_out = NULL;
232
233
234
235
236
    c->hydro.cooling = NULL;
    c->grav.long_range = NULL;
    c->grav.down_in = NULL;
    c->grav.down = NULL;
    c->grav.mesh = NULL;
237
    c->super = c;
238
239
240
241
    c->hydro.super = c;
    c->grav.super = c;
    c->hydro.parts = NULL;
    c->hydro.xparts = NULL;
242
243
    c->grav.parts = NULL;
    c->stars.parts = NULL;
244
    c->hydro.do_sub_sort = 0;
Loic Hausammann's avatar
Loic Hausammann committed
245
    c->stars.do_sub_sort = 0;
246
247
    c->grav.do_sub_drift = 0;
    c->hydro.do_sub_drift = 0;
248
249
    c->hydro.do_sub_limiter = 0;
    c->hydro.do_limiter = 0;
250
251
252
253
    c->hydro.ti_end_min = -1;
    c->hydro.ti_end_max = -1;
    c->grav.ti_end_min = -1;
    c->grav.ti_end_max = -1;
Loic Hausammann's avatar
Loic Hausammann committed
254
    c->stars.ti_end_min = -1;
255
256
257
#ifdef SWIFT_DEBUG_CHECKS
    c->cellID = 0;
#endif
258
259
    if (s->with_self_gravity)
      bzero(c->grav.multipole, sizeof(struct gravity_tensors));
Loic Hausammann's avatar
Loic Hausammann committed
260
    for (int i = 0; i < 13; i++) {
261
262
263
      if (c->hydro.sort[i] != NULL) {
        free(c->hydro.sort[i]);
        c->hydro.sort[i] = NULL;
264
      }
Loic Hausammann's avatar
Loic Hausammann committed
265
266
267
268
269
      if (c->stars.sort[i] != NULL) {
        free(c->stars.sort[i]);
        c->stars.sort[i] = NULL;
      }
    }
270
#if WITH_MPI
271
272
    c->mpi.tag = -1;

273
274
275
276
    c->mpi.hydro.recv_xv = NULL;
    c->mpi.hydro.recv_rho = NULL;
    c->mpi.hydro.recv_gradient = NULL;
    c->mpi.grav.recv = NULL;
277
    c->mpi.stars.recv = NULL;
278
    c->mpi.recv_ti = NULL;
279
    c->mpi.limiter.recv = NULL;
280

281
282
283
284
    c->mpi.hydro.send_xv = NULL;
    c->mpi.hydro.send_rho = NULL;
    c->mpi.hydro.send_gradient = NULL;
    c->mpi.grav.send = NULL;
285
    c->mpi.stars.send = NULL;
286
    c->mpi.send_ti = NULL;
287
    c->mpi.limiter.send = NULL;
288
289
290
291
#endif
  }
}

292
293
294
295
/**
 * @brief Free up any allocated cells.
 */
void space_free_cells(struct space *s) {
296
297
298

  ticks tic = getticks();

Matthieu Schaller's avatar
Matthieu Schaller committed
299
300
  threadpool_map(&s->e->threadpool, space_rebuild_recycle_mapper, s->cells_top,
                 s->nr_cells, sizeof(struct cell), 0, s);
301
  s->maxdepth = 0;
302
303
304
305

  if (s->e->verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
306
307
}

308
/**
309
 * @brief Re-build the top-level cell grid.
310
 *
311
 * @param s The #space.
312
 * @param verbose Print messages to stdout or not.
313
 */
314
void space_regrid(struct space *s, int verbose) {
315

316
  const size_t nr_parts = s->nr_parts;
Loic Hausammann's avatar
Loic Hausammann committed
317
  const size_t nr_sparts = s->nr_sparts;
318
  const ticks tic = getticks();
319
  const integertime_t ti_current = (s->e != NULL) ? s->e->ti_current : 0;
320

321
  /* Run through the cells and get the current h_max. */
322
  // tic = getticks();
323
  float h_max = s->cell_min / kernel_gamma / space_stretch;
324
  if (nr_parts > 0) {
325
326
327
328
329
330

    /* Can we use the list of local non-empty top-level cells? */
    if (s->local_cells_with_particles_top != NULL) {
      for (int k = 0; k < s->nr_local_cells_with_particles; ++k) {
        const struct cell *c =
            &s->cells_top[s->local_cells_with_particles_top[k]];
331
        if (c->hydro.h_max > h_max) {
332
          h_max = c->hydro.h_max;
333
        }
Loic Hausammann's avatar
Loic Hausammann committed
334
        if (c->stars.h_max > h_max) {
335
          h_max = c->stars.h_max;
Loic Hausammann's avatar
Loic Hausammann committed
336
        }
337
      }
338
339

      /* Can we instead use all the top-level cells? */
340
    } else if (s->cells_top != NULL) {
Tom Theuns's avatar
Tom Theuns committed
341
      for (int k = 0; k < s->nr_cells; k++) {
342
        const struct cell *c = &s->cells_top[k];
343
        if (c->nodeID == engine_rank && c->hydro.h_max > h_max) {
344
          h_max = c->hydro.h_max;
345
        }
Loic Hausammann's avatar
Loic Hausammann committed
346
        if (c->nodeID == engine_rank && c->stars.h_max > h_max) {
347
          h_max = c->stars.h_max;
Loic Hausammann's avatar
Loic Hausammann committed
348
        }
349
      }
350
351

      /* Last option: run through the particles */
352
    } else {
353
      for (size_t k = 0; k < nr_parts; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
354
        if (s->parts[k].h > h_max) h_max = s->parts[k].h;
355
      }
Loic Hausammann's avatar
Loic Hausammann committed
356
357
358
      for (size_t k = 0; k < nr_sparts; k++) {
        if (s->sparts[k].h > h_max) h_max = s->sparts[k].h;
      }
359
360
361
362
363
364
365
366
367
368
    }
  }

/* If we are running in parallel, make sure everybody agrees on
   how large the largest cell should be. */
#ifdef WITH_MPI
  {
    float buff;
    if (MPI_Allreduce(&h_max, &buff, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD) !=
        MPI_SUCCESS)
369
      error("Failed to aggregate the rebuild flag across nodes.");
370
371
372
    h_max = buff;
  }
#endif
373
  if (verbose) message("h_max is %.3e (cell_min=%.3e).", h_max, s->cell_min);
374
375

  /* Get the new putative cell dimensions. */
376
  const int cdim[3] = {
377
378
379
380
381
382
      (int)floor(s->dim[0] /
                 fmax(h_max * kernel_gamma * space_stretch, s->cell_min)),
      (int)floor(s->dim[1] /
                 fmax(h_max * kernel_gamma * space_stretch, s->cell_min)),
      (int)floor(s->dim[2] /
                 fmax(h_max * kernel_gamma * space_stretch, s->cell_min))};
383
384
385
386
387

  /* Check if we have enough cells for periodicity. */
  if (s->periodic && (cdim[0] < 3 || cdim[1] < 3 || cdim[2] < 3))
    error(
        "Must have at least 3 cells in each spatial dimension when periodicity "
388
389
390
        "is switched on.\nThis error is often caused by any of the "
        "followings:\n"
        " - too few particles to generate a sensible grid,\n"
391
392
        " - the initial value of 'Scheduler:max_top_level_cells' is too "
        "small,\n"
393
        " - the (minimal) time-step is too large leading to particles with "
394
        "predicted smoothing lengths too large for the box size,\n"
395
        " - particles with velocities so large that they move by more than two "
396
        "box sizes per time-step.\n");
397

398
399
400
/* In MPI-Land, changing the top-level cell size requires that the
 * global partition is recomputed and the particles redistributed.
 * Be prepared to do that. */
401
#ifdef WITH_MPI
Matthieu Schaller's avatar
Matthieu Schaller committed
402
  double oldwidth[3];
403
404
405
406
407
408
409
410
  double oldcdim[3];
  int *oldnodeIDs = NULL;
  if (cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2]) {

    /* Capture state of current space. */
    oldcdim[0] = s->cdim[0];
    oldcdim[1] = s->cdim[1];
    oldcdim[2] = s->cdim[2];
411
412
413
    oldwidth[0] = s->width[0];
    oldwidth[1] = s->width[1];
    oldwidth[2] = s->width[2];
414
415
416
417
418
419
420
421
422

    if ((oldnodeIDs = (int *)malloc(sizeof(int) * s->nr_cells)) == NULL)
      error("Failed to allocate temporary nodeIDs.");

    int cid = 0;
    for (int i = 0; i < s->cdim[0]; i++) {
      for (int j = 0; j < s->cdim[1]; j++) {
        for (int k = 0; k < s->cdim[2]; k++) {
          cid = cell_getid(oldcdim, i, j, k);
423
          oldnodeIDs[cid] = s->cells_top[cid].nodeID;
424
425
426
427
428
        }
      }
    }
  }

Peter W. Draper's avatar
Peter W. Draper committed
429
  /* Are we about to allocate new top level cells without a regrid?
Peter W. Draper's avatar
Peter W. Draper committed
430
   * Can happen when restarting the application. */
431
  const int no_regrid = (s->cells_top == NULL && oldnodeIDs == NULL);
432
433
434
435
#endif

  /* Do we need to re-build the upper-level cells? */
  // tic = getticks();
436
  if (s->cells_top == NULL || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] ||
437
438
      cdim[2] < s->cdim[2]) {

439
440
/* Be verbose about this. */
#ifdef SWIFT_DEBUG_CHECKS
441
    message("(re)griding space cdim=(%d %d %d)", cdim[0], cdim[1], cdim[2]);
442
443
444
    fflush(stdout);
#endif

445
    /* Free the old cells, if they were allocated. */
446
    if (s->cells_top != NULL) {
447
      space_free_cells(s);
448
      free(s->local_cells_with_tasks_top);
449
      free(s->local_cells_top);
450
      free(s->cells_with_particles_top);
451
      free(s->local_cells_with_particles_top);
452
      free(s->cells_top);
453
      free(s->multipoles_top);
454
455
    }

456
457
458
459
    /* Also free the task arrays, these will be regenerated and we can use the
     * memory while copying the particle arrays. */
    if (s->e != NULL) scheduler_free_tasks(&s->e->sched);

460
    /* Set the new cell dimensions only if smaller. */
461
    for (int k = 0; k < 3; k++) {
462
      s->cdim[k] = cdim[k];
463
464
      s->width[k] = s->dim[k] / cdim[k];
      s->iwidth[k] = 1.0 / s->width[k];
465
    }
466
    const float dmin = min3(s->width[0], s->width[1], s->width[2]);
467
468
469

    /* Allocate the highest level of cells. */
    s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2];
470
    if (posix_memalign((void **)&s->cells_top, cell_align,
471
                       s->nr_cells * sizeof(struct cell)) != 0)
472
      error("Failed to allocate top-level cells.");
473
    bzero(s->cells_top, s->nr_cells * sizeof(struct cell));
474

475
    /* Allocate the multipoles for the top-level cells. */
476
    if (s->with_self_gravity) {
477
      if (posix_memalign((void **)&s->multipoles_top, multipole_align,
478
                         s->nr_cells * sizeof(struct gravity_tensors)) != 0)
479
        error("Failed to allocate top-level multipoles.");
480
      bzero(s->multipoles_top, s->nr_cells * sizeof(struct gravity_tensors));
481
482
    }

483
    /* Allocate the indices of local cells */
484
    if (posix_memalign((void **)&s->local_cells_top, SWIFT_STRUCT_ALIGNMENT,
485
486
487
488
                       s->nr_cells * sizeof(int)) != 0)
      error("Failed to allocate indices of local top-level cells.");
    bzero(s->local_cells_top, s->nr_cells * sizeof(int));

489
    /* Allocate the indices of local cells with tasks */
490
491
    if (posix_memalign((void **)&s->local_cells_with_tasks_top,
                       SWIFT_STRUCT_ALIGNMENT, s->nr_cells * sizeof(int)) != 0)
492
      error("Failed to allocate indices of local top-level cells with tasks.");
493
494
    bzero(s->local_cells_with_tasks_top, s->nr_cells * sizeof(int));

495
    /* Allocate the indices of cells with particles */
496
    if (posix_memalign((void **)&s->cells_with_particles_top,
497
                       SWIFT_STRUCT_ALIGNMENT, s->nr_cells * sizeof(int)) != 0)
498
499
      error("Failed to allocate indices of top-level cells with particles.");
    bzero(s->cells_with_particles_top, s->nr_cells * sizeof(int));
500

501
502
503
504
505
506
507
508
    /* Allocate the indices of local cells with particles */
    if (posix_memalign((void **)&s->local_cells_with_particles_top,
                       SWIFT_STRUCT_ALIGNMENT, s->nr_cells * sizeof(int)) != 0)
      error(
          "Failed to allocate indices of local top-level cells with "
          "particles.");
    bzero(s->local_cells_with_particles_top, s->nr_cells * sizeof(int));

509
    /* Set the cells' locks */
510
    for (int k = 0; k < s->nr_cells; k++) {
511
      if (lock_init(&s->cells_top[k].hydro.lock) != 0)
512
        error("Failed to init spinlock for hydro.");
513
      if (lock_init(&s->cells_top[k].grav.plock) != 0)
514
        error("Failed to init spinlock for gravity.");
515
      if (lock_init(&s->cells_top[k].grav.mlock) != 0)
516
        error("Failed to init spinlock for multipoles.");
517
      if (lock_init(&s->cells_top[k].stars.lock) != 0)
518
519
        error("Failed to init spinlock for stars.");
    }
520
521

    /* Set the cell location and sizes. */
522
523
524
    for (int i = 0; i < cdim[0]; i++)
      for (int j = 0; j < cdim[1]; j++)
        for (int k = 0; k < cdim[2]; k++) {
525
526
          const size_t cid = cell_getid(cdim, i, j, k);
          struct cell *restrict c = &s->cells_top[cid];
527
528
529
530
531
532
          c->loc[0] = i * s->width[0];
          c->loc[1] = j * s->width[1];
          c->loc[2] = k * s->width[2];
          c->width[0] = s->width[0];
          c->width[1] = s->width[1];
          c->width[2] = s->width[2];
533
534
          c->dmin = dmin;
          c->depth = 0;
535
          c->split = 0;
536
          c->hydro.count = 0;
537
538
          c->grav.count = 0;
          c->stars.count = 0;
539
          c->super = c;
540
541
          c->hydro.super = c;
          c->grav.super = c;
542
543
          c->hydro.ti_old_part = ti_current;
          c->grav.ti_old_part = ti_current;
544
          c->grav.ti_old_multipole = ti_current;
Pedro Gonnet's avatar
Pedro Gonnet committed
545
#ifdef WITH_MPI
546
          c->mpi.tag = -1;
547
548
549
550
551
552
          c->mpi.hydro.recv_xv = NULL;
          c->mpi.hydro.recv_rho = NULL;
          c->mpi.hydro.recv_gradient = NULL;
          c->mpi.hydro.send_xv = NULL;
          c->mpi.hydro.send_rho = NULL;
          c->mpi.hydro.send_gradient = NULL;
553
554
          c->mpi.stars.send = NULL;
          c->mpi.stars.recv = NULL;
555
556
          c->mpi.grav.recv = NULL;
          c->mpi.grav.send = NULL;
Pedro Gonnet's avatar
Pedro Gonnet committed
557
#endif  // WITH_MPI
558
          if (s->with_self_gravity) c->grav.multipole = &s->multipoles_top[cid];
559
#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
560
561
          c->cellID = -last_cell_id;
          last_cell_id++;
562
#endif
Pedro Gonnet's avatar
Pedro Gonnet committed
563
        }
564
565

    /* Be verbose about the change. */
566
567
568
    if (verbose)
      message("set cell dimensions to [ %i %i %i ].", cdim[0], cdim[1],
              cdim[2]);
569

570
#ifdef WITH_MPI
571
572
573
574
575
    if (oldnodeIDs != NULL) {
      /* We have changed the top-level cell dimension, so need to redistribute
       * cells around the nodes. We repartition using the old space node
       * positions as a grid to resample. */
      if (s->e->nodeID == 0)
576
577
578
        message(
            "basic cell dimensions have increased - recalculating the "
            "global partition.");
579

Matthieu Schaller's avatar
Matthieu Schaller committed
580
      if (!partition_space_to_space(oldwidth, oldcdim, oldnodeIDs, s)) {
581
582
583
584

        /* Failed, try another technique that requires no settings. */
        message("Failed to get a new partition, trying less optimal method");
        struct partition initial_partition;
585
#if defined(HAVE_PARMETIS) || defined(HAVE_METIS)
586
587
588
589
590
591
592
593
594
595
596
597
598
        initial_partition.type = INITPART_METIS_NOWEIGHT;
#else
        initial_partition.type = INITPART_VECTORIZE;
#endif
        partition_initial_partition(&initial_partition, s->e->nodeID,
                                    s->e->nr_nodes, s);
      }

      /* Re-distribute the particles to their new nodes. */
      engine_redistribute(s->e);

      /* Make the proxies. */
      engine_makeproxies(s->e);
599

600
601
      /* Finished with these. */
      free(oldnodeIDs);
Peter W. Draper's avatar
Peter W. Draper committed
602
603

    } else if (no_regrid && s->e != NULL) {
Peter W. Draper's avatar
Peter W. Draper committed
604
605
606
607
608
609
610
611
612
613
614
615
616
      /* If we have created the top-levels cells and not done an initial
       * partition (can happen when restarting), then the top-level cells
       * are not assigned to a node, we must do that and then associate the
       * particles with the cells. Note requires that
       * partition_store_celllist() was called once before, or just before
       * dumping the restart files.*/
      partition_restore_celllist(s, s->e->reparttype);

      /* Now re-distribute the particles, should just add to cells? */
      engine_redistribute(s->e);

      /* Make the proxies. */
      engine_makeproxies(s->e);
617
    }
Pedro Gonnet's avatar
Pedro Gonnet committed
618
#endif /* WITH_MPI */
619
620
621
622

    // message( "rebuilding upper-level cells took %.3f %s." ,
    // clocks_from_ticks(double)(getticks() - tic), clocks_getunit());

623
  }      /* re-build upper-level cells? */
624
  else { /* Otherwise, just clean up the cells. */
625
626

    /* Free the old cells, if they were allocated. */
627
    space_free_cells(s);
628
  }
629
630
631
632

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
633
}
634

635
636
637
638
639
640
/**
 * @brief Allocate memory for the extra particles used for on-the-fly creation.
 *
 * This rarely actually allocates memory. Most of the time, we convert
 * pre-allocated memory inot extra particles.
 *
641
642
 * This function also sets the extra particles' location to their top-level
 * cells. They can then be sorted into their correct memory position later on.
643
644
645
646
 *
 * @param s The current #space.
 * @param verbose Are we talkative?
 */
647
648
649
650
void space_allocate_extras(struct space *s, int verbose) {

  const int local_nodeID = s->e->nodeID;

651
652
653
654
655
  /* Anything to do here? (Abort if we don't want extras)*/
  if (space_extra_parts == 0 && space_extra_gparts == 0 &&
      space_extra_sparts == 0)
    return;

656
657
658
659
660
661
  /* The top-level cells */
  const struct cell *cells = s->cells_top;
  const double half_cell_width[3] = {0.5 * cells[0].width[0],
                                     0.5 * cells[0].width[1],
                                     0.5 * cells[0].width[2]};

662
  /* The current number of particles (including spare ones) */
663
664
665
666
  size_t nr_parts = s->nr_parts;
  size_t nr_gparts = s->nr_gparts;
  size_t nr_sparts = s->nr_sparts;

667
668
669
670
671
  /* The current number of actual particles */
  size_t nr_actual_parts = nr_parts - s->nr_extra_parts;
  size_t nr_actual_gparts = nr_gparts - s->nr_extra_gparts;
  size_t nr_actual_sparts = nr_sparts - s->nr_extra_sparts;

672
673
674
675
676
677
678
679
680
  /* The number of particles we allocated memory for (MPI overhead) */
  size_t size_parts = s->size_parts;
  size_t size_gparts = s->size_gparts;
  size_t size_sparts = s->size_sparts;

  int local_cells = 0;
  for (int i = 0; i < s->nr_cells; ++i)
    if (s->cells_top[i].nodeID == local_nodeID) local_cells++;

681
682
  /* Number of extra particles we want for each type */
  const size_t expected_num_extra_parts = local_cells * space_extra_parts;
683
684
  const size_t expected_num_extra_gparts = local_cells * space_extra_gparts;
  const size_t expected_num_extra_sparts = local_cells * space_extra_sparts;
685

686
687
688
  if (verbose) {
    message("Currently have %zd/%zd/%zd real particles.", nr_actual_parts,
            nr_actual_gparts, nr_actual_sparts);
689
    message("Currently have %zd/%zd/%zd spaces for extra particles.",
690
            s->nr_extra_parts, s->nr_extra_gparts, s->nr_extra_sparts);
691
    message("Requesting space for future %zd/%zd/%zd part/gpart/sparts.",
692
693
694
            expected_num_extra_parts, expected_num_extra_gparts,
            expected_num_extra_sparts);
  }
695

696
697
698
699
700
701
702
  if (expected_num_extra_parts < s->nr_extra_parts)
    error("Reduction in top-level cells number not handled.");
  if (expected_num_extra_gparts < s->nr_extra_gparts)
    error("Reduction in top-level cells number not handled.");
  if (expected_num_extra_sparts < s->nr_extra_sparts)
    error("Reduction in top-level cells number not handled.");

703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
  /* Do we have enough space for the extra gparts (i.e. we haven't used up any)
   * ? */
  if (nr_gparts + expected_num_extra_gparts > size_gparts) {

    /* Ok... need to put some more in the game */

    /* Do we need to reallocate? */
    if (nr_actual_gparts + expected_num_extra_gparts > size_gparts) {

      size_gparts = (nr_actual_gparts + expected_num_extra_gparts) *
                    engine_redistribute_alloc_margin;

      if (verbose)
        message("Re-allocating gparts array from %zd to %zd", s->size_gparts,
                size_gparts);

      /* Create more space for parts */
      struct gpart *gparts_new = NULL;
      if (posix_memalign((void **)&gparts_new, gpart_align,
                         sizeof(struct gpart) * size_gparts) != 0)
        error("Failed to allocate new gpart data");
      const ptrdiff_t delta = gparts_new - s->gparts;
      memcpy(gparts_new, s->gparts, sizeof(struct gpart) * s->size_gparts);
      free(s->gparts);
      s->gparts = gparts_new;

      /* Update the counter */
      s->size_gparts = size_gparts;

      /* We now need to reset all the part and spart pointers */
      for (size_t i = 0; i < nr_parts; ++i) {
        if (s->parts[i].time_bin != time_bin_not_created)
          s->parts[i].gpart += delta;
      }
      for (size_t i = 0; i < nr_sparts; ++i) {
        if (s->sparts[i].time_bin != time_bin_not_created)
          s->sparts[i].gpart += delta;
      }
    }

    /* Turn some of the allocated spares into particles we can use */
    for (size_t i = nr_gparts; i < nr_actual_gparts + expected_num_extra_gparts;
         ++i) {
      bzero(&s->gparts[i], sizeof(struct gpart));
      s->gparts[i].time_bin = time_bin_not_created;
      s->gparts[i].type = swift_type_dark_matter;
      s->gparts[i].id_or_neg_offset = -1;
    }

      /* Put the spare particles in their correct cell */
#ifdef WITH_MPI
    error("Need to do this correctly over MPI for only the local cells.");
#endif
    int count_in_cell = 0, current_cell = 0;
    size_t count_extra_gparts = 0;
    for (size_t i = 0; i < nr_actual_gparts + expected_num_extra_gparts; ++i) {

#ifdef SWIFT_DEBUG_CHECKS
      if (current_cell == s->nr_cells)
        error("Cell counter beyond the maximal nr. cells.");
#endif

      if (s->gparts[i].time_bin == time_bin_not_created) {

        /* We want the extra particles to be at the centre of their cell */
        s->gparts[i].x[0] = cells[current_cell].loc[0] + half_cell_width[0];
        s->gparts[i].x[1] = cells[current_cell].loc[1] + half_cell_width[1];
        s->gparts[i].x[2] = cells[current_cell].loc[2] + half_cell_width[2];
        ++count_in_cell;
        count_extra_gparts++;
      }

      /* Once we have reached the number of extra gpart per cell, we move to the
       * next */
      if (count_in_cell == space_extra_gparts) {
        ++current_cell;
        count_in_cell = 0;
      }
    }

#ifdef SWIFT_DEBUG_CHECKS
    if (count_extra_gparts != expected_num_extra_gparts)
      error("Constructed the wrong number of extra gparts (%zd vs. %zd)",
            count_extra_gparts, expected_num_extra_gparts);
#endif

    /* Update the counters */
    s->nr_gparts = nr_actual_gparts + expected_num_extra_gparts;
    s->nr_extra_gparts = expected_num_extra_gparts;
  }

794
795
  /* Do we have enough space for the extra parts (i.e. we haven't used up any) ?
   */
796
797
  if (expected_num_extra_parts > s->nr_extra_parts) {

798
799
    /* Ok... need to put some more in the game */

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
    /* Do we need to reallocate? */
    if (nr_actual_parts + expected_num_extra_parts > size_parts) {

      size_parts = (nr_actual_parts + expected_num_extra_parts) *
                   engine_redistribute_alloc_margin;

      if (verbose)
        message("Re-allocating parts array from %zd to %zd", s->size_parts,
                size_parts);

      /* Create more space for parts */
      struct part *parts_new = NULL;
      if (posix_memalign((void **)&parts_new, part_align,
                         sizeof(struct part) * size_parts) != 0)
        error("Failed to allocate new part data");
      memcpy(parts_new, s->parts, sizeof(struct part) * s->size_parts);
      free(s->parts);
      s->parts = parts_new;

      /* Same for xparts */
      struct xpart *xparts_new = NULL;
      if (posix_memalign((void **)&xparts_new, xpart_align,
                         sizeof(struct xpart) * size_parts) != 0)
        error("Failed to allocate new xpart data");
      memcpy(xparts_new, s->xparts, sizeof(struct xpart) * s->size_parts);
      free(s->xparts);
      s->xparts = xparts_new;

      /* Update the counter */
      s->size_parts = size_parts;
    }

832
    /* Turn some of the allocated spares into particles we can use */
833
834
835
836
837
    for (size_t i = nr_parts; i < nr_actual_parts + expected_num_extra_parts;
         ++i) {
      bzero(&s->parts[i], sizeof(struct part));
      bzero(&s->xparts[i], sizeof(struct xpart));
      s->parts[i].time_bin = time_bin_not_created;
838
      s->parts[i].id = -1;
839
840
    }

841
842
843
844
845
846
847
      /* Put the spare particles in their correct cell */
#ifdef WITH_MPI
    error("Need to do this correctly over MPI for only the local cells.");
#endif
    int count_in_cell = 0, current_cell = 0;
    size_t count_extra_parts = 0;
    for (size_t i = 0; i < nr_actual_parts + expected_num_extra_parts; ++i) {
848
849
850
851
852
853

#ifdef SWIFT_DEBUG_CHECKS
      if (current_cell == s->nr_cells)
        error("Cell counter beyond the maximal nr. cells.");
#endif

854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
      if (s->parts[i].time_bin == time_bin_not_created) {

        /* We want the extra particles to be at the centre of their cell */
        s->parts[i].x[0] = cells[current_cell].loc[0] + half_cell_width[0];
        s->parts[i].x[1] = cells[current_cell].loc[1] + half_cell_width[1];
        s->parts[i].x[2] = cells[current_cell].loc[2] + half_cell_width[2];
        ++count_in_cell;
        count_extra_parts++;
      }

      /* Once we have reached the number of extra part per cell, we move to the
       * next */
      if (count_in_cell == space_extra_parts) {
        ++current_cell;
        count_in_cell = 0;
      }
    }

#ifdef SWIFT_DEBUG_CHECKS
    if (count_extra_parts != expected_num_extra_parts)
      error("Constructed the wrong number of extra parts (%zd vs. %zd)",
            count_extra_parts, expected_num_extra_parts);
#endif

878
879
880
    /* Update the counters */
    s->nr_parts = nr_actual_parts + expected_num_extra_parts;
    s->nr_extra_parts = expected_num_extra_parts;
881
  }
882

883
884
  /* Do we have enough space for the extra sparts (i.e. we haven't used up any)
   * ? */
885
  if (nr_actual_sparts + expected_num_extra_sparts > nr_sparts) {
886

887
888
    /* Ok... need to put some more in the game */

889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
    /* Do we need to reallocate? */
    if (nr_actual_sparts + expected_num_extra_sparts > size_sparts) {

      size_sparts = (nr_actual_sparts + expected_num_extra_sparts) *
                    engine_redistribute_alloc_margin;

      if (verbose)
        message("Re-allocating sparts array from %zd to %zd", s->size_sparts,
                size_sparts);

      /* Create more space for parts */
      struct spart *sparts_new = NULL;
      if (posix_memalign((void **)&sparts_new, spart_align,
                         sizeof(struct spart) * size_sparts) != 0)
        error("Failed to allocate new spart data");
      memcpy(sparts_new, s->sparts, sizeof(struct spart) * s->size_sparts);
      free(s->sparts);
      s->sparts = sparts_new;

      /* Update the counter */
      s->size_sparts = size_sparts;
    }

    /* Turn some of the allocated spares into particles we can use */
    for (size_t i = nr_sparts; i < nr_actual_sparts + expected_num_extra_sparts;
         ++i) {
      bzero(&s->sparts[i], sizeof(struct spart));
      s->sparts[i].time_bin = time_bin_not_created;
917
      s->sparts[i].id = -42;
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
    }

      /* Put the spare particles in their correct cell */
#ifdef WITH_MPI
    error("Need to do this correctly over MPI for only the local cells.");
#endif
    int count_in_cell = 0, current_cell = 0;
    size_t count_extra_sparts = 0;
    for (size_t i = 0; i < nr_actual_sparts + expected_num_extra_sparts; ++i) {

#ifdef SWIFT_DEBUG_CHECKS
      if (current_cell == s->nr_cells)
        error("Cell counter beyond the maximal nr. cells.");
#endif

      if (s->sparts[i].time_bin == time_bin_not_created) {

        /* We want the extra particles to be at the centre of their cell */
        s->sparts[i].x[0] = cells[current_cell].loc[0] + half_cell_width[0];
        s->sparts[i].x[1] = cells[current_cell].loc[1] + half_cell_width[1];
        s->sparts[i].x[2] = cells[current_cell].loc[2] + half_cell_width[2];
        ++count_in_cell;
        count_extra_sparts++;
      }

      /* Once we have reached the number of extra spart per cell, we move to the
       * next */
      if (count_in_cell == space_extra_sparts) {
        ++current_cell;
        count_in_cell = 0;
      }
    }

#ifdef SWIFT_DEBUG_CHECKS
    if (count_extra_sparts != expected_num_extra_sparts)
      error("Constructed the wrong number of extra sparts (%zd vs. %zd)",
            count_extra_sparts, expected_num_extra_sparts);
#endif

    /* Update the counters */
    s->nr_sparts = nr_actual_sparts + expected_num_extra_sparts;
    s->nr_extra_sparts = expected_num_extra_sparts;
960
  }
961
962
963
964
965
966
967

#ifdef SWIFT_DEBUG_CHECKS
  /* Verify that the links are correct */
  if ((nr_gparts > 0 && nr_parts > 0) || (nr_gparts > 0 && nr_sparts > 0))
    part_verify_links(s->parts, s->gparts, s->sparts, nr_parts, nr_gparts,
                      nr_sparts, verbose);
#endif
968
969
}

970
971
972
973
/**
 * @brief Re-build the cells as well as the tasks.
 *
 * @param s The #space in which to update the cells.
974
 * @param repartitioned Did we just repartition?
975
 * @param verbose Print messages to stdout or not
976
 */
977
void space_rebuild(struct space *s, int repartitioned, int verbose) {
978

Matthieu Schaller's avatar
Matthieu Schaller committed
979
  const ticks tic = getticks();
980

981
982
/* Be verbose about this. */
#ifdef SWIFT_DEBUG_CHECKS
Pedro Gonnet's avatar
Pedro Gonnet committed
983
  if (s->e->nodeID == 0 || verbose) message("(re)building space");
984
985
  fflush(stdout);
#endif
986
987

  /* Re-grid if necessary, or just re-set the cell data. */
988
  space_regrid(s, verbose);
989

990
  /* Allocate extra space for particles that will be created */
991
  if (s->with_star_formation) space_allocate_extras(s, verbose);
992

993
994
  struct cell *cells_top = s->cells_top;
  const integertime_t ti_current = (s->e != NULL) ? s->e->ti_current : 0;
995
  const int local_nodeID = s->e->nodeID;
996
997

  /* The current number of particles */
Pedro Gonnet's avatar
Pedro Gonnet committed
998
999
  size_t nr_parts = s->nr_parts;
  size_t nr_gparts = s->nr_gparts;
1000
  size_t nr_sparts = s->nr_sparts;