runner_doiact_star.h 8.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2018 Loic Hausammann (loic.hausammann@epfl.ch)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

#include "swift.h"

/**
 * @brief Calculate the number density of #part around the #spart
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_doself_star_density(struct runner *r, struct cell *c, int timer) {
  const struct engine *e = r->e;
  const struct cosmology *cosmo = e->cosmology;

  TIMER_TIC;

  /* Anything to do here? */
  if (!cell_is_active_star(c, e)) return;

  /* Cosmological terms */
  const float a = cosmo->a;
  const float H = cosmo->H;

  const int scount = c->scount;
  const int count = c->count;
  struct spart *restrict sparts = c->sparts;
  struct part *restrict parts = c->parts;

  /* Loop over the sparts in ci. */
  for (int sid = 0; sid < scount; sid++) {

    /* Get a hold of the ith spart in ci. */
    struct spart *restrict si = &sparts[sid];
    const float hi = si->h;
    const float hig2 = hi * hi * kernel_gamma2;
    const float six[3] = {(float)(si->x[0] - c->loc[0]),
                          (float)(si->x[1] - c->loc[1]),
                          (float)(si->x[2] - c->loc[2])};

    /* Loop over the parts in cj. */
    for (int pjd = 0; pjd < count; pjd++) {

      /* Get a pointer to the jth particle. */
      struct part *restrict pj = &parts[pjd];
      const float hj = pj->h;

      /* Compute the pairwise distance. */
      const float pjx[3] = {(float)(pj->x[0] - c->loc[0]),
                            (float)(pj->x[1] - c->loc[1]),
                            (float)(pj->x[2] - c->loc[2])};
      float dx[3] = {six[0] - pjx[0], six[1] - pjx[1], six[2] - pjx[2]};
      const float r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];

#ifdef SWIFT_DEBUG_CHECKS
      /* Check that particles have been drifted to the current time */
      if (si->ti_drift != e->ti_current)
        error("Particle si not drifted to current time");
      if (pj->ti_drift != e->ti_current)
        error("Particle pj not drifted to current time");
#endif

      if (r2 < hig2)
	runner_iact_nonsym_star_density(r2, dx, hi, hj, si, pj, a, H);
    } /* loop over the parts in ci. */
  }   /* loop over the sparts in ci. */

  TIMER_TOC(timer_doself_star_density);
 
}

/**
 * @brief Calculate the number density of #part around the #spart
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_dosubpair_star_density(struct runner *r, struct cell *restrict ci,
				   struct cell *restrict cj) {

  const struct engine *e = r->e;
  const struct cosmology *cosmo = e->cosmology;

  /* Anything to do here? */
  if (!cell_is_active_star(ci, e) && !cell_is_active_star(cj, e)) return;

  const int scount_i = ci->scount;
  const int count_j = cj->count;
  struct spart *restrict sparts_i = ci->sparts;
  struct part *restrict parts_j = cj->parts;

  /* Cosmological terms */
  const float a = cosmo->a;
  const float H = cosmo->H;

  /* Get the relative distance between the pairs, wrapping. */
  double shift[3] = {0.0, 0.0, 0.0};
  for (int k = 0; k < 3; k++) {
    if (cj->loc[k] - ci->loc[k] < -e->s->dim[k] / 2)
      shift[k] = e->s->dim[k];
    else if (cj->loc[k] - ci->loc[k] > e->s->dim[k] / 2)
      shift[k] = -e->s->dim[k];
  }

  /* Loop over the sparts in ci. */
  for (int sid = 0; sid < scount_i; sid++) {

    /* Get a hold of the ith spart in ci. */
    struct spart *restrict si = &sparts_i[sid];
    const float hi = si->h;
    const float hig2 = hi * hi * kernel_gamma2;
    const float six[3] = {(float)(si->x[0] - (cj->loc[0] + shift[0])),
                          (float)(si->x[1] - (cj->loc[1] + shift[1])),
                          (float)(si->x[2] - (cj->loc[2] + shift[2]))};

    /* Loop over the parts in cj. */
    for (int pjd = 0; pjd < count_j; pjd++) {

      /* Get a pointer to the jth particle. */
      struct part *restrict pj = &parts_j[pjd];
      const float hj = pj->h;

      /* Compute the pairwise distance. */
      const float pjx[3] = {(float)(pj->x[0] - cj->loc[0]),
                            (float)(pj->x[1] - cj->loc[1]),
                            (float)(pj->x[2] - cj->loc[2])};
      float dx[3] = {six[0] - pjx[0], six[1] - pjx[1], six[2] - pjx[2]};
      const float r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];

#ifdef SWIFT_DEBUG_CHECKS
      /* Check that particles have been drifted to the current time */
      if (si->ti_drift != e->ti_current)
        error("Particle si not drifted to current time");
      if (pj->ti_drift != e->ti_current)
        error("Particle pj not drifted to current time");
#endif

      if (r2 < hig2)
Loic Hausammann's avatar
Loic Hausammann committed
158
	runner_iact_nonsym_star_density(r2, dx, hj, hi, si, pj, a, H);
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

    } /* loop over the parts in cj. */
  }   /* loop over the parts in ci. */

}


void runner_dopair_star_density(struct runner *r, struct cell *restrict ci,
				   struct cell *restrict cj, int timer) {

  TIMER_TIC;
  
  runner_dosubpair_star_density(r, ci, cj);
  runner_dosubpair_star_density(r, cj, ci);

  if (timer) TIMER_TOC(timer_dopair_star_density);
}
Loic Hausammann's avatar
Loic Hausammann committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253


/**
 * @brief Compute the interactions between a cell pair, but only for the
 *      given indices in ci.
 *
 * Version using a brute-force algorithm.
 *
 * @param r The #runner.
 * @param ci The first #cell.
 * @param sparts_i The #part to interact with @c cj.
 * @param ind The list of indices of particles in @c ci to interact with.
 * @param scount The number of particles in @c ind.
 * @param cj The second #cell.
 * @param shift The shift vector to apply to the particles in ci.
 */
void runner_dopair_subset_star_density(struct runner *r, struct cell *restrict ci,
				       struct spart *restrict sparts_i, int *restrict ind,
				       int scount, struct cell *restrict cj,
				       const double *shift) {

  const struct engine *e = r->e;
  const struct cosmology *cosmo = e->cosmology;

  TIMER_TIC;

  const int count_j = cj->count;
  struct part *restrict parts_j = cj->parts;

  /* Cosmological terms */
  const float a = cosmo->a;
  const float H = cosmo->H;

  /* Loop over the parts_i. */
  for (int pid = 0; pid < scount; pid++) {

    /* Get a hold of the ith part in ci. */
    struct spart *restrict spi = &sparts_i[ind[pid]];
    double spix[3];
    for (int k = 0; k < 3; k++) spix[k] = spi->x[k] - shift[k];
    const float hi = spi->h;
    const float hig2 = hi * hi * kernel_gamma2;

#ifdef SWIFT_DEBUG_CHECKS
    if (!spart_is_active(spi, e))
      error("Trying to correct smoothing length of inactive particle !");
#endif

    /* Loop over the parts in cj. */
    for (int pjd = 0; pjd < count_j; pjd++) {

      /* Get a pointer to the jth particle. */
      struct part *restrict pj = &parts_j[pjd];

      /* Compute the pairwise distance. */
      float r2 = 0.0f;
      float dx[3];
      for (int k = 0; k < 3; k++) {
        dx[k] = spix[k] - pj->x[k];
        r2 += dx[k] * dx[k];
      }

#ifdef SWIFT_DEBUG_CHECKS
      /* Check that particles have been drifted to the current time */
      if (spi->ti_drift != e->ti_current)
        error("Particle pi not drifted to current time");
      if (pj->ti_drift != e->ti_current)
        error("Particle pj not drifted to current time");
#endif
      /* Hit or miss? */
      if (r2 < hig2) {
        runner_iact_nonsym_star_density(r2, dx, hi, pj->h, spi, pj, a, H);
      }
    } /* loop over the parts in cj. */
  }   /* loop over the parts in ci. */

  TIMER_TOC(timer_dopair_subset_naive);
}