space.c 36.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program.  If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
19
20
21
22
23
24
25
26

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
27
#include <string.h>
28
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
29

30
31
/* MPI headers. */
#ifdef WITH_MPI
32
#include <mpi.h>
33
34
#endif

35
36
37
/* This object's header. */
#include "space.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
38
/* Local headers. */
39
#include "atomic.h"
40
#include "engine.h"
41
#include "error.h"
42
43
#include "kernel.h"
#include "lock.h"
44
#include "minmax.h"
45
#include "runner.h"
46
#include "tools.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
47

48
49
50
/* Shared sort structure. */
struct parallel_sort space_sort_struct;

Pedro Gonnet's avatar
Pedro Gonnet committed
51
52
/* Split size. */
int space_splitsize = space_splitsize_default;
53
int space_subsize = space_subsize_default;
54
int space_maxsize = space_maxsize_default;
Pedro Gonnet's avatar
Pedro Gonnet committed
55
56
57

/* Map shift vector to sortlist. */
const int sortlistID[27] = {
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    /* ( -1 , -1 , -1 ) */ 0,
    /* ( -1 , -1 ,  0 ) */ 1,
    /* ( -1 , -1 ,  1 ) */ 2,
    /* ( -1 ,  0 , -1 ) */ 3,
    /* ( -1 ,  0 ,  0 ) */ 4,
    /* ( -1 ,  0 ,  1 ) */ 5,
    /* ( -1 ,  1 , -1 ) */ 6,
    /* ( -1 ,  1 ,  0 ) */ 7,
    /* ( -1 ,  1 ,  1 ) */ 8,
    /* (  0 , -1 , -1 ) */ 9,
    /* (  0 , -1 ,  0 ) */ 10,
    /* (  0 , -1 ,  1 ) */ 11,
    /* (  0 ,  0 , -1 ) */ 12,
    /* (  0 ,  0 ,  0 ) */ 0,
    /* (  0 ,  0 ,  1 ) */ 12,
    /* (  0 ,  1 , -1 ) */ 11,
    /* (  0 ,  1 ,  0 ) */ 10,
    /* (  0 ,  1 ,  1 ) */ 9,
    /* (  1 , -1 , -1 ) */ 8,
    /* (  1 , -1 ,  0 ) */ 7,
    /* (  1 , -1 ,  1 ) */ 6,
    /* (  1 ,  0 , -1 ) */ 5,
    /* (  1 ,  0 ,  0 ) */ 4,
    /* (  1 ,  0 ,  1 ) */ 3,
    /* (  1 ,  1 , -1 ) */ 2,
    /* (  1 ,  1 ,  0 ) */ 1,
    /* (  1 ,  1 ,  1 ) */ 0};

86
87
88
89
90
91
92
93
94
95
96
97
/**
 * @brief Get the shift-id of the given pair of cells, swapping them
 *      if need be.
 *
 * @param s The space
 * @param ci Pointer to first #cell.
 * @param cj Pointer second #cell.
 * @param shift Vector from ci to cj.
 *
 * @return The shift ID and set shift, may or may not swap ci and cj.
 */

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
int space_getsid(struct space *s, struct cell **ci, struct cell **cj,
                 double *shift) {

  int k, sid = 0, periodic = s->periodic;
  struct cell *temp;
  double dx[3];

  /* Get the relative distance between the pairs, wrapping. */
  for (k = 0; k < 3; k++) {
    dx[k] = (*cj)->loc[k] - (*ci)->loc[k];
    if (periodic && dx[k] < -s->dim[k] / 2)
      shift[k] = s->dim[k];
    else if (periodic && dx[k] > s->dim[k] / 2)
      shift[k] = -s->dim[k];
    else
      shift[k] = 0.0;
    dx[k] += shift[k];
  }

  /* Get the sorting index. */
  for (k = 0; k < 3; k++)
    sid = 3 * sid + ((dx[k] < 0.0) ? 0 : ((dx[k] > 0.0) ? 2 : 1));

  /* Switch the cells around? */
  if (runner_flip[sid]) {
    temp = *ci;
    *ci = *cj;
    *cj = temp;
    for (k = 0; k < 3; k++) shift[k] = -shift[k];
  }
  sid = sortlistID[sid];

  /* Return the sort ID. */
  return sid;
}
133

134
/**
135
 * @brief Recursively dismantle a cell tree.
136
137
 *
 */
138
139
140
141
142
143
144
145
146
147
148
149
150
151

void space_rebuild_recycle(struct space *s, struct cell *c) {

  int k;

  if (c->split)
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) {
        space_rebuild_recycle(s, c->progeny[k]);
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      }
}

152
/**
153
 * @brief Re-build the cell grid.
154
 *
155
156
 * @param s The #space.
 * @param cell_max Maximum cell edge length.
157
 * @param verbose Print messages to stdout or not.
158
 */
159

160
void space_regrid(struct space *s, double cell_max, int verbose) {
161
162
163
164
165
166
167
168
169
170
171

  float h_max = s->cell_min / kernel_gamma / space_stretch, dmin;
  int i, j, k, cdim[3], nr_parts = s->nr_parts;
  struct cell *restrict c;
  // ticks tic;

  /* Run through the parts and get the current h_max. */
  // tic = getticks();
  if (s->cells != NULL) {
    for (k = 0; k < s->nr_cells; k++) {
      if (s->cells[k].h_max > h_max) h_max = s->cells[k].h_max;
172
    }
173
174
175
176
177
178
179
180
181
182
183
184
185
186
  } else {
    for (k = 0; k < nr_parts; k++) {
      if (s->parts[k].h > h_max) h_max = s->parts[k].h;
    }
    s->h_max = h_max;
  }

/* If we are running in parallel, make sure everybody agrees on
   how large the largest cell should be. */
#ifdef WITH_MPI
  {
    float buff;
    if (MPI_Allreduce(&h_max, &buff, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD) !=
        MPI_SUCCESS)
187
      error("Failed to aggregate the rebuild flag across nodes.");
188
189
190
    h_max = buff;
  }
#endif
191
  if (verbose) message("h_max is %.3e (cell_max=%.3e).", h_max, cell_max);
192
193
194
195
196
197
198
199
200
201
202
203

  /* Get the new putative cell dimensions. */
  for (k = 0; k < 3; k++)
    cdim[k] =
        floor(s->dim[k] / fmax(h_max * kernel_gamma * space_stretch, cell_max));

  /* Check if we have enough cells for periodicity. */
  if (s->periodic && (cdim[0] < 3 || cdim[1] < 3 || cdim[2] < 3))
    error(
        "Must have at least 3 cells in each spatial dimension when periodicity "
        "is switched on.");

204
205
206
  /* In MPI-Land, changing the top-level cell size requires that the
   * global partition is recomputed and the particles redistributed.
   * Be prepared to do that. */
207
#ifdef WITH_MPI
208
  int partition = 0;
209
  if (cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2])
210
      partition = 1;
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#endif

  /* Do we need to re-build the upper-level cells? */
  // tic = getticks();
  if (s->cells == NULL || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] ||
      cdim[2] < s->cdim[2]) {

    /* Free the old cells, if they were allocated. */
    if (s->cells != NULL) {
      for (k = 0; k < s->nr_cells; k++) {
        space_rebuild_recycle(s, &s->cells[k]);
        if (s->cells[k].sort != NULL) free(s->cells[k].sort);
      }
      free(s->cells);
      s->maxdepth = 0;
    }

    /* Set the new cell dimensions only if smaller. */
    for (k = 0; k < 3; k++) {
      s->cdim[k] = cdim[k];
      s->h[k] = s->dim[k] / cdim[k];
      s->ih[k] = 1.0 / s->h[k];
    }
    dmin = fminf(s->h[0], fminf(s->h[1], s->h[2]));

    /* Allocate the highest level of cells. */
    s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2];
    if (posix_memalign((void *)&s->cells, 64,
                       s->nr_cells * sizeof(struct cell)) != 0)
      error("Failed to allocate cells.");
    bzero(s->cells, s->nr_cells * sizeof(struct cell));
    for (k = 0; k < s->nr_cells; k++)
      if (lock_init(&s->cells[k].lock) != 0) error("Failed to init spinlock.");

    /* Set the cell location and sizes. */
    for (i = 0; i < cdim[0]; i++)
      for (j = 0; j < cdim[1]; j++)
        for (k = 0; k < cdim[2]; k++) {
          c = &s->cells[cell_getid(cdim, i, j, k)];
          c->loc[0] = i * s->h[0];
          c->loc[1] = j * s->h[1];
          c->loc[2] = k * s->h[2];
          c->h[0] = s->h[0];
          c->h[1] = s->h[1];
          c->h[2] = s->h[2];
          c->dmin = dmin;
          c->depth = 0;
          c->count = 0;
          c->gcount = 0;
          c->super = c;
          lock_init(&c->lock);
Pedro Gonnet's avatar
Pedro Gonnet committed
262
        }
263
264

    /* Be verbose about the change. */
265
266
267
    if (verbose)
      message("set cell dimensions to [ %i %i %i ].", cdim[0], cdim[1],
              cdim[2]);
268
269
    fflush(stdout);

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#ifdef WITH_MPI
    /* XXX create an engine_resplit() function to use the same method as the
     * initial partition. Fake for now. */
    if (partition) {
        if (s->e->nodeID == 0)
            message("cell dimensions have decreased. Recalculating the "
                    "global partition.");

        /* Change the global partitioning. */
        int grid[3];
        factor(s->e->nr_nodes, &grid[0], &grid[1]);
        factor(s->e->nr_nodes / grid[1], &grid[0], &grid[2]);
        factor(grid[0] * grid[1], &grid[1], &grid[0]);

        /* Run through the cells and set their nodeID. */
        int ind[3];
        for (int k = 0; k < s->nr_cells; k++) {
            c = &s->cells[k];
            for (int j = 0; j < 3; j++) ind[j] = c->loc[j] / s->dim[j] * grid[j];
            c->nodeID = ind[0] + grid[0] * (ind[1] + grid[1] * ind[2]);
        }

        /* Make the proxies. */
        engine_makeproxies(s->e);
    }
#endif
296
  } /* re-build upper-level cells? */
297
298
  // message( "rebuilding upper-level cells took %.3f %s." ,
  // clocks_from_ticks(double)(getticks() - tic), clocks_getunit());
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

  /* Otherwise, just clean up the cells. */
  else {

    /* Free the old cells, if they were allocated. */
    for (k = 0; k < s->nr_cells; k++) {
      space_rebuild_recycle(s, &s->cells[k]);
      s->cells[k].sorts = NULL;
      s->cells[k].nr_tasks = 0;
      s->cells[k].nr_density = 0;
      s->cells[k].nr_force = 0;
      s->cells[k].density = NULL;
      s->cells[k].force = NULL;
      s->cells[k].dx_max = 0.0f;
      s->cells[k].sorted = 0;
      s->cells[k].count = 0;
      s->cells[k].gcount = 0;
Matthieu Schaller's avatar
Matthieu Schaller committed
316
      s->cells[k].init = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
317
      s->cells[k].ghost = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
318
319
      s->cells[k].drift = NULL;
      s->cells[k].kick = NULL;
320
      s->cells[k].super = &s->cells[k];
321
    }
322
323
324
    s->maxdepth = 0;
  }
}
325
326
327
328
329
330

/**
 * @brief Re-build the cells as well as the tasks.
 *
 * @param s The #space in which to update the cells.
 * @param cell_max Maximal cell size.
331
 * @param verbose Print messages to stdout or not
332
333
 *
 */
334

335
void space_rebuild(struct space *s, double cell_max, int verbose) {
336

337
  int j, k, cdim[3], nr_parts, nr_gparts;
338
  struct cell *restrict c, *restrict cells;
339
  struct part *restrict p;
340
  int *ind;
341
342
343
344
345
346
347
  double ih[3], dim[3];
  // ticks tic;

  /* Be verbose about this. */
  // message( "re)building space..." ); fflush(stdout);

  /* Re-grid if necessary, or just re-set the cell data. */
348
  space_regrid(s, cell_max, verbose);
349
350
351

  /* Now set local space variables. */
  nr_parts = s->nr_parts;
352
  cells = s->cells;
353
  nr_gparts = s->nr_gparts;
354
355
356

  /* Run through the particles and get their cell index. */
  // tic = getticks();
357
358
  const int ind_size = s->size_parts;
  if ((ind = (int *)malloc(sizeof(int) * ind_size)) == NULL)
359
360
361
362
363
364
365
366
367
368
    error("Failed to allocate temporary particle indices.");
  ih[0] = s->ih[0];
  ih[1] = s->ih[1];
  ih[2] = s->ih[2];
  dim[0] = s->dim[0];
  dim[1] = s->dim[1];
  dim[2] = s->dim[2];
  cdim[0] = s->cdim[0];
  cdim[1] = s->cdim[1];
  cdim[2] = s->cdim[2];
369
  for (k = 0; k < nr_parts; k++) {
370
    p = &s->parts[k];
371
372
373
374
375
    for (j = 0; j < 3; j++)
      if (p->x[j] < 0.0)
        p->x[j] += dim[j];
      else if (p->x[j] >= dim[j])
        p->x[j] -= dim[j];
376
    ind[k] =
377
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
378
    cells[ind[k]].count++;
379
  }
380
381
  // message( "getting particle indices took %.3f %s." ,
  //clocks_from_ticks(getticks() - tic), clocks_getunit()):
382
383
384
385

#ifdef WITH_MPI
  /* Move non-local parts to the end of the list. */
  int nodeID = s->e->nodeID;
386
387
388
389
  for (k = 0; k < nr_parts; k++)
    if (cells[ind[k]].nodeID != nodeID) {
      cells[ind[k]].count -= 1;
      nr_parts -= 1;
390
391
392
393
394
395
      struct part tp = s->parts[k];
      s->parts[k] = s->parts[nr_parts];
      s->parts[nr_parts] = tp;
      struct xpart txp = s->xparts[k];
      s->xparts[k] = s->xparts[nr_parts];
      s->xparts[nr_parts] = txp;
396
397
398
      int t = ind[k];
      ind[k] = ind[nr_parts];
      ind[nr_parts] = t;
399
400
    }

401
402
403
  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
  s->nr_parts =
404
405
      nr_parts + engine_exchange_strays(s->e, nr_parts, &ind[nr_parts],
                                        s->nr_parts - nr_parts);
406
407

  /* Re-allocate the index array if needed.. */
408
409
410
  if (s->nr_parts > ind_size) {
    int *ind_new;
    if ((ind_new = (int *)malloc(sizeof(int) * s->nr_parts)) == NULL)
411
      error("Failed to allocate temporary particle indices.");
412
413
414
    memcpy(ind_new, ind, sizeof(int) * nr_parts);
    free(ind);
    ind = ind_new;
415
416
417
  }

  /* Assign each particle to its cell. */
418
  for (k = nr_parts; k < s->nr_parts; k++) {
419
    p = &s->parts[k];
420
    ind[k] =
421
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
422
423
424
425
    cells[ind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
426
  }
427
  nr_parts = s->nr_parts;
428
429
430
431
#endif

  /* Sort the parts according to their cells. */
  // tic = getticks();
432
  space_parts_sort(s, ind, nr_parts, 0, s->nr_cells - 1);
433
434
  // message( "parts_sort took %.3f %s." ,
  //clocks_from_ticks(getticks() - tic), clocks_getunit());
435
436

  /* Re-link the gparts. */
437
  for (k = 0; k < nr_parts; k++)
438
    if (s->parts[k].gpart != NULL) s->parts[k].gpart->part = &s->parts[k];
439

440
  /* Verify space_sort_struct. */
441
  /* for ( k = 1 ; k < nr_parts ; k++ ) {
442
      if ( ind[k-1] > ind[k] ) {
443
444
          error( "Sort failed!" );
          }
445
      else if ( ind[k] != cell_getid( cdim , parts[k].x[0]*ih[0] ,
446
447
448
449
450
     parts[k].x[1]*ih[1] , parts[k].x[2]*ih[2] ) )
          error( "Incorrect indices!" );
      } */

  /* We no longer need the indices as of here. */
451
  free(ind);
452
453
454

  /* Run through the gravity particles and get their cell index. */
  // tic = getticks();
455
  if ((ind = (int *)malloc(sizeof(int) * s->size_gparts)) == NULL)
456
457
    error("Failed to allocate temporary particle indices.");
  for (k = 0; k < nr_gparts; k++) {
458
    struct gpart *gp = &s->gparts[k];
459
460
461
462
463
    for (j = 0; j < 3; j++)
      if (gp->x[j] < 0.0)
        gp->x[j] += dim[j];
      else if (gp->x[j] >= dim[j])
        gp->x[j] -= dim[j];
464
    ind[k] =
465
        cell_getid(cdim, gp->x[0] * ih[0], gp->x[1] * ih[1], gp->x[2] * ih[2]);
466
    cells[ind[k]].gcount++;
467
  }
468
469
  // message( "getting particle indices took %.3f %s." ,
  //clocks_from_ticks(getticks() - tic), clocks_getunit());
470
471
472
473
474

  /* TODO: Here we should exchange the gparts as well! */

  /* Sort the parts according to their cells. */
  // tic = getticks();
475
  gparts_sort(s->gparts, ind, nr_gparts, 0, s->nr_cells - 1);
476
477
  // message( "gparts_sort took %.3f %s." ,
  //clocks_from_ticks(getticks() - tic), clocks_getunit());
478
479
480

  /* Re-link the parts. */
  for (k = 0; k < nr_gparts; k++)
481
    if (s->gparts[k].id > 0) s->gparts[k].part->gpart = &s->gparts[k];
482
483

  /* We no longer need the indices as of here. */
484
  free(ind);
485
486
487

  /* Hook the cells up to the parts. */
  // tic = getticks();
488
489
490
  struct part *finger = s->parts;
  struct xpart *xfinger = s->xparts;
  struct gpart *gfinger = s->gparts;
491
492
493
494
495
496
497
498
499
  for (k = 0; k < s->nr_cells; k++) {
    c = &cells[k];
    c->parts = finger;
    c->xparts = xfinger;
    c->gparts = gfinger;
    finger = &finger[c->count];
    xfinger = &xfinger[c->count];
    gfinger = &gfinger[c->gcount];
  }
500
501
  // message( "hooking up cells took %.3f %s." ,
  //clocks_from_ticks(getticks() - tic), clocks_getunit());
502
503
504
505

  /* At this point, we have the upper-level cells, old or new. Now make
     sure that the parts in each cell are ok. */
  // tic = getticks();
506
507
  // for (k = 0; k < s->nr_cells; k++) space_split(s, &cells[k]);
  for (k = 0; k < s->nr_cells; k++)
508
509
    scheduler_addtask(&s->e->sched, task_type_split_cell, task_subtype_none, k,
                      0, &cells[k], NULL, 0);
510
  engine_launch(s->e, s->e->nr_threads, 1 << task_type_split_cell, 0);
511

512
513
  // message( "space_split took %.3f %s." ,
  //clocks_from_ticks(getticks() - tic), clocks_getunit());
514
}
515

516
/**
517
518
 * @brief Sort the particles and condensed particles according to the given
 *indices.
519
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
520
 * @param s The #space.
521
522
523
524
525
 * @param ind The indices with respect to which the parts are sorted.
 * @param N The number of parts
 * @param min Lowest index.
 * @param max highest index.
 */
526

527
void space_parts_sort(struct space *s, int *ind, int N, int min, int max) {
528
  // Populate the global parallel_sort structure with the input data.
529
530
531
  space_sort_struct.parts = s->parts;
  space_sort_struct.xparts = s->xparts;
  space_sort_struct.ind = ind;
532
  space_sort_struct.stack_size = 2 * (max - min + 1) + 10 + s->e->nr_threads;
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
  if ((space_sort_struct.stack = malloc(sizeof(struct qstack) *
                                        space_sort_struct.stack_size)) == NULL)
    error("Failed to allocate sorting stack.");
  for (int i = 0; i < space_sort_struct.stack_size; i++)
    space_sort_struct.stack[i].ready = 0;

  // Add the first interval.
  space_sort_struct.stack[0].i = 0;
  space_sort_struct.stack[0].j = N - 1;
  space_sort_struct.stack[0].min = min;
  space_sort_struct.stack[0].max = max;
  space_sort_struct.stack[0].ready = 1;
  space_sort_struct.first = 0;
  space_sort_struct.last = 1;
  space_sort_struct.waiting = 1;

  // Launch the sorting tasks.
550
  engine_launch(s->e, s->e->nr_threads, (1 << task_type_psort), 0);
551
552

  /* Verify space_sort_struct. */
553
  /* for (int i = 1; i < N; i++)
554
    if (ind[i - 1] > ind[i])
555
556
      error("Sorting failed (ind[%i]=%i,ind[%i]=%i), min=%i, max=%i.", i - 1,
  ind[i - 1], i,
557
558
            ind[i], min, max);
  message("Sorting succeeded."); */
559
560
561
562

  // Clean up.
  free(space_sort_struct.stack);
}
563

564
void space_do_parts_sort() {
565

566
567
568
569
  /* Pointers to the sorting data. */
  int *ind = space_sort_struct.ind;
  struct part *parts = space_sort_struct.parts;
  struct xpart *xparts = space_sort_struct.xparts;
570

571
  /* Main loop. */
572
  while (space_sort_struct.waiting) {
573

574
    /* Grab an interval off the queue. */
575
576
    int qid =
        atomic_inc(&space_sort_struct.first) % space_sort_struct.stack_size;
577

578
    /* Wait for the entry to be ready, or for the sorting do be done. */
579
580
    while (!space_sort_struct.stack[qid].ready)
      if (!space_sort_struct.waiting) return;
581

582
    /* Get the stack entry. */
583
584
585
586
    int i = space_sort_struct.stack[qid].i;
    int j = space_sort_struct.stack[qid].j;
    int min = space_sort_struct.stack[qid].min;
    int max = space_sort_struct.stack[qid].max;
587
    space_sort_struct.stack[qid].ready = 0;
588

589
590
    /* Loop over sub-intervals. */
    while (1) {
591

592
      /* Bring beer. */
593
      const int pivot = (min + max) / 2;
594
595
      /* message("Working on interval [%i,%i] with min=%i, max=%i, pivot=%i.",
              i, j, min, max, pivot); */
596
597

      /* One pass of QuickSort's partitioning. */
598
599
      int ii = i;
      int jj = j;
600
601
602
603
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
604
          int temp_i = ind[ii];
605
606
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
607
          struct part temp_p = parts[ii];
608
609
          parts[ii] = parts[jj];
          parts[jj] = temp_p;
610
          struct xpart temp_xp = xparts[ii];
611
612
613
614
          xparts[ii] = xparts[jj];
          xparts[jj] = temp_xp;
        }
      }
615

616
      /* Verify space_sort_struct. */
617
618
619
620
621
622
623
624
625
626
627
628
      /* for (int k = i; k <= jj; k++)
        if (ind[k] > pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (<=pivot).");
        }
      for (int k = jj + 1; k <= j; k++)
        if (ind[k] <= pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (>pivot).");
        } */
629
630
631
632
633
634

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
635
636
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
637
638
          while (space_sort_struct.stack[qid].ready)
            ;
639
640
641
642
643
644
645
          space_sort_struct.stack[qid].i = i;
          space_sort_struct.stack[qid].j = jj;
          space_sort_struct.stack[qid].min = min;
          space_sort_struct.stack[qid].max = pivot;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
646
          space_sort_struct.stack[qid].ready = 1;
647
        }
648

649
650
651
652
653
654
655
656
657
658
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;

      } else {

        /* Recurse on the right? */
659
        if (pivot + 1 < max) {
660
661
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
662
663
          while (space_sort_struct.stack[qid].ready)
            ;
664
665
666
667
668
669
670
          space_sort_struct.stack[qid].i = jj + 1;
          space_sort_struct.stack[qid].j = j;
          space_sort_struct.stack[qid].min = pivot + 1;
          space_sort_struct.stack[qid].max = max;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
671
          space_sort_struct.stack[qid].ready = 1;
672
        }
673

674
675
676
677
678
679
680
        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }
681

682
683
    } /* loop over sub-intervals. */

684
    atomic_dec(&space_sort_struct.waiting);
685
686

  } /* main loop. */
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
}

void gparts_sort(struct gpart *gparts, int *ind, int N, int min, int max) {

  struct qstack {
    volatile int i, j, min, max;
    volatile int ready;
  };
  struct qstack *qstack;
  int qstack_size = 2 * (max - min) + 10;
  volatile unsigned int first, last, waiting;

  int pivot;
  int i, ii, j, jj, temp_i, qid;
  struct gpart temp_p;

  /* for ( int k = 0 ; k < N ; k++ )
      if ( ind[k] > max || ind[k] < min )
          error( "ind[%i]=%i is not in [%i,%i]." , k , ind[k] , min , max ); */

  /* Allocate the stack. */
  if ((qstack = malloc(sizeof(struct qstack) * qstack_size)) == NULL)
    error("Failed to allocate qstack.");

  /* Init the interval stack. */
  qstack[0].i = 0;
  qstack[0].j = N - 1;
  qstack[0].min = min;
  qstack[0].max = max;
  qstack[0].ready = 1;
  for (i = 1; i < qstack_size; i++) qstack[i].ready = 0;
  first = 0;
  last = 1;
  waiting = 1;

722
723
  /* Main loop. */
  while (waiting > 0) {
724

725
726
    /* Grab an interval off the queue. */
    qid = (first++) % qstack_size;
727

728
729
730
731
732
733
734
735
736
    /* Get the stack entry. */
    i = qstack[qid].i;
    j = qstack[qid].j;
    min = qstack[qid].min;
    max = qstack[qid].max;
    qstack[qid].ready = 0;

    /* Loop over sub-intervals. */
    while (1) {
737

738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
      /* Bring beer. */
      pivot = (min + max) / 2;

      /* One pass of QuickSort's partitioning. */
      ii = i;
      jj = j;
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
          temp_i = ind[ii];
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
          temp_p = gparts[ii];
          gparts[ii] = gparts[jj];
          gparts[jj] = temp_p;
        }
      }
756

757
      /* Verify space_sort_struct. */
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
      /* for ( int k = i ; k <= jj ; k++ )
         if ( ind[k] > pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (<=pivot)." );
         }
         for ( int k = jj+1 ; k <= j ; k++ )
         if ( ind[k] <= pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (>pivot)." );
         } */

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          qid = (last++) % qstack_size;
          qstack[qid].i = i;
          qstack[qid].j = jj;
          qstack[qid].min = min;
          qstack[qid].max = pivot;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }
784

785
786
787
788
789
790
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;
791

792
793
794
      } else {

        /* Recurse on the right? */
795
        if (pivot + 1 < max) {
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
          qid = (last++) % qstack_size;
          qstack[qid].i = jj + 1;
          qstack[qid].j = j;
          qstack[qid].min = pivot + 1;
          qstack[qid].max = max;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }

    } /* loop over sub-intervals. */

    waiting--;

  } /* main loop. */
818

819
  /* Verify space_sort_struct. */
820
821
822
823
824
825
826
827
  /* for ( i = 1 ; i < N ; i++ )
      if ( ind[i-1] > ind[i] )
          error( "Sorting failed (ind[%i]=%i,ind[%i]=%i)." , i-1 , ind[i-1] , i
     , ind[i] ); */

  /* Clean up. */
  free(qstack);
}
828

Pedro Gonnet's avatar
Pedro Gonnet committed
829
/**
830
 * @brief Mapping function to free the sorted indices buffers.
Pedro Gonnet's avatar
Pedro Gonnet committed
831
832
 */

833
void space_map_clearsort(struct cell *c, void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
834

835
836
837
838
839
  if (c->sort != NULL) {
    free(c->sort);
    c->sort = NULL;
  }
}
Pedro Gonnet's avatar
Pedro Gonnet committed
840

841
842
843
/**
 * @brief Map a function to all particles in a cell recursively.
 *
844
 * @param c The #cell we are working in.
845
846
847
848
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */

Pedro Gonnet's avatar
Pedro Gonnet committed
849
850
851
852
static void rec_map_parts(struct cell *c,
                          void (*fun)(struct part *p, struct cell *c,
                                      void *data),
                          void *data) {
853
854
855
856
857
858

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
859

860
861
862
863
864
865
  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts(c->progeny[k], fun, data);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
866
/**
867
 * @brief Map a function to all particles in a space.
Pedro Gonnet's avatar
Pedro Gonnet committed
868
869
 *
 * @param s The #space we are working in.
870
871
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
872
873
 */

874
875
876
void space_map_parts(struct space *s,
                     void (*fun)(struct part *p, struct cell *c, void *data),
                     void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
877

878
879
  int cid = 0;

880
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
881
882
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts(&s->cells[cid], fun, data);
883
}
884

885
886
887
888
889
890
891
892
/**
 * @brief Map a function to all particles in a cell recursively.
 *
 * @param c The #cell we are working in.
 * @param fun Function pointer to apply on the cells.
 */

static void rec_map_parts_xparts(struct cell *c,
893
894
                                 void (*fun)(struct part *p, struct xpart *xp,
                                             struct cell *c)) {
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], &c->xparts[k], c);

  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts_xparts(c->progeny[k], fun);
}

/**
 * @brief Map a function to all particles (#part and #xpart) in a space.
 *
 * @param s The #space we are working in.
 * @param fun Function pointer to apply on the particles in the cells.
 */

void space_map_parts_xparts(struct space *s,
916
917
                            void (*fun)(struct part *p, struct xpart *xp,
                                        struct cell *c)) {
918
919
920
921
922
923
924
925

  int cid = 0;

  /* Call the recursive function on all higher-level cells. */
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts_xparts(&s->cells[cid], fun);
}

926
927
928
/**
 * @brief Map a function to all particles in a cell recursively.
 *
929
 * @param c The #cell we are working in.
930
931
932
933
 * @param full Map to all cells, including cells with sub-cells.
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */
934

Pedro Gonnet's avatar
Pedro Gonnet committed
935
936
937
static void rec_map_cells_post(struct cell *c, int full,
                               void (*fun)(struct cell *c, void *data),
                               void *data) {
938

939
940
941
942
943
  int k;

  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
944
945
946
      if (c->progeny[k] != NULL)
        rec_map_cells_post(c->progeny[k], full, fun, data);

947
948
  /* No progeny? */
  if (full || !c->split) fun(c, data);
949
}
Pedro Gonnet's avatar
Pedro Gonnet committed
950
951

/**
952
 * @brief Map a function to all particles in a aspace.
Pedro Gonnet's avatar
Pedro Gonnet committed
953
954
 *
 * @param s The #space we are working in.
955
 * @param full Map to all cells, including cells with sub-cells.
956
957
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
958
 */
959

960
void space_map_cells_post(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
961
                          void (*fun)(struct cell *c, void *data), void *data) {
962

963
  int cid = 0;
964

965
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
966
967
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_post(&s->cells[cid], full, fun, data);
968
}
969

Pedro Gonnet's avatar
Pedro Gonnet committed
970
971
972
static void rec_map_cells_pre(struct cell *c, int full,
                              void (*fun)(struct cell *c, void *data),
                              void *data) {
973

974
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
975

976
977
  /* No progeny? */
  if (full || !c->split) fun(c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
978

979
980
981
  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
982
983
      if (c->progeny[k] != NULL)
        rec_map_cells_pre(c->progeny[k], full, fun, data);
984
}
Pedro Gonnet's avatar
Pedro Gonnet committed
985

986
987
988
989
990
991
992
993
/**
 * @brief Calls function fun on the cells in the space s
 *
 * @param s The #space
 * @param full If true calls the function on all cells and not just on leaves
 * @param fun The function to call.
 * @param data Additional data passed to fun() when called
 */
994
void space_map_cells_pre(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
995
                         void (*fun)(struct cell *c, void *data), void *data) {
996

997
  int cid = 0;
998
999

  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1000
1001
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_pre(&s->cells[cid], full, fun, data);
1002
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1003
1004
1005
1006
1007
1008
1009

/**
 * @brief Split cells that contain too many particles.
 *
 * @param s The #space we are working in.
 * @param c The #cell under consideration.
 */
1010

1011
1012
1013
void space_split(struct space *s, struct cell *c) {

  int k, count = c->count, gcount = c->gcount, maxdepth = 0;
1014
1015
  float h, h_max = 0.0f;
  int ti_end_min = max_nr_timesteps, ti_end_max = 0, ti_end;
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
  struct cell *temp;
  struct part *p, *parts = c->parts;
  struct xpart *xp, *xparts = c->xparts;

  /* Check the depth. */
  if (c->depth > s->maxdepth) s->maxdepth = c->depth;

  /* Split or let it be? */
  if (count > space_splitsize || gcount > space_splitsize) {

    /* No longer just a leaf. */
    c->split = 1;

    /* Create the cell's progeny. */
    for (k = 0; k < 8; k++) {
      temp = space_getcell(s);
      temp->count = 0;
      temp->gcount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->h[0] = c->h[0] / 2;
      temp->h[1] = c->h[1] / 2;
      temp->h[2] = c->h[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->h[0];
      if (k & 2) temp->loc[1] += temp->h[1];
      if (k & 1) temp->loc[2] += temp->h[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->h_max = 0.0;
      temp->dx_max = 0.0;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
    }

    /* Split the cell data. */
    cell_split(c);

    /* Remove any progeny with zero parts. */
    for (k = 0; k < 8; k++)
      if (c->progeny[k]->count == 0 && c->progeny[k]->gcount == 0) {
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      } else {
        space_split(s, c->progeny[k]);
        h_max = fmaxf(h_max, c->progeny[k]->h_max);
1064
1065
        ti_end_min = min(ti_end_min, c->progeny[k]->ti_end_min);
        ti_end_max = max(ti_end_max, c->progeny[k]->ti_end_max);
1066
1067
1068
1069
1070
1071
        if (c->progeny[k]->maxdepth > maxdepth)
          maxdepth = c->progeny[k]->maxdepth;
      }

    /* Set the values for this cell. */
    c->h_max = h_max;
1072
1073
    c->ti_end_min = ti_end_min;
    c->ti_end_max = ti_end_max;
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
    c->maxdepth = maxdepth;

  }

  /* Otherwise, collect the data for this cell. */
  else {

    /* Clear the progeny. */
    bzero(c->progeny, sizeof(struct cell *) * 8);
    c->split = 0;
    c->maxdepth = c->depth;

    /* Get dt_min/dt_max. */

    for (k = 0; k < count; k++) {
      p = &parts[k];
      xp = &xparts[k];
      xp->x_old[0] = p->x[0];
      xp->x_old[1] = p->x[1];
      xp->x_old[2] = p->x[2];
      h = p->h;
1095
      ti_end = p->ti_end;
1096
      if (h > h_max) h_max = h;
1097
1098
      if (ti_end < ti_end_min) ti_end_min = ti_end;
      if (ti_end > ti_end_max) ti_end_max = ti_end;
1099
    }
1100
    c->h_max = h_max;
1101
1102
    c->ti_end_min = ti_end_min;
    c->ti_end_max = ti_end_max;
1103
  }
1104

1105
  /* Set ownership according to the start of the parts array. */
1106
1107
  c->owner = ((c->parts - s->parts) % s->nr_parts) * s->nr_queues / s->nr_parts;
}
1108

Pedro Gonnet's avatar
Pedro Gonnet committed
1109
1110
1111
1112
1113
1114
1115
/**
 * @brief Return a used cell to the cell buffer.
 *
 * @param s The #space.
 * @param c The #cell.
 */

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
void space_recycle(struct space *s, struct cell *c) {

  /* Lock the space. */
  lock_lock(&s->lock);

  /* Clear the cell. */
  if (lock_destroy(&c->lock) != 0) error("Failed to destroy spinlock.");

  /* Clear this cell's sort arrays. */
  if (c->sort != NULL) free(c->sort);

  /* Clear the cell data. */
  bzero(c, sizeof(struct cell));

  /* Hook this cell into the buffer. */
  c->next = s->cells_new;
  s->cells_new = c;
  s->tot_cells -= 1;

  /* Unlock the space. */
  lock_unlock_blind(&s->lock);
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1138
1139
1140
1141
1142
1143
1144

/**
 * @brief Get a new empty cell.
 *
 * @param s The #space.
 */

1145
struct cell *space_getcell(struct space *s) {
Pedro Gonnet's avatar
Pedro Gonnet committed
1146

1147
1148
  struct cell *c;
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
1149

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
  /* Lock the space. */
  lock_lock(&s->lock);

  /* Is the buffer empty? */
  if (s->cells_new == NULL) {
    if (posix_memalign((void *)&s->cells_new, 64,
                       space_cellallocchunk * sizeof(struct cell)) != 0)
      error("Failed to allocate more cells.");
    bzero(s->cells_new, space_cellallocchunk * sizeof(struct cell));
    for (k = 0; k < space_cellallocchunk - 1; k++)
      s->cells_new[k].next = &s->cells_new[k + 1];
    s->cells_new[space_cellallocchunk - 1].next = NULL;
  }

  /* Pick off the next cell. */
  c = s->cells_new;
  s->cells_new = c->next;
  s->tot_cells += 1;
Pedro Gonnet's avatar
Pedro Gonnet committed
1168

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
  /* Unlock the space. */
  lock_unlock_blind(&s->lock);

  /* Init some things in the cell. */
  bzero(c, sizeof(struct cell));
  c->nodeID = -1;
  if (lock_init(&c->lock) != 0 || lock_init(&c->glock) != 0)
    error("Failed to initialize cell spinlocks.");

  return c;
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1180
1181
1182
1183

/**
 * @brief Split the space into cells given the array of particles.
 *
1184
 * @param s The #space to initialize.
Pedro Gonnet's avatar
Pedro Gonnet committed
1185
1186
1187
1188
 * @param dim Spatial dimensions of the domain.
 * @param parts Pointer to an array of #part.
 * @param N The number of parts in the space.
 * @param periodic flag whether the domain is periodic or not.
1189
 * @param h_max The maximal interaction radius.
1190
 * @param verbose Print messages to stdout or not
Pedro Gonnet's avatar
Pedro Gonnet committed
1191
1192
 *
 * Makes a grid of edge length > r_max and fills the particles
1193
 * into the respective cells. Cells containing more than #space_splitsize
Pedro Gonnet's avatar
Pedro Gonnet committed
1194
1195
1196
1197
 * parts with a cutoff below half the cell width are then split
 * recursively.
 */

1198
void space_init(struct space *s, double dim[3], struct part *parts, int N,
1199
                int periodic, double h_max, int verbose) {
1200

1201
  /* Store everything in the space. */
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
  s->dim[0] = dim[0];
  s->dim[1] = dim[1];
  s->dim[2] = dim[2];
  s->periodic = periodic;
  s->nr_parts = N;
  s->size_parts = N;
  s->parts = parts;
  s->cell_min = h_max;
  s->nr_queues = 1;
  s->size_parts_foreign = 0;

  /* Check that all the particle positions are reasonable, wrap if periodic. */
  if (periodic) {
    for (int k = 0; k < N; k++)
      for (int j = 0; j < 3; j++) {
        while (parts[k].x[j] < 0) parts[k].x[j] += dim[j];
        while (parts[k].x[j] >= dim[j]) parts[k].x[j] -= dim[j];
1219
      }
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229