runner.c 53.5 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
 ******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
23

Pedro Gonnet's avatar
Pedro Gonnet committed
24
25
/* Config parameters. */
#include "../config.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
26
27
28
29

/* Some standard headers. */
#include <float.h>
#include <limits.h>
30
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
31

32
33
/* MPI headers. */
#ifdef WITH_MPI
34
#include <mpi.h>
35
36
#endif

37
38
39
/* This object's header. */
#include "runner.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
40
/* Local headers. */
41
#include "active.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
42
#include "approx_math.h"
43
#include "atomic.h"
44
#include "cell.h"
45
#include "const.h"
Stefan Arridge's avatar
Stefan Arridge committed
46
#include "cooling.h"
47
#include "debug.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
48
#include "drift.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
49
#include "engine.h"
50
#include "error.h"
51
52
#include "gravity.h"
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
53
#include "hydro_properties.h"
54
#include "kick.h"
55
#include "minmax.h"
James Willis's avatar
James Willis committed
56
#include "runner_doiact_vec.h"
57
#include "scheduler.h"
58
#include "sort_part.h"
59
#include "sourceterms.h"
60
#include "space.h"
61
#include "stars.h"
62
63
#include "task.h"
#include "timers.h"
64
#include "timestep.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
65

66
/* Import the density loop functions. */
67
68
69
#define FUNCTION density
#include "runner_doiact.h"

70
/* Import the gradient loop functions (if required). */
71
72
73
74
75
76
#ifdef EXTRA_HYDRO_LOOP
#undef FUNCTION
#define FUNCTION gradient
#include "runner_doiact.h"
#endif

77
/* Import the force loop functions. */
78
79
80
81
#undef FUNCTION
#define FUNCTION force
#include "runner_doiact.h"

82
/* Import the gravity loop functions. */
83
#include "runner_doiact_fft.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
84
#include "runner_doiact_grav.h"
85

Tom Theuns's avatar
Tom Theuns committed
86
/**
Tom Theuns's avatar
Tom Theuns committed
87
 * @brief Perform source terms
Tom Theuns's avatar
Tom Theuns committed
88
89
90
91
92
93
94
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_sourceterms(struct runner *r, struct cell *c, int timer) {
  const int count = c->count;
95
  const double cell_min[3] = {c->loc[0], c->loc[1], c->loc[2]};
Tom Theuns's avatar
Tom Theuns committed
96
  const double cell_width[3] = {c->width[0], c->width[1], c->width[2]};
Tom Theuns's avatar
Tom Theuns committed
97
  struct sourceterms *sourceterms = r->e->sourceterms;
98
  const int dimen = 3;
Tom Theuns's avatar
Tom Theuns committed
99
100
101
102
103
104
105

  TIMER_TIC;

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_sourceterms(r, c->progeny[k], 0);
106
  } else {
Tom Theuns's avatar
Tom Theuns committed
107

108
    if (count > 0) {
Tom Theuns's avatar
Tom Theuns committed
109

110
111
112
113
114
115
      /* do sourceterms in this cell? */
      const int incell =
          sourceterms_test_cell(cell_min, cell_width, sourceterms, dimen);
      if (incell == 1) {
        sourceterms_apply(r, sourceterms, c);
      }
Tom Theuns's avatar
Tom Theuns committed
116
117
    }
  }
Tom Theuns's avatar
Tom Theuns committed
118
119
120
121

  if (timer) TIMER_TOC(timer_dosource);
}

Tom Theuns's avatar
Tom Theuns committed
122
123
124
/**
 * @brief Calculate gravity acceleration from external potential
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
125
126
127
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
Tom Theuns's avatar
Tom Theuns committed
128
 */
129
void runner_do_grav_external(struct runner *r, struct cell *c, int timer) {
Tom Theuns's avatar
Tom Theuns committed
130

Matthieu Schaller's avatar
Matthieu Schaller committed
131
132
  struct gpart *restrict gparts = c->gparts;
  const int gcount = c->gcount;
133
134
135
  const struct engine *e = r->e;
  const struct external_potential *potential = e->external_potential;
  const struct phys_const *constants = e->physical_constants;
136
  const double time = r->e->time;
Matthieu Schaller's avatar
Matthieu Schaller committed
137

138
  TIMER_TIC;
Tom Theuns's avatar
Tom Theuns committed
139

140
  /* Anything to do here? */
141
  if (!cell_is_active(c, e)) return;
142

Tom Theuns's avatar
Tom Theuns committed
143
144
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
145
    for (int k = 0; k < 8; k++)
146
      if (c->progeny[k] != NULL) runner_do_grav_external(r, c->progeny[k], 0);
147
  } else {
148

149
150
    /* Loop over the gparts in this cell. */
    for (int i = 0; i < gcount; i++) {
151

152
153
      /* Get a direct pointer on the part. */
      struct gpart *restrict gp = &gparts[i];
Matthieu Schaller's avatar
Matthieu Schaller committed
154

155
      /* Is this part within the time step? */
156
      if (gpart_is_active(gp, e)) {
157
158
        external_gravity_acceleration(time, potential, constants, gp);
      }
159
    }
160
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
161

162
  if (timer) TIMER_TOC(timer_dograv_external);
Tom Theuns's avatar
Tom Theuns committed
163
164
}

Stefan Arridge's avatar
Stefan Arridge committed
165
/**
166
167
 * @brief Calculate change in thermal state of particles induced
 * by radiative cooling and heating.
Stefan Arridge's avatar
Stefan Arridge committed
168
169
170
171
172
173
174
175
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_cooling(struct runner *r, struct cell *c, int timer) {

  struct part *restrict parts = c->parts;
176
  struct xpart *restrict xparts = c->xparts;
Stefan Arridge's avatar
Stefan Arridge committed
177
  const int count = c->count;
178
179
180
  const struct engine *e = r->e;
  const struct cooling_function_data *cooling_func = e->cooling_func;
  const struct phys_const *constants = e->physical_constants;
181
  const struct unit_system *us = e->internal_units;
182
  const double timeBase = e->timeBase;
Stefan Arridge's avatar
Stefan Arridge committed
183
184
185

  TIMER_TIC;

186
187
188
  /* Anything to do here? */
  if (!cell_is_active(c, e)) return;

Stefan Arridge's avatar
Stefan Arridge committed
189
190
191
192
  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_cooling(r, c->progeny[k], 0);
193
  } else {
Stefan Arridge's avatar
Stefan Arridge committed
194

195
196
    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {
Stefan Arridge's avatar
Stefan Arridge committed
197

198
199
200
      /* Get a direct pointer on the part. */
      struct part *restrict p = &parts[i];
      struct xpart *restrict xp = &xparts[i];
Stefan Arridge's avatar
Stefan Arridge committed
201

202
      if (part_is_active(p, e)) {
203

204
205
        /* Let's cool ! */
        const double dt = get_timestep(p->time_bin, timeBase);
206
207
        cooling_cool_part(constants, us, cooling_func, p, xp, dt);
      }
Stefan Arridge's avatar
Stefan Arridge committed
208
209
210
211
212
213
    }
  }

  if (timer) TIMER_TOC(timer_do_cooling);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
214
215
216
217
218
219
/**
 * @brief Sort the entries in ascending order using QuickSort.
 *
 * @param sort The entries
 * @param N The number of entries.
 */
220
void runner_do_sort_ascending(struct entry *sort, int N) {
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

  struct {
    short int lo, hi;
  } qstack[10];
  int qpos, i, j, lo, hi, imin;
  struct entry temp;
  float pivot;

  /* Sort parts in cell_i in decreasing order with quicksort */
  qstack[0].lo = 0;
  qstack[0].hi = N - 1;
  qpos = 0;
  while (qpos >= 0) {
    lo = qstack[qpos].lo;
    hi = qstack[qpos].hi;
    qpos -= 1;
    if (hi - lo < 15) {
      for (i = lo; i < hi; i++) {
        imin = i;
        for (j = i + 1; j <= hi; j++)
          if (sort[j].d < sort[imin].d) imin = j;
        if (imin != i) {
          temp = sort[imin];
          sort[imin] = sort[i];
          sort[i] = temp;
        }
      }
    } else {
      pivot = sort[(lo + hi) / 2].d;
      i = lo;
      j = hi;
      while (i <= j) {
        while (sort[i].d < pivot) i++;
        while (sort[j].d > pivot) j--;
        if (i <= j) {
          if (i < j) {
            temp = sort[i];
            sort[i] = sort[j];
            sort[j] = temp;
          }
          i += 1;
          j -= 1;
        }
      }
      if (j > (lo + hi) / 2) {
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
Pedro Gonnet's avatar
Pedro Gonnet committed
275
        }
276
277
278
279
280
281
282
283
284
285
286
287
      } else {
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
        }
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
      }
Pedro Gonnet's avatar
Pedro Gonnet committed
288
    }
289
290
291
  }
}

Pedro Gonnet's avatar
Pedro Gonnet committed
292
293
294
295
296
/**
 * @brief Sort the particles in the given cell along all cardinal directions.
 *
 * @param r The #runner.
 * @param c The #cell.
297
 * @param flags Cell flag.
298
299
 * @param clock Flag indicating whether to record the timing or not, needed
 *      for recursive calls.
Pedro Gonnet's avatar
Pedro Gonnet committed
300
 */
301
void runner_do_sort(struct runner *r, struct cell *c, int flags, int clock) {
302
303
304
305

  struct entry *finger;
  struct entry *fingers[8];
  struct part *parts = c->parts;
306
  struct xpart *xparts = c->xparts;
307
  struct entry *sort;
308
  const int count = c->count;
Matthieu Schaller's avatar
Matthieu Schaller committed
309
  float buff[8];
310

311
312
313
314
  TIMER_TIC;

  /* Check that the particles have been moved to the current time */
  if (!cell_is_drifted(c, r->e)) error("Sorting un-drifted cell");
315

316
317
  /* Clean-up the flags, i.e. filter out what's already been sorted, but
     only if the sorts are recent. */
318
  if (c->ti_sort == r->e->ti_current) {
319
320
321
    /* Ignore dimensions that have been sorted. */
    flags &= ~c->sorted;
  } else {
322
    /* Clean old (stale) sorts. */
323
324
    c->sorted = 0;
  }
325
326
  if (flags == 0) return;

327
328
329
  /* Sorting an un-drifted cell? */
  if (!cell_is_drifted(c, r->e)) error("Sorting undrifted cell.");

330
331
332
333
334
335
336
337
338
339
340
341
342
343
  /* start by allocating the entry arrays. */
  if (c->sort == NULL || c->sortsize < count) {
    if (c->sort != NULL) free(c->sort);
    c->sortsize = count * 1.1;
    if ((c->sort = (struct entry *)malloc(sizeof(struct entry) *
                                          (c->sortsize + 1) * 13)) == NULL)
      error("Failed to allocate sort memory.");
  }
  sort = c->sort;

  /* Does this cell have any progeny? */
  if (c->split) {

    /* Fill in the gaps within the progeny. */
344
    float dx_max_sort = 0.0f;
345
    for (int k = 0; k < 8; k++) {
346
      if (c->progeny[k] != NULL) {
347
348
        if (flags & ~c->progeny[k]->sorted ||
            c->progeny[k]->dx_max_sort > c->dmin * space_maxreldx)
349
          runner_do_sort(r, c->progeny[k], flags, 0);
350
        dx_max_sort = max(dx_max_sort, c->progeny[k]->dx_max_sort);
351
      }
352
    }
353
    c->dx_max_sort = dx_max_sort;
354
355

    /* Loop over the 13 different sort arrays. */
356
    for (int j = 0; j < 13; j++) {
357
358
359
360
361

      /* Has this sort array been flagged? */
      if (!(flags & (1 << j))) continue;

      /* Init the particle index offsets. */
362
      int off[8];
363
364
      off[0] = 0;
      for (int k = 1; k < 8; k++)
365
366
367
368
369
370
        if (c->progeny[k - 1] != NULL)
          off[k] = off[k - 1] + c->progeny[k - 1]->count;
        else
          off[k] = off[k - 1];

      /* Init the entries and indices. */
371
      int inds[8];
372
      for (int k = 0; k < 8; k++) {
373
374
375
376
377
378
379
380
381
382
        inds[k] = k;
        if (c->progeny[k] != NULL && c->progeny[k]->count > 0) {
          fingers[k] = &c->progeny[k]->sort[j * (c->progeny[k]->count + 1)];
          buff[k] = fingers[k]->d;
          off[k] = off[k];
        } else
          buff[k] = FLT_MAX;
      }

      /* Sort the buffer. */
383
384
      for (int i = 0; i < 7; i++)
        for (int k = i + 1; k < 8; k++)
385
          if (buff[inds[k]] < buff[inds[i]]) {
386
            int temp_i = inds[i];
387
388
389
390
391
392
            inds[i] = inds[k];
            inds[k] = temp_i;
          }

      /* For each entry in the new sort list. */
      finger = &sort[j * (count + 1)];
393
      for (int ind = 0; ind < count; ind++) {
394
395
396
397
398
399
400
401
402
403

        /* Copy the minimum into the new sort array. */
        finger[ind].d = buff[inds[0]];
        finger[ind].i = fingers[inds[0]]->i + off[inds[0]];

        /* Update the buffer. */
        fingers[inds[0]] += 1;
        buff[inds[0]] = fingers[inds[0]]->d;

        /* Find the smallest entry. */
404
        for (int k = 1; k < 8 && buff[inds[k]] < buff[inds[k - 1]]; k++) {
405
          int temp_i = inds[k - 1];
406
407
          inds[k - 1] = inds[k];
          inds[k] = temp_i;
Pedro Gonnet's avatar
Pedro Gonnet committed
408
        }
409

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
      } /* Merge. */

      /* Add a sentinel. */
      sort[j * (count + 1) + count].d = FLT_MAX;
      sort[j * (count + 1) + count].i = 0;

      /* Mark as sorted. */
      c->sorted |= (1 << j);

    } /* loop over sort arrays. */

  } /* progeny? */

  /* Otherwise, just sort. */
  else {

    /* Fill the sort array. */
427
    for (int k = 0; k < count; k++) {
428
429
430
431
432
      if (xparts != NULL) {
        xparts[k].x_diff_sort[0] = 0.0f;
        xparts[k].x_diff_sort[1] = 0.0f;
        xparts[k].x_diff_sort[2] = 0.0f;
      }
433
      const double px[3] = {parts[k].x[0], parts[k].x[1], parts[k].x[2]};
434
      for (int j = 0; j < 13; j++)
435
436
        if (flags & (1 << j)) {
          sort[j * (count + 1) + k].i = k;
Matthieu Schaller's avatar
Matthieu Schaller committed
437
438
439
          sort[j * (count + 1) + k].d = px[0] * runner_shift[j][0] +
                                        px[1] * runner_shift[j][1] +
                                        px[2] * runner_shift[j][2];
440
        }
441
    }
442
443

    /* Add the sentinel and sort. */
444
    for (int j = 0; j < 13; j++)
445
446
447
      if (flags & (1 << j)) {
        sort[j * (count + 1) + count].d = FLT_MAX;
        sort[j * (count + 1) + count].i = 0;
448
        runner_do_sort_ascending(&sort[j * (count + 1)], count);
449
450
        c->sorted |= (1 << j);
      }
451
452
453

    /* Finally, clear the dx_max_sort field of this cell. */
    c->dx_max_sort = 0.f;
454
455
456
457
458
459

    /* If this was not just an update, invalidate the sorts above this one. */
    if (c->ti_sort < r->e->ti_current)
      for (struct cell *finger = c->parent; finger != NULL;
           finger = finger->parent)
        finger->sorted = 0;
460
461
  }

462
463
464
  /* Update the sort timer. */
  c->ti_sort = r->e->ti_current;

465
#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
466
  /* Verify the sorting. */
467
  for (int j = 0; j < 13; j++) {
468
469
    if (!(flags & (1 << j))) continue;
    finger = &sort[j * (count + 1)];
470
    for (int k = 1; k < count; k++) {
471
472
473
474
475
476
      if (finger[k].d < finger[k - 1].d)
        error("Sorting failed, ascending array.");
      if (finger[k].i >= count) error("Sorting failed, indices borked.");
    }
  }
#endif
477
478
479
480

  if (clock) TIMER_TOC(timer_dosort);
}

481
/**
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
 * @brief Initialize the multipoles before the gravity calculation.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_init_grav(struct runner *r, struct cell *c, int timer) {

  const struct engine *e = r->e;

  TIMER_TIC;

#ifdef SWIFT_DEBUG_CHECKS
  if (!(e->policy & engine_policy_self_gravity))
    error("Grav-init task called outside of self-gravity calculation");
#endif

  /* Anything to do here? */
  if (!cell_is_active(c, e)) return;

  /* Drift the multipole */
  cell_drift_multipole(c, e);
Matthieu Schaller's avatar
Matthieu Schaller committed
504

505
506
507
508
509
510
511
512
513
514
515
516
517
  /* Reset the gravity acceleration tensors */
  gravity_field_tensors_init(&c->multipole->pot);

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) runner_do_init_grav(r, c->progeny[k], 0);
    }
  }

  if (timer) TIMER_TOC(timer_init_grav);
}

518
/**
519
520
521
522
523
 * @brief Intermediate task after the gradient loop that does final operations
 * on the gradient quantities and optionally slope limits the gradients
 *
 * @param r The runner thread.
 * @param c The cell.
524
 * @param timer Are we timing this ?
525
 */
526
void runner_do_extra_ghost(struct runner *r, struct cell *c, int timer) {
527

528
#ifdef EXTRA_HYDRO_LOOP
529

530
531
  struct part *restrict parts = c->parts;
  const int count = c->count;
532
  const struct engine *e = r->e;
533

534
535
  TIMER_TIC;

536
  /* Anything to do here? */
537
  if (!cell_is_active(c, e)) return;
538

539
540
541
  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
542
      if (c->progeny[k] != NULL) runner_do_extra_ghost(r, c->progeny[k], 0);
543
544
545
546
547
548
549
550
  } else {

    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {

      /* Get a direct pointer on the part. */
      struct part *restrict p = &parts[i];

551
      if (part_is_active(p, e)) {
552
553
554
555
556
557

        /* Get ready for a force calculation */
        hydro_end_gradient(p);
      }
    }
  }
558

559
560
  if (timer) TIMER_TOC(timer_do_extra_ghost);

561
562
#else
  error("SWIFT was not compiled with the extra hydro loop activated.");
563
#endif
564
}
565

566
/**
567
568
 * @brief Intermediate task after the density to check that the smoothing
 * lengths are correct.
569
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
570
 * @param r The runner thread.
571
 * @param c The cell.
572
 * @param timer Are we timing this ?
573
 */
574
void runner_do_ghost(struct runner *r, struct cell *c, int timer) {
575

Matthieu Schaller's avatar
Matthieu Schaller committed
576
577
  struct part *restrict parts = c->parts;
  struct xpart *restrict xparts = c->xparts;
578
  const struct engine *e = r->e;
579
  const struct space *s = e->s;
580
  const float hydro_h_max = e->hydro_properties->h_max;
581
  const float target_wcount = e->hydro_properties->target_neighbours;
582
  const float max_wcount =
583
      target_wcount + e->hydro_properties->delta_neighbours;
584
  const float min_wcount =
585
586
      target_wcount - e->hydro_properties->delta_neighbours;
  const int max_smoothing_iter = e->hydro_properties->max_smoothing_iterations;
587
  int redo = 0, count = 0;
588

589
590
  TIMER_TIC;

591
  /* Anything to do here? */
592
  if (!cell_is_active(c, e)) return;
593

594
595
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
596
    for (int k = 0; k < 8; k++)
597
598
      if (c->progeny[k] != NULL) runner_do_ghost(r, c->progeny[k], 0);
  } else {
599

600
    /* Init the list of active particles that have to be updated. */
601
    int *pid = NULL;
602
    if ((pid = malloc(sizeof(int) * c->count)) == NULL)
603
      error("Can't allocate memory for pid.");
604
605
606
607
608
    for (int k = 0; k < c->count; k++)
      if (part_is_active(&parts[k], e)) {
        pid[count] = k;
        ++count;
      }
609

610
611
612
    /* While there are particles that need to be updated... */
    for (int num_reruns = 0; count > 0 && num_reruns < max_smoothing_iter;
         num_reruns++) {
613

614
615
      /* Reset the redo-count. */
      redo = 0;
616

617
      /* Loop over the remaining active parts in this cell. */
618
      for (int i = 0; i < count; i++) {
619

620
621
622
        /* Get a direct pointer on the part. */
        struct part *restrict p = &parts[pid[i]];
        struct xpart *restrict xp = &xparts[pid[i]];
623

624
#ifdef SWIFT_DEBUG_CHECKS
625
        /* Is this part within the timestep? */
626
627
628
629
630
        if (!part_is_active(p, e)) error("Ghost applied to inactive particle");
#endif

        /* Finish the density calculation */
        hydro_end_density(p);
631

632
633
        /* Did we get the right number of neighbours? */
        if (p->density.wcount > max_wcount || p->density.wcount < min_wcount) {
634

635
          float h_corr = 0.f;
Matthieu Schaller's avatar
Matthieu Schaller committed
636

637
638
          /* If no derivative, double the smoothing length. */
          if (p->density.wcount_dh == 0.0f) h_corr = p->h;
639

640
641
642
          /* Otherwise, compute the smoothing length update (Newton step). */
          else {
            h_corr = (target_wcount - p->density.wcount) / p->density.wcount_dh;
643

644
645
646
647
            /* Truncate to the range [ -p->h/2 , p->h ]. */
            h_corr = (h_corr < p->h) ? h_corr : p->h;
            h_corr = (h_corr > -0.5f * p->h) ? h_corr : -0.5f * p->h;
          }
648

649
650
          /* Ok, correct then */
          p->h += h_corr;
651

652
653
          /* If below the absolute maximum, try again */
          if (p->h < hydro_h_max) {
654

655
656
657
            /* Flag for another round of fun */
            pid[redo] = pid[i];
            redo += 1;
658

659
            /* Re-initialise everything */
660
            hydro_init_part(p, &s->hs);
661

662
663
            /* Off we go ! */
            continue;
664
665
666
667
          } else {

            /* Ok, this particle is a lost cause... */
            p->h = hydro_h_max;
668
          }
669
        }
670

671
        /* We now have a particle whose smoothing length has converged */
Matthieu Schaller's avatar
Matthieu Schaller committed
672

673
        /* As of here, particle force variables will be set. */
674

675
676
        /* Compute variables required for the force loop */
        hydro_prepare_force(p, xp);
677

678
679
        /* The particle force values are now set.  Do _NOT_
           try to read any particle density variables! */
Matthieu Schaller's avatar
Matthieu Schaller committed
680

681
682
        /* Prepare the particle for the force loop over neighbours */
        hydro_reset_acceleration(p);
683
684
      }

685
686
      /* We now need to treat the particles whose smoothing length had not
       * converged again */
687

688
689
690
      /* Re-set the counter for the next loop (potentially). */
      count = redo;
      if (count > 0) {
691

692
693
        /* Climb up the cell hierarchy. */
        for (struct cell *finger = c; finger != NULL; finger = finger->parent) {
Matthieu Schaller's avatar
Matthieu Schaller committed
694

695
696
          /* Run through this cell's density interactions. */
          for (struct link *l = finger->density; l != NULL; l = l->next) {
Matthieu Schaller's avatar
Matthieu Schaller committed
697

698
699
700
            /* Self-interaction? */
            if (l->t->type == task_type_self)
              runner_doself_subset_density(r, finger, parts, pid, count);
701

702
703
            /* Otherwise, pair interaction? */
            else if (l->t->type == task_type_pair) {
704

705
706
707
708
709
710
711
              /* Left or right? */
              if (l->t->ci == finger)
                runner_dopair_subset_density(r, finger, parts, pid, count,
                                             l->t->cj);
              else
                runner_dopair_subset_density(r, finger, parts, pid, count,
                                             l->t->ci);
712

713
            }
714

715
716
717
718
            /* Otherwise, sub-self interaction? */
            else if (l->t->type == task_type_sub_self)
              runner_dosub_subset_density(r, finger, parts, pid, count, NULL,
                                          -1, 1);
719

720
721
722
723
724
725
726
727
728
729
730
            /* Otherwise, sub-pair interaction? */
            else if (l->t->type == task_type_sub_pair) {

              /* Left or right? */
              if (l->t->ci == finger)
                runner_dosub_subset_density(r, finger, parts, pid, count,
                                            l->t->cj, -1, 1);
              else
                runner_dosub_subset_density(r, finger, parts, pid, count,
                                            l->t->ci, -1, 1);
            }
731
732
733
          }
        }
      }
734
    }
735

736
737
#ifdef SWIFT_DEBUG_CHECKS
    if (count) {
738
      error("Smoothing length failed to converge on %i particles.", count);
739
740
    }
#else
741
742
    if (count)
      message("Smoothing length failed to converge on %i particles.", count);
743
#endif
744

745
746
747
    /* Be clean */
    free(pid);
  }
748

749
  if (timer) TIMER_TOC(timer_do_ghost);
750
751
}

752
/**
753
 * @brief Unskip any tasks associated with active cells.
754
755
 *
 * @param c The cell.
756
 * @param e The engine.
757
 */
758
static void runner_do_unskip(struct cell *c, struct engine *e) {
759

760
761
762
  /* Ignore empty cells. */
  if (c->count == 0 && c->gcount == 0) return;

763
764
765
  /* Skip inactive cells. */
  if (!cell_is_active(c, e)) return;

766
  /* Recurse */
767
768
  if (c->split) {
    for (int k = 0; k < 8; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
769
      if (c->progeny[k] != NULL) {
Matthieu Schaller's avatar
Matthieu Schaller committed
770
        struct cell *cp = c->progeny[k];
771
        runner_do_unskip(cp, e);
772
773
774
      }
    }
  }
775
776

  /* Unskip any active tasks. */
777
778
  const int forcerebuild = cell_unskip_tasks(c, &e->sched);
  if (forcerebuild) atomic_inc(&e->forcerebuild);
779
}
780

781
/**
782
 * @brief Mapper function to unskip active tasks.
783
784
785
786
787
 *
 * @param map_data An array of #cell%s.
 * @param num_elements Chunk size.
 * @param extra_data Pointer to an #engine.
 */
788
789
void runner_do_unskip_mapper(void *map_data, int num_elements,
                             void *extra_data) {
790

791
792
  struct engine *e = (struct engine *)extra_data;
  struct cell *cells = (struct cell *)map_data;
793

794
795
  for (int ind = 0; ind < num_elements; ind++) {
    struct cell *c = &cells[ind];
796
    if (c != NULL) runner_do_unskip(c, e);
797
  }
798
}
799
800
801
802
803
804
805
/**
 * @brief Drift particles in real space.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
806
void runner_do_drift_particles(struct runner *r, struct cell *c, int timer) {
807

808
  TIMER_TIC;
Matthieu Schaller's avatar
Matthieu Schaller committed
809

810
  cell_drift_particles(c, r->e);
811

812
  if (timer) TIMER_TOC(timer_drift);
813
}
814

815
816
817
818
819
820
821
/**
 * @brief Perform the first half-kick on all the active particles in a cell.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
822
void runner_do_kick1(struct runner *r, struct cell *c, int timer) {
823

824
825
826
827
  const struct engine *e = r->e;
  struct part *restrict parts = c->parts;
  struct xpart *restrict xparts = c->xparts;
  struct gpart *restrict gparts = c->gparts;
828
  struct spart *restrict sparts = c->sparts;
829
830
  const int count = c->count;
  const int gcount = c->gcount;
831
  const int scount = c->scount;
832
  const integertime_t ti_current = e->ti_current;
833
  const double timeBase = e->timeBase;
834

835
836
837
  TIMER_TIC;

  /* Anything to do here? */
838
  if (!cell_is_starting(c, e)) return;
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_kick1(r, c->progeny[k], 0);
  } else {

    /* Loop over the parts in this cell. */
    for (int k = 0; k < count; k++) {

      /* Get a handle on the part. */
      struct part *restrict p = &parts[k];
      struct xpart *restrict xp = &xparts[k];

      /* If particle needs to be kicked */
854
      if (part_is_starting(p, e)) {
855
856
857

        const integertime_t ti_step = get_integer_timestep(p->time_bin);
        const integertime_t ti_begin =
858
            get_integer_time_begin(ti_current + 1, p->time_bin);
859

860
861
#ifdef SWIFT_DEBUG_CHECKS
        const integertime_t ti_end =
Matthieu Schaller's avatar
Matthieu Schaller committed
862
            get_integer_time_end(ti_current + 1, p->time_bin);
863

Matthieu Schaller's avatar
Matthieu Schaller committed
864
        if (ti_begin != ti_current)
865
866
867
868
          error(
              "Particle in wrong time-bin, ti_end=%lld, ti_begin=%lld, "
              "ti_step=%lld time_bin=%d ti_current=%lld",
              ti_end, ti_begin, ti_step, p->time_bin, ti_current);
869
870
#endif

871
        /* do the kick */
872
        kick_part(p, xp, ti_begin, ti_begin + ti_step / 2, timeBase);
873
874
875
      }
    }

876
    /* Loop over the gparts in this cell. */
877
878
879
880
881
882
    for (int k = 0; k < gcount; k++) {

      /* Get a handle on the part. */
      struct gpart *restrict gp = &gparts[k];

      /* If the g-particle has no counterpart and needs to be kicked */
883
      if (gp->type == swift_type_dark_matter && gpart_is_starting(gp, e)) {
884

885
886
        const integertime_t ti_step = get_integer_timestep(gp->time_bin);
        const integertime_t ti_begin =
887
            get_integer_time_begin(ti_current + 1, gp->time_bin);
888

889
890
#ifdef SWIFT_DEBUG_CHECKS
        const integertime_t ti_end =
Matthieu Schaller's avatar
Matthieu Schaller committed
891
            get_integer_time_end(ti_current + 1, gp->time_bin);
892

Matthieu Schaller's avatar
Matthieu Schaller committed
893
894
895
896
897
        if (ti_begin != ti_current)
          error(
              "Particle in wrong time-bin, ti_end=%lld, ti_begin=%lld, "
              "ti_step=%lld time_bin=%d ti_current=%lld",
              ti_end, ti_begin, ti_step, gp->time_bin, ti_current);
898
899
#endif

900
        /* do the kick */
901
        kick_gpart(gp, ti_begin, ti_begin + ti_step / 2, timeBase);
902
903
      }
    }
904
905
906
907
908
909
910
911

    /* Loop over the star particles in this cell. */
    for (int k = 0; k < scount; k++) {

      /* Get a handle on the s-part. */
      struct spart *restrict sp = &sparts[k];

      /* If particle needs to be kicked */
912
      if (spart_is_starting(sp, e)) {
913
914
915

        const integertime_t ti_step = get_integer_timestep(sp->time_bin);
        const integertime_t ti_begin =
916
            get_integer_time_begin(ti_current + 1, sp->time_bin);
917
918
919

#ifdef SWIFT_DEBUG_CHECKS
        const integertime_t ti_end =
920
            get_integer_time_end(ti_current + 1, sp->time_bin);
921