distributed_io.c 32.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2019 Matthieu Schaller (schaller@strw.leidenuniv.nl)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

#if defined(HAVE_HDF5) && defined(WITH_MPI)

/* Some standard headers. */
#include <hdf5.h>
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

/* This object's header. */
#include "distributed_io.h"

/* Local includes. */
#include "black_holes_io.h"
#include "chemistry_io.h"
#include "common_io.h"
#include "cooling_io.h"
#include "dimension.h"
#include "engine.h"
#include "error.h"
45
#include "feedback.h"
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#include "fof_io.h"
#include "gravity_io.h"
#include "gravity_properties.h"
#include "hydro_io.h"
#include "hydro_properties.h"
#include "io_properties.h"
#include "kernel_hydro.h"
#include "memuse.h"
#include "part.h"
#include "part_type.h"
#include "star_formation_io.h"
#include "stars_io.h"
#include "tracers_io.h"
#include "units.h"
#include "velociraptor_io.h"
#include "xmf.h"

/**
 * @brief Writes a data array in given HDF5 group.
 *
 * @param e The #engine we are writing from.
 * @param grp The group in which to write.
 * @param fileName The name of the file in which the data is written
 * @param xmfFile The FILE used to write the XMF description
 * @param partTypeGroupName The name of the group containing the particles in
 * the HDF5 file.
 * @param props The #io_props of the field to read
 * @param N The number of particles to write.
 * @param internal_units The #unit_system used internally
 * @param snapshot_units The #unit_system used in the snapshots
 *
 * @todo A better version using HDF5 hyper-slabs to write the file directly from
 * the part array will be written once the structures have been stabilized.
 */
void write_distributed_array(const struct engine* e, hid_t grp,
                             const char* fileName,
                             const char* partTypeGroupName,
                             const struct io_props props, const size_t N,
                             const struct unit_system* internal_units,
                             const struct unit_system* snapshot_units) {

  const size_t typeSize = io_sizeof_type(props.type);
  const size_t num_elements = N * props.dimension;

  /* message("Writing '%s' array...", props.name); */

  /* Allocate temporary buffer */
  void* temp = NULL;
  if (swift_memalign("writebuff", (void**)&temp, IO_BUFFER_ALIGNMENT,
                     num_elements * typeSize) != 0)
    error("Unable to allocate temporary i/o buffer");

  /* Copy the particle data to the temporary buffer */
  io_copy_temp_buffer(temp, e, props, N, internal_units, snapshot_units);

  /* Create data space */
102
103
104
105
106
107
  hid_t h_space;
  if (N > 0)
    h_space = H5Screate(H5S_SIMPLE);
  else
    h_space = H5Screate(H5S_NULL);

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
  if (h_space < 0)
    error("Error while creating data space for field '%s'.", props.name);

  int rank;
  hsize_t shape[2];
  hsize_t chunk_shape[2];

  if (props.dimension > 1) {
    rank = 2;
    shape[0] = N;
    shape[1] = props.dimension;
    chunk_shape[0] = 1 << 20; /* Just a guess...*/
    chunk_shape[1] = props.dimension;
  } else {
    rank = 1;
    shape[0] = N;
    shape[1] = 0;
    chunk_shape[0] = 1 << 20; /* Just a guess...*/
    chunk_shape[1] = 0;
  }

  /* Make sure the chunks are not larger than the dataset */
  if (chunk_shape[0] > N) chunk_shape[0] = N;

  /* Change shape of data space */
  hid_t h_err = H5Sset_extent_simple(h_space, rank, shape, shape);
  if (h_err < 0)
    error("Error while changing data space shape for field '%s'.", props.name);

  /* Dataset properties */
  const hid_t h_prop = H5Pcreate(H5P_DATASET_CREATE);

140
141
  /* Create filters and set compression level if we have something to write */
  if (N > 0) {
142

143
144
    /* Set chunk size */
    h_err = H5Pset_chunk(h_prop, rank, chunk_shape);
145
    if (h_err < 0)
146
147
      error("Error while setting chunk size (%llu, %llu) for field '%s'.",
            chunk_shape[0], chunk_shape[1], props.name);
148

149
150
    /* Impose check-sum to verify data corruption */
    h_err = H5Pset_fletcher32(h_prop);
151
    if (h_err < 0)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
      error("Error while setting checksum options for field '%s'.", props.name);

    /* Impose data compression */
    if (e->snapshot_compression > 0) {
      h_err = H5Pset_shuffle(h_prop);
      if (h_err < 0)
        error("Error while setting shuffling options for field '%s'.",
              props.name);

      h_err = H5Pset_deflate(h_prop, e->snapshot_compression);
      if (h_err < 0)
        error("Error while setting compression options for field '%s'.",
              props.name);
    }
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
  }

  /* Create dataset */
  const hid_t h_data = H5Dcreate(grp, props.name, io_hdf5_type(props.type),
                                 h_space, H5P_DEFAULT, h_prop, H5P_DEFAULT);
  if (h_data < 0) error("Error while creating dataspace '%s'.", props.name);

  /* Write temporary buffer to HDF5 dataspace */
  h_err = H5Dwrite(h_data, io_hdf5_type(props.type), h_space, H5S_ALL,
                   H5P_DEFAULT, temp);
  if (h_err < 0) error("Error while writing data array '%s'.", props.name);

  /* Write unit conversion factors for this data set */
  char buffer[FIELD_BUFFER_SIZE] = {0};
  units_cgs_conversion_string(buffer, snapshot_units, props.units,
                              props.scale_factor_exponent);
  float baseUnitsExp[5];
  units_get_base_unit_exponents_array(baseUnitsExp, props.units);
  io_write_attribute_f(h_data, "U_M exponent", baseUnitsExp[UNIT_MASS]);
  io_write_attribute_f(h_data, "U_L exponent", baseUnitsExp[UNIT_LENGTH]);
  io_write_attribute_f(h_data, "U_t exponent", baseUnitsExp[UNIT_TIME]);
  io_write_attribute_f(h_data, "U_I exponent", baseUnitsExp[UNIT_CURRENT]);
  io_write_attribute_f(h_data, "U_T exponent", baseUnitsExp[UNIT_TEMPERATURE]);
  io_write_attribute_f(h_data, "h-scale exponent", 0.f);
  io_write_attribute_f(h_data, "a-scale exponent", props.scale_factor_exponent);
  io_write_attribute_s(h_data, "Expression for physical CGS units", buffer);

  /* Write the actual number this conversion factor corresponds to */
  const double factor =
      units_cgs_conversion_factor(snapshot_units, props.units);
  io_write_attribute_d(
      h_data,
      "Conversion factor to CGS (not including cosmological corrections)",
      factor);
  io_write_attribute_d(
      h_data,
      "Conversion factor to physical CGS (including cosmological corrections)",
      factor * pow(e->cosmology->a, props.scale_factor_exponent));

#ifdef SWIFT_DEBUG_CHECKS
  if (strlen(props.description) == 0)
    error("Invalid (empty) description of the field '%s'", props.name);
#endif

  /* Write the full description */
  io_write_attribute_s(h_data, "Description", props.description);

  /* Free and close everything */
  swift_free("writebuff", temp);
  H5Pclose(h_prop);
  H5Dclose(h_data);
  H5Sclose(h_space);
}

/**
 * @brief Writes a snapshot distributed into multiple files.
 *
 * @param e The engine containing all the system.
 * @param baseName The common part of the snapshot file name.
 * @param internal_units The #unit_system used internally
 * @param snapshot_units The #unit_system used in the snapshots
 *
 * Creates a series of HDF5 output files (1 per MPI node) as a snapshot.
 * Writes the particles contained in the engine.
 * If such files already exist, it is erased and replaced by the new one.
 * The companion XMF file is also updated accordingly.
 */
void write_output_distributed(struct engine* e, const char* baseName,
                              const struct unit_system* internal_units,
                              const struct unit_system* snapshot_units,
                              const int mpi_rank, const int mpi_size,
                              MPI_Comm comm, MPI_Info info) {

  hid_t h_file = 0, h_grp = 0;
  int numFiles = mpi_size;
  const struct part* parts = e->s->parts;
  const struct xpart* xparts = e->s->xparts;
  const struct gpart* gparts = e->s->gparts;
  const struct spart* sparts = e->s->sparts;
  const struct bpart* bparts = e->s->bparts;
  struct swift_params* params = e->parameter_file;
  const int with_cosmology = e->policy & engine_policy_cosmology;
  const int with_cooling = e->policy & engine_policy_cooling;
  const int with_temperature = e->policy & engine_policy_temperature;
  const int with_fof = e->policy & engine_policy_fof;
  const int with_DM_background = e->s->with_DM_background;
#ifdef HAVE_VELOCIRAPTOR
  const int with_stf = (e->policy & engine_policy_structure_finding) &&
                       (e->s->gpart_group_data != NULL);
#else
  const int with_stf = 0;
#endif

  /* Number of particles currently in the arrays */
  const size_t Ntot = e->s->nr_gparts;
  const size_t Ngas = e->s->nr_parts;
  const size_t Nstars = e->s->nr_sparts;
  const size_t Nblackholes = e->s->nr_bparts;

  size_t Ndm_background = 0;
  if (with_DM_background) {
    Ndm_background = io_count_dm_background_gparts(gparts, Ntot);
  }

  /* Number of particles that we will write in this file.
   * Recall that background particles are never inhibited and have no extras */
  const size_t Ntot_written =
      e->s->nr_gparts - e->s->nr_inhibited_gparts - e->s->nr_extra_gparts;
  const size_t Ngas_written =
      e->s->nr_parts - e->s->nr_inhibited_parts - e->s->nr_extra_parts;
  const size_t Nstars_written =
      e->s->nr_sparts - e->s->nr_inhibited_sparts - e->s->nr_extra_sparts;
  const size_t Nblackholes_written =
      e->s->nr_bparts - e->s->nr_inhibited_bparts - e->s->nr_extra_bparts;
  const size_t Nbaryons_written =
      Ngas_written + Nstars_written + Nblackholes_written;
  const size_t Ndm_written =
      Ntot_written > 0 ? Ntot_written - Nbaryons_written - Ndm_background : 0;

  /* File name */
  char fileName[FILENAME_BUFFER_SIZE];
  if (e->snapshot_int_time_label_on)
    snprintf(fileName, FILENAME_BUFFER_SIZE, "%s_%06i.%d.hdf5", baseName,
             (int)round(e->time), mpi_rank);
  else if (e->snapshot_invoke_stf) {
    snprintf(fileName, FILENAME_BUFFER_SIZE, "%s_%04i.%d.hdf5", baseName,
             e->stf_output_count, mpi_rank);
  } else
    snprintf(fileName, FILENAME_BUFFER_SIZE, "%s_%04i.%d.hdf5", baseName,
             e->snapshot_output_count, mpi_rank);

  /* Compute offset in the file and total number of particles */
  const long long N[swift_type_count] = {Ngas_written,   Ndm_written,
                                         Ndm_background, 0,
                                         Nstars_written, Nblackholes_written};

  /* Gather the total number of particles to write */
  long long N_total[swift_type_count] = {0};
  MPI_Allreduce(N, N_total, swift_type_count, MPI_LONG_LONG_INT, MPI_SUM, comm);

  /* First time, we need to create the XMF file */
  if (e->snapshot_output_count == 0) xmf_create_file(baseName);

  /* Open file */
  /* message("Opening file '%s'.", fileName); */
  h_file = H5Fcreate(fileName, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
  if (h_file < 0) error("Error while opening file '%s'.", fileName);

  /* Open header to write simulation properties */
  /* message("Writing file header..."); */
  h_grp = H5Gcreate(h_file, "/Header", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
  if (h_grp < 0) error("Error while creating file header\n");

  /* Convert basic output information to snapshot units */
  const double factor_time =
      units_conversion_factor(internal_units, snapshot_units, UNIT_CONV_TIME);
  const double factor_length =
      units_conversion_factor(internal_units, snapshot_units, UNIT_CONV_LENGTH);
  const double dblTime = e->time * factor_time;
  const double dim[3] = {e->s->dim[0] * factor_length,
                         e->s->dim[1] * factor_length,
                         e->s->dim[2] * factor_length};

  /* Print the relevant information and print status */
  io_write_attribute(h_grp, "BoxSize", DOUBLE, dim, 3);
  io_write_attribute(h_grp, "Time", DOUBLE, &dblTime, 1);
  const int dimension = (int)hydro_dimension;
  io_write_attribute(h_grp, "Dimension", INT, &dimension, 1);
  io_write_attribute(h_grp, "Redshift", DOUBLE, &e->cosmology->z, 1);
  io_write_attribute(h_grp, "Scale-factor", DOUBLE, &e->cosmology->a, 1);
  io_write_attribute_s(h_grp, "Code", "SWIFT");
  io_write_attribute_s(h_grp, "RunName", e->run_name);

339
340
341
342
343
344
345
  /* Store the time at which the snapshot was written */
  time_t tm = time(NULL);
  struct tm* timeinfo = localtime(&tm);
  char snapshot_date[64];
  strftime(snapshot_date, 64, "%T %F %Z", timeinfo);
  io_write_attribute_s(h_grp, "Snapshot date", snapshot_date);

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
  /* GADGET-2 legacy values */
  /* Number of particles of each type */
  unsigned int numParticles[swift_type_count] = {0};
  unsigned int numParticlesHighWord[swift_type_count] = {0};
  for (int ptype = 0; ptype < swift_type_count; ++ptype) {
    numParticles[ptype] = (unsigned int)N_total[ptype];
    numParticlesHighWord[ptype] = (unsigned int)(N_total[ptype] >> 32);
  }
  io_write_attribute(h_grp, "NumPart_ThisFile", LONGLONG, N, swift_type_count);
  io_write_attribute(h_grp, "NumPart_Total", UINT, numParticles,
                     swift_type_count);
  io_write_attribute(h_grp, "NumPart_Total_HighWord", UINT,
                     numParticlesHighWord, swift_type_count);
  double MassTable[swift_type_count] = {0};
  io_write_attribute(h_grp, "MassTable", DOUBLE, MassTable, swift_type_count);
  unsigned int flagEntropy[swift_type_count] = {0};
  flagEntropy[0] = writeEntropyFlag();
  io_write_attribute(h_grp, "Flag_Entropy_ICs", UINT, flagEntropy,
                     swift_type_count);
  io_write_attribute_i(h_grp, "NumFilesPerSnapshot", numFiles);
  io_write_attribute_i(h_grp, "ThisFile", mpi_rank);

  /* Close header */
  H5Gclose(h_grp);

  /* Print the code version */
  io_write_code_description(h_file);

  /* Print the run's policy */
  io_write_engine_policy(h_file, e);

377
378
379
  /* Print the physical constants */
  phys_const_print_snapshot(h_file, e->physical_constants);

380
381
382
383
384
385
386
387
388
389
390
391
392
393
  /* Print the SPH parameters */
  if (e->policy & engine_policy_hydro) {
    h_grp = H5Gcreate(h_file, "/HydroScheme", H5P_DEFAULT, H5P_DEFAULT,
                      H5P_DEFAULT);
    if (h_grp < 0) error("Error while creating SPH group");
    hydro_props_print_snapshot(h_grp, e->hydro_properties);
    hydro_write_flavour(h_grp);
    H5Gclose(h_grp);
  }

  /* Print the subgrid parameters */
  h_grp = H5Gcreate(h_file, "/SubgridScheme", H5P_DEFAULT, H5P_DEFAULT,
                    H5P_DEFAULT);
  if (h_grp < 0) error("Error while creating subgrid group");
394
395
396
  hid_t h_grp_columns =
      H5Gcreate(h_grp, "NamedColumns", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
  if (h_grp_columns < 0) error("Error while creating named columns group");
397
  entropy_floor_write_flavour(h_grp);
398
  cooling_write_flavour(h_grp, h_grp_columns, e->cooling_func);
399
  chemistry_write_flavour(h_grp, h_grp_columns, e);
400
  tracers_write_flavour(h_grp);
401
402
  feedback_write_flavour(e->feedback_props, h_grp);
  H5Gclose(h_grp_columns);
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
  H5Gclose(h_grp);

  /* Print the gravity parameters */
  if (e->policy & engine_policy_self_gravity) {
    h_grp = H5Gcreate(h_file, "/GravityScheme", H5P_DEFAULT, H5P_DEFAULT,
                      H5P_DEFAULT);
    if (h_grp < 0) error("Error while creating gravity group");
    gravity_props_print_snapshot(h_grp, e->gravity_properties);
    H5Gclose(h_grp);
  }

  /* Print the stellar parameters */
  if (e->policy & engine_policy_stars) {
    h_grp = H5Gcreate(h_file, "/StarsScheme", H5P_DEFAULT, H5P_DEFAULT,
                      H5P_DEFAULT);
    if (h_grp < 0) error("Error while creating stars group");
    stars_props_print_snapshot(h_grp, e->stars_properties);
    H5Gclose(h_grp);
  }

  /* Print the cosmological model  */
  h_grp =
      H5Gcreate(h_file, "/Cosmology", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
  if (h_grp < 0) error("Error while creating cosmology group");
  if (e->policy & engine_policy_cosmology)
    io_write_attribute_i(h_grp, "Cosmological run", 1);
  else
    io_write_attribute_i(h_grp, "Cosmological run", 0);
  cosmology_write_model(h_grp, e->cosmology);
  H5Gclose(h_grp);

  /* Print the runtime parameters */
  h_grp =
      H5Gcreate(h_file, "/Parameters", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
  if (h_grp < 0) error("Error while creating parameters group");
  parser_write_params_to_hdf5(e->parameter_file, h_grp, 1);
  H5Gclose(h_grp);

  /* Print the runtime unused parameters */
  h_grp = H5Gcreate(h_file, "/UnusedParameters", H5P_DEFAULT, H5P_DEFAULT,
                    H5P_DEFAULT);
  if (h_grp < 0) error("Error while creating parameters group");
  parser_write_params_to_hdf5(e->parameter_file, h_grp, 0);
  H5Gclose(h_grp);

  /* Print the system of Units used in the spashot */
  io_write_unit_system(h_file, snapshot_units, "Units");

  /* Print the system of Units used internally */
  io_write_unit_system(h_file, internal_units, "InternalCodeUnits");

454
455
456
457
  /* Now write the top-level cell structure
   * We use a global offset of 0 here. This means that the cells will write
   * their offset with respect to the start of the file they belong to and
   * not a global offset */
458
459
460
461
462
463
  long long global_offsets[swift_type_count] = {0};
  h_grp = H5Gcreate(h_file, "/Cells", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
  if (h_grp < 0) error("Error while creating cells group");

  /* Write the location of the particles in the arrays */
  io_write_cell_offsets(h_grp, e->s->cdim, e->s->dim, e->s->pos_dithering,
464
                        e->s->cells_top, e->s->nr_cells, e->s->width, mpi_rank,
465
466
                        /*distributed=*/1, N_total, global_offsets,
                        internal_units, snapshot_units);
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
  H5Gclose(h_grp);

  /* Tell the user if a conversion will be needed */
  if (e->verbose) {
    if (units_are_equal(snapshot_units, internal_units)) {

      message("Snapshot and internal units match. No conversion needed.");

    } else {

      message("Conversion needed from:");
      message("(Snapshot) Unit system: U_M =      %e g.",
              snapshot_units->UnitMass_in_cgs);
      message("(Snapshot) Unit system: U_L =      %e cm.",
              snapshot_units->UnitLength_in_cgs);
      message("(Snapshot) Unit system: U_t =      %e s.",
              snapshot_units->UnitTime_in_cgs);
      message("(Snapshot) Unit system: U_I =      %e A.",
              snapshot_units->UnitCurrent_in_cgs);
      message("(Snapshot) Unit system: U_T =      %e K.",
              snapshot_units->UnitTemperature_in_cgs);
      message("to:");
      message("(internal) Unit system: U_M = %e g.",
              internal_units->UnitMass_in_cgs);
      message("(internal) Unit system: U_L = %e cm.",
              internal_units->UnitLength_in_cgs);
      message("(internal) Unit system: U_t = %e s.",
              internal_units->UnitTime_in_cgs);
      message("(internal) Unit system: U_I = %e A.",
              internal_units->UnitCurrent_in_cgs);
      message("(internal) Unit system: U_T = %e K.",
              internal_units->UnitTemperature_in_cgs);
    }
  }

  /* Loop over all particle types */
  for (int ptype = 0; ptype < swift_type_count; ptype++) {

    /* Don't do anything if no particle of this kind */
    if (numParticles[ptype] == 0) continue;

    /* Open the particle group in the file */
    char partTypeGroupName[PARTICLE_GROUP_BUFFER_SIZE];
    snprintf(partTypeGroupName, PARTICLE_GROUP_BUFFER_SIZE, "/PartType%d",
             ptype);
    h_grp = H5Gcreate(h_file, partTypeGroupName, H5P_DEFAULT, H5P_DEFAULT,
                      H5P_DEFAULT);
    if (h_grp < 0) error("Error while creating particle group.\n");

516
517
518
519
520
521
522
523
524
525
526
    /* Add an alias name for convenience */
    char aliasName[PARTICLE_GROUP_BUFFER_SIZE];
    snprintf(aliasName, PARTICLE_GROUP_BUFFER_SIZE, "/%sParticles",
             part_type_names[ptype]);
    hid_t h_err = H5Lcreate_soft(partTypeGroupName, h_grp, aliasName,
                                 H5P_DEFAULT, H5P_DEFAULT);
    if (h_err < 0) error("Error while creating alias for particle group.\n");

    /* Write the number of particles as an attribute */
    io_write_attribute_l(h_grp, "NumberOfParticles", N[ptype]);

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
    int num_fields = 0;
    struct io_props list[100];
    size_t Nparticles = 0;

    struct part* parts_written = NULL;
    struct xpart* xparts_written = NULL;
    struct gpart* gparts_written = NULL;
    struct velociraptor_gpart_data* gpart_group_data_written = NULL;
    struct spart* sparts_written = NULL;
    struct bpart* bparts_written = NULL;

    /* Write particle fields from the particle structure */
    switch (ptype) {

      case swift_type_gas: {
        if (Ngas == Ngas_written) {

          /* No inhibted particles: easy case */
          Nparticles = Ngas;
          hydro_write_particles(parts, xparts, list, &num_fields);
          num_fields += chemistry_write_particles(parts, list + num_fields);
          if (with_cooling || with_temperature) {
            num_fields += cooling_write_particles(
                parts, xparts, list + num_fields, e->cooling_func);
          }
          if (with_fof) {
            num_fields += fof_write_parts(parts, xparts, list + num_fields);
          }
          if (with_stf) {
            num_fields +=
                velociraptor_write_parts(parts, xparts, list + num_fields);
          }
          num_fields += tracers_write_particles(
              parts, xparts, list + num_fields, with_cosmology);
          num_fields +=
              star_formation_write_particles(parts, xparts, list + num_fields);

        } else {

          /* Ok, we need to fish out the particles we want */
          Nparticles = Ngas_written;

          /* Allocate temporary arrays */
          if (swift_memalign("parts_written", (void**)&parts_written,
                             part_align,
                             Ngas_written * sizeof(struct part)) != 0)
            error("Error while allocating temporary memory for parts");
          if (swift_memalign("xparts_written", (void**)&xparts_written,
                             xpart_align,
                             Ngas_written * sizeof(struct xpart)) != 0)
            error("Error while allocating temporary memory for xparts");

          /* Collect the particles we want to write */
          io_collect_parts_to_write(parts, xparts, parts_written,
                                    xparts_written, Ngas, Ngas_written);

          /* Select the fields to write */
          hydro_write_particles(parts_written, xparts_written, list,
                                &num_fields);
          num_fields +=
              chemistry_write_particles(parts_written, list + num_fields);
          if (with_cooling || with_temperature) {
            num_fields +=
                cooling_write_particles(parts_written, xparts_written,
                                        list + num_fields, e->cooling_func);
          }
          if (with_fof) {
            num_fields += fof_write_parts(parts_written, xparts_written,
                                          list + num_fields);
          }
          if (with_stf) {
            num_fields += velociraptor_write_parts(
                parts_written, xparts_written, list + num_fields);
          }
          num_fields += tracers_write_particles(
              parts_written, xparts_written, list + num_fields, with_cosmology);
          num_fields += star_formation_write_particles(
              parts_written, xparts_written, list + num_fields);
        }
      } break;

      case swift_type_dark_matter: {
        if (Ntot == Ndm_written) {

          /* This is a DM-only run without background or inhibited particles */
          Nparticles = Ntot;
          darkmatter_write_particles(gparts, list, &num_fields);
          if (with_fof) {
            num_fields += fof_write_gparts(gparts, list + num_fields);
          }
          if (with_stf) {
            num_fields += velociraptor_write_gparts(e->s->gpart_group_data,
                                                    list + num_fields);
          }
        } else {

          /* Ok, we need to fish out the particles we want */
          Nparticles = Ndm_written;

          /* Allocate temporary array */
          if (swift_memalign("gparts_written", (void**)&gparts_written,
                             gpart_align,
                             Ndm_written * sizeof(struct gpart)) != 0)
            error("Error while allocating temporary memory for gparts");

          if (with_stf) {
            if (swift_memalign(
                    "gpart_group_written", (void**)&gpart_group_data_written,
                    gpart_align,
                    Ndm_written * sizeof(struct velociraptor_gpart_data)) != 0)
              error(
                  "Error while allocating temporary memory for gparts STF "
                  "data");
          }

          /* Collect the non-inhibited DM particles from gpart */
          io_collect_gparts_to_write(gparts, e->s->gpart_group_data,
                                     gparts_written, gpart_group_data_written,
                                     Ntot, Ndm_written, with_stf);

          /* Select the fields to write */
          darkmatter_write_particles(gparts_written, list, &num_fields);
          if (with_fof) {
            num_fields += fof_write_gparts(gparts_written, list + num_fields);
          }
          if (with_stf) {
            num_fields += velociraptor_write_gparts(gpart_group_data_written,
                                                    list + num_fields);
          }
        }
      } break;

      case swift_type_dark_matter_background: {

        /* Ok, we need to fish out the particles we want */
        Nparticles = Ndm_background;

        /* Allocate temporary array */
        if (swift_memalign("gparts_written", (void**)&gparts_written,
                           gpart_align,
                           Ndm_background * sizeof(struct gpart)) != 0)
          error("Error while allocating temporart memory for gparts");

        if (with_stf) {
          if (swift_memalign(
                  "gpart_group_written", (void**)&gpart_group_data_written,
                  gpart_align,
                  Ndm_background * sizeof(struct velociraptor_gpart_data)) != 0)
            error(
                "Error while allocating temporart memory for gparts STF "
                "data");
        }

        /* Collect the non-inhibited DM particles from gpart */
        io_collect_gparts_background_to_write(
            gparts, e->s->gpart_group_data, gparts_written,
            gpart_group_data_written, Ntot, Ndm_background, with_stf);

        /* Select the fields to write */
        darkmatter_write_particles(gparts_written, list, &num_fields);
        if (with_fof) {
          num_fields += fof_write_gparts(gparts_written, list + num_fields);
        }
        if (with_stf) {
          num_fields += velociraptor_write_gparts(gpart_group_data_written,
                                                  list + num_fields);
        }
      } break;

      case swift_type_stars: {
        if (Nstars == Nstars_written) {

          /* No inhibted particles: easy case */
          Nparticles = Nstars;
          stars_write_particles(sparts, list, &num_fields, with_cosmology);
          num_fields += chemistry_write_sparticles(sparts, list + num_fields);
          num_fields += tracers_write_sparticles(sparts, list + num_fields,
                                                 with_cosmology);
          if (with_fof) {
            num_fields += fof_write_sparts(sparts, list + num_fields);
          }
          if (with_stf) {
            num_fields += velociraptor_write_sparts(sparts, list + num_fields);
          }
        } else {

          /* Ok, we need to fish out the particles we want */
          Nparticles = Nstars_written;

          /* Allocate temporary arrays */
          if (swift_memalign("sparts_written", (void**)&sparts_written,
                             spart_align,
                             Nstars_written * sizeof(struct spart)) != 0)
            error("Error while allocating temporary memory for sparts");

          /* Collect the particles we want to write */
          io_collect_sparts_to_write(sparts, sparts_written, Nstars,
                                     Nstars_written);

          /* Select the fields to write */
          stars_write_particles(sparts_written, list, &num_fields,
                                with_cosmology);
          num_fields +=
              chemistry_write_sparticles(sparts_written, list + num_fields);
          num_fields += tracers_write_sparticles(
              sparts_written, list + num_fields, with_cosmology);
          if (with_fof) {
            num_fields += fof_write_sparts(sparts_written, list + num_fields);
          }
          if (with_stf) {
            num_fields +=
                velociraptor_write_sparts(sparts_written, list + num_fields);
          }
        }
      } break;

      case swift_type_black_hole: {
        if (Nblackholes == Nblackholes_written) {

          /* No inhibted particles: easy case */
          Nparticles = Nblackholes;
          black_holes_write_particles(bparts, list, &num_fields,
                                      with_cosmology);
          num_fields += chemistry_write_bparticles(bparts, list + num_fields);
          if (with_fof) {
            num_fields += fof_write_bparts(bparts, list + num_fields);
          }
          if (with_stf) {
            num_fields += velociraptor_write_bparts(bparts, list + num_fields);
          }
        } else {

          /* Ok, we need to fish out the particles we want */
          Nparticles = Nblackholes_written;

          /* Allocate temporary arrays */
          if (swift_memalign("bparts_written", (void**)&bparts_written,
                             bpart_align,
                             Nblackholes_written * sizeof(struct bpart)) != 0)
            error("Error while allocating temporary memory for bparts");

          /* Collect the particles we want to write */
          io_collect_bparts_to_write(bparts, bparts_written, Nblackholes,
                                     Nblackholes_written);

          /* Select the fields to write */
          black_holes_write_particles(bparts_written, list, &num_fields,
                                      with_cosmology);
          num_fields +=
              chemistry_write_bparticles(bparts_written, list + num_fields);
          if (with_fof) {
            num_fields += fof_write_bparts(bparts_written, list + num_fields);
          }
          if (with_stf) {
            num_fields +=
                velociraptor_write_bparts(bparts_written, list + num_fields);
          }
        }
      } break;

      default:
        error("Particle Type %d not yet supported. Aborting", ptype);
    }

    /* Write everything that is not cancelled */
    for (int i = 0; i < num_fields; ++i) {

      /* Did the user cancel this field? */
      char field[PARSER_MAX_LINE_SIZE];
      sprintf(field, "SelectOutput:%.*s_%s", FIELD_BUFFER_SIZE, list[i].name,
              part_type_names[ptype]);
      int should_write = parser_get_opt_param_int(params, field, 1);

      if (should_write)
        write_distributed_array(e, h_grp, fileName, partTypeGroupName, list[i],
                                Nparticles, internal_units, snapshot_units);
    }

    /* Free temporary arrays */
    if (parts_written) swift_free("parts_written", parts_written);
    if (xparts_written) swift_free("xparts_written", xparts_written);
    if (gparts_written) swift_free("gparts_written", gparts_written);
    if (gpart_group_data_written)
      swift_free("gpart_group_written", gpart_group_data_written);
    if (sparts_written) swift_free("sparts_written", sparts_written);
    if (bparts_written) swift_free("bparts_written", bparts_written);

    /* Close particle group */
    H5Gclose(h_grp);
  }

  /* message("Done writing particles..."); */

  /* Close file */
  H5Fclose(h_file);

  e->snapshot_output_count++;
  if (e->snapshot_invoke_stf) e->stf_output_count++;
}

#endif /* HAVE_HDF5 && WITH_MPI */